
Competence-Preserving Retention of Learned Knowledge
in Soar’s Working and Procedural Memories

Nate Derbinsky (nlderbin@umich.edu)

John E. Laird (laird@umich.edu)
University of Michigan, 2260 Hayward Street

Ann Arbor, MI 48109-2121 USA

Abstract

Effective management of learned knowledge is a challenge
when modeling human-level behavior within complex,
temporally extended tasks. This paper evaluates one approach
to this problem: forgetting knowledge that is not in active use
(as determined by base-level activation) and can likely be
reconstructed if it becomes relevant. We apply this model for
selective retention of learned knowledge to the working and
procedural memories of Soar. When evaluated in simulated,
robotic exploration and a competitive, multi-player game,
these policies improve model reactivity and scaling while
maintaining reasoning competence.

Keywords: large-scale cognitive modeling; working
memory; procedural memory; cognitive architecture; Soar

Introduction
Typical cognitive models persist for short periods of time
(seconds to a few minutes) and have modest learning
requirements. For these models, current cognitive
architectures, such as Soar (Laird, 2012) and ACT-R
(Anderson et al., 2004), executing on commodity computer
systems, are sufficient. However, prior work (Kennedy &
Trafton, 2007) has shown that cognitive models of complex,
protracted tasks can accumulate large amounts of
knowledge, and that the computational performance of
existing architectures degrades as a result.

This issue, where more knowledge can harm problem-
solving performance, has been dubbed the utility problem,
and has been studied in many contexts, such as explanation-
based learning (Minton, 1990; Tambe et al., 1990), case-
based reasoning (Smyth & Keane, 1995; Smyth &
Cunningham, 1996), and language learning (Daelemans et
al., 1999). Markovitch and Scott (1988) have characterized
different strategies for dealing with the utility problem in
terms of information filters applied at different stages in the
problem-solving process. One common strategy that is
relevant to cognitive modeling is selective retention, or
forgetting, of learned knowledge. The benefit of this
approach, as opposed to selective utilization, is that all
available knowledge is brought to bear on problem solving,
a property that is crucial for model competence in complex
tasks. However, it can be challenging to devise forgetting
policies that work well across a variety of problem domains,
effectively balancing the task performance of cognitive
models with reductions in retrieval time and storage
requirements of learned knowledge.

In context of this challenge, we present two tasks where
effective behavior requires that the model accumulate large

amounts of information from the environment, and where
over time this learned knowledge overwhelms reasonable
computational limits. In response, we present and evaluate
novel policies for selective retention of learned knowledge
in the working and procedural memories of Soar. These
policies investigate a common hypothesis: it is rational for
the architecture to forget a unit of knowledge when there is
a high degree of certainty that it is not of use, as calculated
by base-level activation (Anderson et al., 2004), and that it
can be reconstructed in the future if it becomes relevant. We
demonstrate that these task-independent policies improve
model reactivity and scaling, while maintaining problem-
solving competence.

Related Work
Previous cognitive-modeling research has investigated
forgetting in order to account for human behavior and
experimental data. As a prominent example, memory decay
has long been a core commitment of the ACT-R theory
(Anderson et al., 2004), as it has been shown to account for
a class of memory retrieval errors (Anderson et al., 1996).
Similarly, research in Soar investigated task-performance
effects of forgetting short-term (Chong, 2003) and
procedural (Chong, 2004) knowledge. By contrast, the
motivation for and outcome of this work is to investigate the
degree to which selective retention can support long-term,
real-time modeling in complex tasks.

Prior work shows the potential for cognitive benefits of
memory decay, such as in task-switching (Altmann & Gray,
2002) and heuristic inference (Schooler & Hertwig, 2005).
In this paper, we focus on improved reactivity and scaling.

We extend prior investigations of long-term symbolic
learning in Soar (Kennedy & Trafton, 2007), where the
source of learning was primarily from internal problem
solving. In this paper, the evaluation domains accumulate
information from interaction with an external environment.

The Soar Cognitive Architecture
Soar is a cognitive architecture that has been used for
developing intelligent agents and modeling human
cognition. Historically, one of Soar’s main strengths has
been its ability to efficiently represent and bring to bear
large amounts of symbolic knowledge to solve diverse
problems using a variety of methods (Laird, 2012).

