
1 

Using Reflective Learning to Master Opponent Strategy in a 
Competitive Environment 

 
Mark A. Cohen (mcohen@lhup.edu) 

Department of Business Administration, Computer Science, and Information Technology, Lock Haven University, 
Lock Haven, PA 17745 USA 

 
Frank E. Ritter (frank.ritter@psu.edu) 
Steven R. Haynes (shaynes@ist.psu.edu) 

College of Information Sciences and Technology, The Pennsylvania State University, State College, PA 16802 USA 
 
 

Abstract 

Cognitive models of people interacting in competitive 
environments can be useful, especially in games and 
simulations.  To be successful in such environments, it is 
necessary to quickly learn the strategy used by the opponent.  
In addition, as the opponent adjusts its tactics, it is equally 
important to quickly unlearn opponent strategies that are no 
longer used.  In this paper, we present human performance 
data from a competitive environment.  In addition, a cognitive 
model that uses reflective learning is introduced and 
compared to the empirical findings.  The model demonstrates 
that it is possible to simulate learning in an adversarial 
environment using reflection and provides insight into how 
such a model can be expanded. 

Introduction 
Cognitive models of people interacting in competitive 
environments can be useful, especially in games and 
simulations (Jones et al., 1999; Laird, 2001a, 2001b; Ritter 
et al., 2002).  To be successful in such environments, it is 
necessary to quickly learn the strategy used by the 
opponent.  In addition, as the opponent adjusts its tactics it 
is equally important to quickly unlearn opponent strategies 
that are no longer used.  The model presented here uses 
learning by reflection to accomplish this task.  This model 
was created using a high-level tool that produces cognitive 
models quickly, and with little or no programming.  We 
briefly take up the two important aspects of this project, 
leaning from reflection and the role of variability in 
performance. 

Leaning By Reflection 
Learning by reflection (or introspection) is one technique 
that can be used to learn and unlearn an opponent’s 
changing strategies while at the same time preserving the 
variability in which people learn (e.g. Bass, Baxter, & 
Ritter, 1995; Cox & Ram, 1999; Ritter & Wallach, 1998). 

Learning by reflection is a form of metacognition that 
allows the model to learn by reflecting on its performance, 
and adjusting accordingly.  When reflection reveals 
previous actions that were beneficial, the model will be 
more likely to repeat those same actions in similar 
situations.  However, when reflection reveals poor 
performance, the actions that lead to that performance are 

less likely to be repeated.  Thus, learning by reflection is a 
form of reinforcement learning (Russell & Norvig, 2003). 

Reflective learning requires that both the cognitive model 
and its environment are fully observable (Russell & Norvig, 
2003).  In other words, the model must be able to observe 
the effects of its actions on the environment and other 
models. 

Variability 
For a model’s behavior to be believable in a game or 
simulation its performance must do more than match 
average human behavior.  Cognitive models must also 
exhibit the same variability in behavior that a human 
exhibits.  When playing a game or participating in a 
simulation, variable behavior is a crucial part of the realism 
that these systems must portray. 

Because reflective learning strategies are based on 
probability, the behaviors they generate are not 
deterministic.  This allows reflective models to exhibit 
variability in learning and thus performance. 

The remainder of this paper describes a study done to 
measure how quickly participants in a user study learn 
opponent strategies while performing a competitive task, 
and a cognitive model that was designed to exhibit similar 
performance with equal variability. 

Task 
Lehman, Laird, and Rosenbloom (1996) in their A Gentle 
Introduction to Soar use baseball repeatedly as an example. 
This inspired us to implement a simple version of a baseball 
game to study adversarial problem solving and support 
people learning Soar.  In a broader context, this environment 
provides an accessible platform for the future study of 
cognitive models interacting with other agents in a social 
simulation (Sun, 2006). 

Figure 1 shows the basic interface and one of the 
feedback screens.  In this game, participants play the role of 
the pitcher competing against a series of agent-operated 
batters.  The goal of this game, as in baseball, is to get 
batters out. 

The baseball game described here was written in Java and 
interacts with the Soar cognitive architecture using the Soar 
Markup Language (SML Quick Start Guide, 2005).  The 
software and instructions on how to use it are available 
online (acs.ist.psu.edu/herbal). 
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Figure 1: The Baseball Game Task. 

Rules of the Game 
There are two ways to get a batter out in this game: The 
batter can get three strikes (a strike results when a batter 
either swings and misses or does not swing at a good pitch), 
or the batter can hit the ball directly at a fielder who catches 
the ball. 

There are also two ways for a batter to get on base in this 
game:  The batter can get four balls (a ball results when the 
batter does not swing at a bad pitch), or the batter can hit the 
ball in a way that prevents the fielders from catching it. 

Acting as the pitcher, the participants in this study had a 
choice of throwing either a fastball or a curveball to the 
batter.  Once they threw a pitch, the batter had a choice of 
either swinging at the pitch or letting it go by.  Both the 
pitcher and batter are always aware of how many balls and 
how many strikes the batter has.  The rules shown in Table 1 
describe how to determine the outcome of each pitch. 

 
Table 1: Determining the outcome of a pitch 

 
Pitcher Batter Response Outcome 

Fastball Batter swings Contact is made that may 
result in either an out 
(50% of the time) or a hit 
(50% of the time). 

Fastball Batter does not 
swing 

The pitch will result in a 
strike.1 

Curveball  Batter swings The pitch will result in a 
strike.1 

Curveball Batter does not 
swing 

The pitch will result in a 
ball.1 

 
Based on the rules described above, the most certain way 

to get a batter out is to throw a curveball when the pitcher 
thinks the batter will be swinging and to throw a fastball 
when the pitcher thinks the batter is not going to swing.  
Naturally, if the participant can learn what strategy the 

                                                           
1 If the batter gets three strikes, then they are out (called a 

strikeout).  If the batter gets four balls, they get a free pass to 
first base (called a walk). 

 

batter is using then they have a better chance of getting them 
out. 

Batter Strategies 
Each participant faced the same five different batter 
strategies in the same sequence during play.  Strategy 
changes were determined by the number of consecutive outs 
that the participant recorded against a given strategy.  When 
a predetermined out threshold was reached, a strategy shift 
by the batter would take place.  The exact sequence of batter 
strategies and their corresponding out thresholds were 
defined in a configuration file that was used by the baseball 
environment, but is unknown to the pitcher.  The batter 
strategies, along with their consecutive out thresholds, are 
shown in Table 2.  The strategies shown here are the ones 
used in our user study in the order they are listed.  However, 
we do not propose this as the only order, or the best order.  
The baseball game environment is easily configurable to use 
other strategies and to present them in any order.  This 
illustrates the baseball task’s usefulness for studying the 
effects of order on learning (Ritter, Nerb, O'Shea, & 
Lehtinen, 2007). 

 
Table 2: Batter Strategies in the Baseball Environment 

 
Name Strategy Out 

Threshold 
Hacker Always swings 4 

Aggressive Swings at the first pitch and 
when there are fewer strikes 
than balls, unless there are three 
balls and two strikes 

7 

Random Randomly chooses when to 
swing 

5 

Chicken Never swings 4 

Alternate Swings if the last pitch was a 
fastball and does not swing if it 
is the first pitch or the last pitch 
was a curve 

7 

 
To make it clear exactly how strategy changes took place 
during the game, an example is provided. 

 
Strategy Shift Example The participant begins by facing 
batters that use the Hacker strategy.  Because the 
consecutive out threshold for this strategy is 4, the 
participant continues to face batters that use the Hacker 
strategy until they get 4 consecutive batters out.  At this 
point in time, the strategy shifts to the Aggressive strategy 
and a new out threshold of 7 is in effect.  The Aggressive 
strategy is then used by the batters until 7 batters are retired 
consecutively.  Game play continues in this fashion until the 
participant reaches the fifth and final strategy (Alternate).  
When 7 consecutive Alternate batters are retired by the 
pitcher the game ends. 
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Performance Measure 
The participant’s ability to learn a particular strategy was 
measured quantitatively using a measure of pitching 
efficiency (PE).  The following formula was used to 
calculate pitching efficiency: 

 

PE = Ns / Ts 
 

Where Ns is the number of batters using strategy s that were 
faced by the participant, and Ts is the consecutive out 
threshold for strategy s.  A decrease in PE indicates an 
increase in the efficiency of the pitcher.  A value of 1.0 for 
PE indicates the most efficient pitching strategy.  For 
example, if a participant faced 14 Aggressive batters before 
they could retire 7 in a row, the participant’s pitching 
efficiency would be 14 / 7, or 2. 

Method 
Undergraduate Computer Science students at Lock Haven 
University participated.  A total of 10 participants 
performed the baseball task.  Nine of the 10 participants 
were male. 

After signing a consent form, each participant was given 
instructions explaining the rules of the game.  The 
instructions were similar to those presented here except the 
information in Table 2 was not provided.  As a result, the 
participant did not know what type of strategies to expect, or 
when strategy changes would take place.  However, the 
participants were aware that strategies could change during 
the game. 