Figure 1 shows the structure of Soar. At the center is a
symbolic working memory that represents the agent’s
current state. It is here that perception, goals, retrievals from

long-term memory, external action directives, and structures
from intermediate reasoning are jointly represented as a
connected, directed graph. The primitive representational
unit of knowledge in working memory is a symbolic triple
(identifier, attribute, value), termed a working-memory
element, or WME. The first symbol of a WME (identifier)
must be an existing node in the graph, whereas the second
(attribute) and third (value) symbols may be either terminal
constants or non-terminal graph nodes. Multiple WMEs that
share the same identifier are termed an “object,” and the set
of individual WMEs sharing that identifier are termed
“augmentations” of that object.

Procedural memory stores the agent’s knowledge of when
and how to perform actions, both internal, such as querying
long-term declarative memories, and external, such as
controlling robotic actuators. Knowledge in this memory is
represented as if-then rules. The conditions of rules test
patterns in working memory and the actions of rules add
and/or remove working-memory elements. Soar makes use
of the Rete algorithm for efficient rule matching (Forgy,
1982) and retrieval time scales to large stores of procedural
knowledge (Doorenbos, 1995). However, the Rete algorithm
is known to scale linearly with the number of elements in
working memory, a computational issue that motivates
maintaining a relatively small working memory.

Soar learns procedural knowledge via chunking (Laird et
al., 1986) and reinforcement learning (RL; Nason & Laird,
2005) mechanisms. Chunking creates new productions: it
converts deliberate subgoal processing into reactive rules by
compiling over production-firing traces, a form of
explanation-based learning (EBL). If subgoal processing
does not interact with the environment, the chunked rule is
redundant with existing knowledge and serves to improve
performance by reducing deliberate processing. However,
memory usage in Soar scales linearly with the number of
rules, typically at a rate of 1-5 KB/rule, which motivates
forgetting of under-utilized productions.

Reinforcement learning incrementally tunes existing
production actions: it updates the expectation of action
utility, with respect to a subset of state (represented in rule
conditions) and an environmental or intrinsic reward signal.
A production that can be updated by the RL mechanism
(termed in RL rule) must satisfy a few simple criteria related
to its actions, and is thus distinguishable from other rules.

This distinction is relevant to forgetting productions. When
an RL rule that was learned via chunking is updated, that
rule is no longer redundant with the knowledge that led to
its creation, as it now incorporates information from
environmental interaction that was not captured in the
original subgoal processing.

Soar incorporates two long-term declarative memories,
semantic and episodic (Derbinsky & Laird, 2010). Semantic
memory stores working-memory objects, independent of
overall working-memory connectivity (Derbinsky, Laird, &
Smith, 2010), and episodic memory incrementally encodes
and temporally indexes snapshots of working memory,
resulting in an autobiographical history of agent experience
(Derbinsky & Laird, 2009). Agents retrieve knowledge from
one of these memory systems by constructing a symbolic
cue in working memory; the intended memory system then
interprets the cue, searches its store for the best matching
memory, and if it finds a match, reconstructs the associated
knowledge in working memory. For episodic memory, the
time to reconstruct knowledge depends on the size of
working memory at the time of encoding, another
motivation for a concise agent state.

Agent reasoning in Soar consists of a sequence of
decisions, where the aim of each decision is to select and
apply an operator in service of the agent’s goal(s). The
primitive decision cycle consists of the following phases:
encode perceptual input; fire rules to elaborate agent state,
as well as propose and evaluate operators; select an
operator; fire rules that apply the operator; and then process
output directives and retrievals from long-term memory.
Unlike ACT-R, multiple rules may fire in parallel during a
single phase. The time to execute the decision cycle, which
primarily depends on the speed with which the architecture
can match rules and retrieve knowledge from episodic and
semantic memories, determines agent reactivity. We have
found that 50 msec. is an acceptable upper bound on this
response time across numerous domains, including robotics,
video games, and human-computer interaction (HCI) tasks.

There are two types of persistence for working-memory
elements added as the result of rule firing. Rules that fire to
apply a selected operator create operator-supported
structures. These WMEs will persist in working memory
until deliberately removed. In contrast, rules that do not test
a selected operator create instantiation-supported structures,
which persist only as long as the rules that created them
match. This distinction is relevant to forgetting WMEs.

As evident in Figure 1, Soar has additional memories and
processing modules; however, they are not pertinent to this
paper and are not discussed further.