Participants were given as much time as needed to 
complete the task and were allowed to consult the 
instruction sheet during play.  All the participants seemed to 
have no problem understanding the game and no questions 
were asked while performing the task. 

Models 
A total of six cognitive models were written to conduct the 
study described here.  All six models were written using the 
Herbal high-level language and development environment 
(Cohen, Ritter, & Haynes, 2005). 

The Herbal high-level language is based on the Problem 
Space Computational Model (PSCM) (Newell, Yost, Laird, 
Rosenbloom, & Altmann, 1991) and produces productions 
that can run in both the Soar cognitive architecture (Laird & 
Congdon, 2005) and Jess (Friedman-Hill, 2003).  In this 
study, the Herbal generated Soar productions were used.  
However, Jess productions would have also been adequate. 

Because of the use of the Herbal high-level language and 
graphical editor, the creation of the models described here 
required only an understanding of the PSCM (which 
provided an infrastructure for model organization) and some 
visual modeling techniques.  This serves as an example of 
how Herbal can provide modelers without a strong 
programming background access to the complicated 
machinery used by architectures that may traditionally be 
out of their reach.  As these models progress towards more 
sophisticated learning algorithms, the simplified access to 
Soar and the PSCM will become even more valuable. 

All of the models described here are available online as 
examples at the Herbal website (acs.ist.psu.edu/herbal). 

Batter Models 
Five cognitive models were written to represent the 
strategies used by the batter (Hacker, Aggressive, Random, 
Chicken, and Alternate).  These models are not capable of 
learning and served only as opponents that exhibit the 
behavior described in Table 2. 

Pitcher Model 
A sixth model was written to play the role of the pitcher.  
The goal of the pitcher model was to exhibit behavior 
similar to that demonstrated by the participants.  Unlike the 
batter strategy models, the pitcher model was able to learn 
using reflection.  More specifically, this model operated 
within two problem spaces: one to deliberate what pitch to 
throw next, and one to reflect on recent performance and 
modify future deliberation.  The formulation of an explicit 
reflection phase was simplified by the use of the PSCM and 
Herbal. 

The pitcher model started with an equal probability of 
throwing a curveball or a fastball.  Within the explicit 
reflection problem space, the pitcher model considers the 
following features of the environment: the previous number 
of balls and strikes on the batter, the previous pitch thrown, 
and the outcome of that pitch.  If the outcome is positive 
(e.g., a strike was called or the batter struck out) the pitcher 
adjusts a probability so that it is more likely to throw the 
same pitch the next time it encounters this situation.  If, on 
the other hand, the outcome was negative (a ball or contact 
by the batter, including contact resulting in an out), and the 
pitcher had previously experienced a positive outcome in 
this situation (a strike or a strikeout), the probability of 
throwing the same pitch in that situation was decreased. 

The probability of an action occurring was adjusted by 
altering working memory so that more or fewer indifferent 
operators were proposed to throw that pitch type in a given 
situation.  In other words, positive events lead to episodic 
memory that influences future action.  Alternatively, 
negative events remove episodic memory, reducing this 
influence.  Without prior positive outcomes in a particular 
situation, no episodic memory elements exist and negative 
outcomes in that situation are ignored. 

An alternative approach to episodic memory would be to 
use the numeric-indifferent preference in Soar (Laird & 
Congdon, 2005).  However, the Herbal high-level language 
did not support this at the time these models were written. 

Model Parameters 
The pitcher model takes two parameters: the learning rate 
and the unlearning rate.  The learning rate specifies how 
quickly the model will commit to throwing a particular pitch 
in a particular situation; in other words, how quickly the 
probability increases given a positive outcome.  The 
unlearning rate specifies how quickly the model will reduce 
this learned commitment.  The best values for these learning 
rates almost certainly depend on the nature of the particular 
task. 
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Considering the relatively simple rules in the baseball task 
described above, it is expected that participants will be able 
to learn strategies quickly.  In addition, it is hypothesized 
that participants will at first be reluctant to unlearn until 
they are sure that a strategy shift has taken place.  Given 
persistent negative feedback on a previously learned 
response, participants should eventually accelerate their 
unlearning rate. 

Looking at the task environment more closely, further 
justification of these parameter values can be found in the 
fact that four of the five batter strategies are deterministic.  
When a particular pitch works for a batter in a specific 
situation, it will continue to work until a strategy shift takes 
place.  After a particular pitch stops working for a batter, it 
can be assumed that a strategy shift has occurred. 

As a result, in an effort to match human behavior the 
pitcher model described here was equipped with a fast 
learning rate and an initially stubborn, but later accelerating, 
unlearning rate.  Figure 2 depicts the learning and 
unlearning rates used by the model. 

 

 
 

Figure 2: Learning and Unlearning Rates Used by the 
Model. 

Results 
Because a primary goal of this work was to produce a model 
that not only matches the average pitching efficiency, but 
also matches the variability in pitching efficiency, the 
cognitive models created here are not deterministic.  This 
allowed us to consider each run of the model as being 
equivalent to a participant run.  To reduce any sampling 
error with this theory, the model was run 100 times. 

Table 3 shows the results of the participant study and of 
the model executions.  The average pitching efficiency and 
the standard deviation of the pitching efficiency are listed 
for all participants and all model runs.  Recall that the 
smaller the pitching efficiency the more efficient the pitcher, 
and the most efficient strategy has a PE equal to 1.0. 

Figure 3 visualizes the data listed in Table 3.  Each bar in 
Figure 3 represents the average pitching efficiency as 
defined in the Methods section.  White bars represent the 
participant data and shaded bars represent the model data.  
The error bars in Figure 3 signify one standard deviation 
from the average pitching efficiency. 

 

Table 3: Pitching Efficiency against Each Batting Strategy 
for Participants and the Learning Pitching Model. 

 
 Participants 

(n = 10) 
Model 

(n = 100) 
Strategy Mean StdDev Mean StdDev 
Hacker [4] 1.53 0.80 1.69 0.70 

Aggressive [7] 1.81 1.62 1.13 0.20 

Random [5] 5.00 6.24 5.36 4.67 

Chicken [4] 1.03 0.08 1.25 0.33 

Alternate [7] 1.54 0.72 3.53 2.01 

Discussion 
Analysis of Figure 3 reveals that the model’s behavior 
matched both the participant’s average performance, and 
variability in performance, for three of the five presented 
strategies.  However, for two of the strategies the model did 
not satisfactorily reflect the participant’s performance.   
 

 
 

Figure 3: Comparison of Learning Pitching Model and 
Participants for the Batting Strategies.  SDs are shown as 

error bars. 

Hacker and Chicken Strategies 
The model’s performance matched very well for both the 
Hacker and Chicken strategies.  Given the simplicity of the 
learning strategy used, this is an interesting result.  Both the 
participants and the model were able to retire the requisite 
number of consecutive batters quickly and without much 
variability.  Interestingly, the Hacker strategy proved to be 
more difficult for both the participants and the model.  This 
may be because the very aggressive strategy used by the 
Hacker makes it more likely for the batter to get a hit when 
the pitcher made a mistake.  On the other hand, the reserved 
approach used by the Chicken strategy only punishes 
mistakes with a single ball as opposed to a hit.  In this 
baseball task, an aggressive batter strategy is more 
dangerous to the pitcher than a timid one. 
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Random Strategy 
As expected, the variation of the pitching efficiency against 
the Random strategy was quite large for both the 
participants and the model.  Both the participant and the 
model could not consistently figure out the random strategy, 
because, well, it was random.  The difference between the 
pitching efficiency for the model, and that of the 
participants, might be related to the number of participants 
run. Due to the random nature of this strategy, additional 
participants might cause these averages to match more 
closely. 

Aggressive and Alternate Strategies 
Unexpectedly, the model did not do as good of a job 
matching the Aggressive and Alternate strategies.  The order 
in which these strategies are presented may play an 
important role here.  One possible explanation for these 
problems is that the unlearning rate used by the model is not 
fast enough.  While good enough to match the transitions 
between some strategies, the unlearning rate may need to be 
faster in other cases.  To understand this theory, the 
transitions from the Hacker strategy to the Aggressive 
strategy, and from the Chicken strategy to the Alternate 
strategy, need to be examined more closely. 
 
Transition From Hacker to Aggressive Because the 
Hacker strategy always swings, the pitcher must learn to 
throw a series of curveballs to get a batter out consistently.  
In addition, the inability to quickly unlearn the Hacker 
strategy is not immediately detrimental when an Aggressive 
batter follows the Hacker strategy.  For example, if the 
pitcher continues to throw a series of curveballs to an 
Aggressive batter, the batter will not get on base until after 
the sixth curveball is thrown.  This gives the pitcher several 
pitches, and therefore a lot of time to unlearn the strategy. 

On the other hand, if the participant or model quickly 
unlearns the Hacker strategy, it will lead to throwing an 
early fastball which will result in a 50% chance of the batter 
getting a base hit.  In other words, in this particular case 
quickly unlearning the previous strategy is not beneficial.  
This might explain why the model performed better against 
the Aggressive strategy; the model simply does not unlearn 
as quickly as the participants did, and this proved to be more 
efficient in this particular ordering of strategies. 