Selective Retention in Working Memory
The core intuition of our working-memory retention policy
is to remove the augmentations of objects that are not
actively in use and that the model can later reconstruct from
long-term semantic memory, if they become relevant. We
characterize WME usage via the base-level activation model
(BLA; Anderson et al., 2004), which estimates future

Figure 1: The Soar cognitive architecture.

usefulness of memory based upon prior usage. The primary
activation event for a working-memory element is the firing
of a rule that tests or creates that WME. Also, when a rule
first adds an element to working memory, the activation of
the new WME is initialized to reflect the aggregate
activation of the set of WMEs responsible for its creation.
The base-level activation of a WME is computed as:

𝐴 = ln (𝑡!!!
!

!!!

)

where n is the number of memory activations, tj is the time
since the jth activation, and d is a free decay parameter. For
computational efficiency, history size is bounded: each
working-memory element maintains a history of at most the
c most recent activations and the activation calculation is
supplemented by an approximation of the more distant past
(Petrov, 2006). This model of activation sources, events,
and decay is task independent.

At the end of each decision cycle, Soar removes from
working memory each element that satisfies all of the
following requirements, with respect to τ, a static,
architectural threshold parameter:
R1. The WME was not encoded directly from perception.
R2. The WME is operator-supported.
R3. The activation level of the WME is less than τ.
R4. The WME augments an object, o, in semantic memory.
R5. The activation of all augmentations of o are less than τ.

We adopted requirements R1-R3 from Nuxoll, Laird, and
James (2004), whereas R4 and R5 are novel. Requirement
R1 distinguishes between the decay of representations of
perception, and any dynamics that may occur with actual
sensors, such as refresh rate, fatigue, noise, or damage.
Requirement R2 is a conceptual optimization: as operator-
supported WMEs are persistent, while instantiation-
supported structures are direct entailments, if we properly
manage the former, the latter are handled automatically.
This means that if we properly remove operator-supported
WMEs, any instantiation-supported structures that depend
on them will also be removed, and thus our mechanism only
manages operator-supported structures. The concept of a
fixed lower bound on activation, as defined by R3, was
adopted from activation limits in ACT-R (Anderson et al.,
1996), and dictates that working-memory elements will
decay in a task-independent fashion as their use for
reasoning becomes less recent/frequent.

Requirement R4 dictates that our mechanism only
removes elements from working memory that can be
reconstructed from semantic memory. From the perspective
of cognitive modeling, this constraint on decay resembles a
working memory that is in part an activated subset of long-
term memory (Jonides et al., 2008). Functionally,
requirement R4 serves to balance the degree of working-
memory decay with support for sound reasoning.
Knowledge in Soar’s semantic memory is persistent, though
may change over time. Depending on the task and the
model’s knowledge-management strategies, it is possible
that any removed knowledge may be recovered via

deliberate reconstruction from semantic memory.
Additionally, knowledge that is not in semantic memory can
persist indefinitely to support model reasoning.

Requirement R5 supplements R4 by providing partial
support for the closed-world assumption. R5 dictates that
either all object augmentations are removed, or none. This
policy leads to an object-oriented representation whereby
procedural knowledge can distinguish between objects that
have been cleared, and thus have no augmentations, and
those that simply are not augmented with a particular feature
or relation. R5 makes an explicit tradeoff, weighting more
heavily model competence at the expense of the speed of
working-memory decay. This requirement resembles the
declarative module of ACT-R, where activation is
associated with each chunk and not individual slot values.

Empirical Evaluation
We extended an existing system where Soar controls a
simulated mobile robot (Laird, Derbinsky, & Voigt, 2011).
Our evaluation uses a simulation instead of a real robot
because of the practical difficulties in running numerous,
long experiments in large physical spaces. However, the
simulation is quite accurate and the Soar rules (and
architecture) used in the simulation are exactly the same as
the rules used to control the real robot.

The robot’s task is to visit every room on the third floor of
the Computer Science and Engineering building at the
University of Michigan. For this task, the robot visits over
100 rooms and takes about 1 hour of real time. During
exploration, it incrementally builds an internal topographic
map, which, when completed, requires over 10,000 WMEs
to represent and store. In addition to storing information, the
model reasons about and plans using the map in order to
find efficient paths for moving to distant rooms it has sensed
but not visited. The model uses episodic memory to recall
objects and other task-relevant features during exploration.

In our experiments, we aggregate working-memory size
and maximum decision time for each 10 seconds of elapsed
time, all of which is performed on an Intel i7 2.8GHz CPU,
running Soar v9.3.1. Because each experimental run takes 1
hour, we did not duplicate our experiments sufficiently to
establish statistical significance and the results we present
are from individual experimental runs. However, we found
qualitative consistency across our runs, such that the
variance between runs is small as compared to the trends we
focus on below.

We make use of the same model for all experiments, but
modify small amounts of procedural knowledge and change
architectural parameters, as described here. The baseline
model (A0) maintains all declarative map information both
in Soar’s working and semantic memories. A slight
modification to this baseline (A1) includes hand-coded rules
to prune away rooms in working memory that are not
required for immediate reasoning or planning. The
experimental model (A2) makes use of our working-
memory retention policy and we explored different values
of the base-level decay rate (c=10 and τ=-2 for all models).

Figure 2 compares working-memory size between
conditions A0, A1, and A2 over the duration of the
experiment. We note first the major difference in working-
memory size between A0 and A1 after one hour, when the
working memory of A1 contains more than 11,000 fewer
elements, more than 90% less than A0. We also find that the
greater the decay-rate parameter for A2, the smaller the
working-memory size, where a value of 0.5 qualitatively
tracks A1. This finding suggests that our policy, with an
appropriate decay, keeps working-memory size comparable
to that maintained by hand-coded rules.

Figure 3 compares maximum decision-cycle time in
msec., between conditions A0, A1, and A2 as the simulation
progresses. The dominant cost reflected by this data is time
to reconstruct prior episodes that are retrieved from episodic
memory. We see a growing difference in time between A0
and A2 as working memory is more aggressively managed
(i.e. greater decay rate), demonstrating that episodic
reconstruction, which scales with the size of working
memory at the time of episodic encoding, benefits from
selective retention. We also find that with a decay rate of
0.5, our mechanism performs comparably to A1. We note
that without sufficient working-memory management (A0;
A2 with decay rate 0.3), episodic-memory retrievals are not
tenable for a model that must reason with this amount of
acquired information, as the maximum required processing
time exceeds the reactivity threshold of 50 msec.

Discussion
It is possible to write rules that prune Soar’s working
memory; however, this task-specific knowledge is difficult
to encode and learn, and interrupts deliberate processing.

In this work, we presented and evaluated a novel
approach that utilizes a memory hierarchy to bound
working-memory size while maintaining sound reasoning.
This approach assumes that the amount of knowledge
required for immediate reasoning is small relative to the
overall amount of knowledge accumulated by the model.
Under this assumption, as demonstrated in the robotic
evaluation task, our policy scales even as learned knowledge
grows large over long trials. We note that since Soar’s
semantic memory can change over time and is independent
of working memory, our selective-retention policy does
admit a class of reasoning error wherein the contents of
semantic memory are changed so as to be inconsistent with
decayed WMEs. However, this corruption requires
deliberate reasoning in a relatively small time window and
has not arisen in our models. While the model completed
this task for all conditions reported here, at larger decay
rates (≥0.6) the model thrashed because map information
was not held in working memory long enough to complete
deep look-ahead planning. This suggests additional research
is needed on either adaptive decay-rate settings or planning
approaches that are robust in the face of memory decay.

Selective Retention in Procedural Memory
The intuition of our procedural-memory retention policy is
to remove productions that are not actively used and that the
model can later reconstruct via deliberate subgoal reasoning,
if they become relevant. We utilize the base-level activation
model to summarize the history of rule firing.

At the end of each decision cycle, Soar removes from
procedural memory each rule that satisfies all of the
following requirements, with respect to parameter τ:
R1. The rule was learned via chunking.
R2. The rule is not actively firing.
R3. The activation level of the rule is less than τ.
R4. The rule has not been updated by RL.

We adopted R1-R3 from Chong (2004), whereas R4 is
novel. Chong was modeling human skill decay, and did not
delete productions, so as to not lose each rule’s activation
history. Instead, decayed rules were prevented from firing,
similar to below-utility-threshold rules in ACT-R. R1 is a
practical consideration to distinguish learned knowledge
from “innate” rules developed by the modeler, which, if
modified, would likely break the model. R2 recognizes that
matched rules are in active use and thus should not be
forgotten. R3 dictates that rules will decay in a task-
independent fashion as their use for reasoning becomes less
recent/frequent. We note that for fixed parameters (d and τ)
and a single activation, the BLA model is equivalent to the
use-gap heuristic of Kennedy and Trafton (2007). However,
the time between sequential rule firings ignores firing
frequency, which the BLA model incorporates.