 
Transition From Chicken to Alternate The opposite can 
be said about the transition from the Chicken strategy to the 
Alternate strategy.  A series of consecutive fastballs will get 
a batter out using the Chicken strategy because this strategy 
never swings.  However, if this knowledge goes unlearned, 
the same series of fastballs thrown to an Alternate batter 
will result in frequent hits because the Alternate batter 
swings immediately after a fastball is thrown.  In this 
particular case, failure to quickly unlearn the Chicken 
strategy results in poor performance and might explain why 
the model did not perform as well as the participants in this 
case.  Once again, it appears as if the model did not unlearn 
the learned strategy quickly enough in this particular 
ordering of strategies. 

Unfortunately, our reflective learning strategy is 
fundamentally limited in how quickly it can unlearn.  This 
limit may be a major reason for the model’s inability to 
unlearn the Chicken strategy quickly enough.  Recall that 
the learning algorithm used here cannot unlearn unless it has 
already encountered positive feedback.  This causes a 
problem if the model’s initial encounter with a strategy 
involves a series of negative outcomes, which is precisely 
the case when transitioning from Chicken to Alternate.  
Augmenting the algorithm to use Soar’s numeric-indifferent 
preference might eliminate this limitation and possibly 
improve the model’s fit. 

 
Additional Explanations Factors other than unlearning rate 
may have also had an effect on the model’s inability to 
match the participant’s behavior.  For example, if the 
pitcher follows the simple pattern of throwing a fastball, 
followed by curve, followed by fastball, they will always 
get the Alternate batter out.  While speculative, it is possible 
that participants were quick to recognize this alternating 
pattern while the model did not treat alternating patterns any 
differently from other patterns. 

Conclusions 
The paper describes a study to measure the learning of 
participants performing a competitive task.  This task is 
based on the game of baseball and consists of a participant 
pitching to a series of batters that use a set of different 
strategies.  Because this task is inspired by the example 
introduced in A Gentle Introduction to Soar, many Soar 
programmers may already be familiar with its attributes.  
One outcome of this work is that, over time, the continued 
use of baseball as a running example might help beginners 
learn modeling. 

In addition, this paper introduced a Soar model written 
using the Herbal high-level language.  This model used a 
reflective learning process to learn and unlearn various 
strategies.  Another outcome of this work is a downloadable 
example of how Soar models that learn can be written 
without directly writing Soar productions.  Easily obtainable 
examples like this will hopefully make Soar models 
available to a wider audience. 

The model’s behavior was compared to participants’ 
performance and was shown to match both the participants’ 
average performance and variability in performance against 
many of the presented batting strategies.  This result 
demonstrates that cognitive models that compete in 
adversarial environments using introspective learning need 
not be complicated and can be written quickly and easily 
using Herbal. 

Finally, for the strategies that the model did not 
satisfactorily master, insight into the limitations of the 
algorithm used, and how people possibly perform this task 
was gained.  The relationship of the sequences of strategies 
and how learning is transferred was explored.  These results 
motivate future work that will lead to improvements in the 
learning algorithm, and in the Herbal high-level language. 
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Future Work 
The results reported here provide some insights to guide 
future work.  To start, the limitations of the learning 
algorithm discovered here can be addressed by exploring 
more sophisticated learning mechanisms (e.g. the meta-
learning routines described in (Sun, 2001)). 

Further work can also be done to alter the reflection 
strategy so that certain patterns are easier to learn than 
others.  Patterns that people recognize quickly (such as 
alternating patterns) might create more intense episodic 
memories in the model.  This change would test the theory 
that the participants performed well in cases where the 
solution consisted of a simple and quickly recognizable 
alternating pattern. 

Additional improvements to the model could also be 
made by enhancing the reflective process so that positive 
experiences are no longer required in order to benefit from 
negative experiences.  In the absence of positive learned 
events, negative reflection should still lead to a decrease in 
the probability of repeating the action.  One solution could 
involve equally increasing the probability of all other 
possible actions when an event results in a negative 
outcome.  This would be easier to accomplish if the Soar 
numeric-indifferent preference was used to control operator 
probabilities, and this capability is currently being added to 
the Herbal high-level language. 

There is also scope to explore other parts and versions of 
the baseball task.  For example, the environment and models 
can be expanded to include other batting strategies, other 
batter sequences, batting tournaments, and learning batters.  
In addition, the model created here could be transformed 
into an Herbal library that can be reused in future models. 

Finally, because the Herbal development environment 
automatically creates both Soar and Jess models, the 
opportunity exists for comparisons of a single Herbal high-
level model running in two very different architectures.  
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