Figure 2: Model working-memory size comparison.

Figure 3: Model maximum decision time comparison.

Requirement R4 attempts to retain only those rules that
the model cannot regenerate via chunking, a process that
compiles existing knowledge applied in subgoal reasoning.
Chunked rules that have been updated by RL encode
expected utility information, which is not captured by other
learning mechanisms. Because this information is difficult,
if not impossible, to reconstruct, these rules are retained.

Empirical Evaluation
We extended an existing system (Laird et al., 2011) where
Soar plays Liar’s Dice, a multi-player game of chance. The
rules of the game are numerous and complex, yielding a task
that has rampant uncertainty and a large state space
(millions-to-billions of relevant states for games of 2-4
players). Prior work has shown that RL allows Soar models
to significantly improve performance after playing a few
thousand games. However, this involves learning large
numbers of RL rules to represent the state space.

The model we use for all experiments learns two classes
of rules: RL rules, which capture expected action utility, and
symbolic game heuristics. Our experimental baseline (B0)
does not include selective retention. The first experimental
modification (B1) implements our selective-retention
policy, but does not enforce requirement R4 and is thereby
comparable to prior work (Kennedy & Trafton, 2007;
Chong, 2004). The second modification (B2) fully
implements our policy. We experiment with a range of
representative decay rates, including 0.999, where rules not
immediately updated by RL are deleted (c=10, τ=-2 for all).

We alternated 1,000 2-player games of training then
testing, each against a non-learning version of the model.
After each testing session, we recorded maximum memory
usage (Mac OS v10.7.3; dominated, in this task, by
procedural memory), task performance (% games won), and
average decisions/task action. We do not report maximum
decision time, as this was below 6 msec. for all conditions
(Intel i7 2.8GHz CPU, Soar v9.3.1). We collected data for
all conditions in at least three independent trials of 40,000
games. For conditions that used selective retention, we were
able to gather more data in parallel, due to reduced memory
consumption (six trials for d=0.35, seven for remaining).

Figure 4 presents average memory growth, in megabytes,
as the model trains, where the error bars represent ±1
standard deviation. For all models, the memory growth of
games 1-10K follows a power law (r2≥0.96), whereas for

11-40K, growth is linear (r2≥0.99). These plots indicate that
memory usage for the baseline (B0) and the slowly decaying
model (B2, d=0.3) is much greater, and faster growing, than
models that more aggressively decay. It also shows that
there is a diminishing benefit from faster decay (e.g. d=0.5
and 0.999 for B2 are indistinguishable).

Figure 5 presents average task performance after 1,000
games of training, where the error bars represent ±1
standard deviation. This data shows that given the inherent
stochasticity of the task, there is little, if any, difference
between the performance of the baseline (B0) and decay
levels of B2. However, by comparing B0 and B2 to B1, it is
clear that without R4, the model suffers a dramatic loss of
task competence. For clarity, the model begins by playing a
non-learning copy of itself and learns from experience with
each training session. While the B0 and B2 models improve
from winning 50% of games to 75-80%, the B1 model
improves to below 55%. We conclude that a selective-
retention policy that only incorporates production-firing
history (e.g. Chong, 2004; Kennedy & Trafton, 2007) will
negatively impact performance in tasks that involve
informative interaction with an external environment. Our
policy incorporates both rule-firing history and rule
reconstruction, and thus retains this source of feedback.

Finally, Figure 6 presents average number of decisions for
the model to take an action in the game after training for
10,000 games. In prior work (e.g. Kennedy & Trafton,
2007), this value was a major performance metric, as it
reflected the primary reason for learning new rules. In this
work, each decision takes very little time, and so the number
of decisions to choose an action is not as crucial to task
performance as the selected action. However, these data
show that there exists a space of decay values (e.g. d=0.35)
in which memory usage is relatively low and grows slowly
(Figure 4), task performance is relatively high (Figure 5),
and the model makes decisions relatively quickly (Figure 6).

Figure 4. Avg. memory usage ±1 std. dev. vs. games played.

Figure 5. Avg. task performance ±1 std. dev.

Figure 6. Avg. decisions/task action ±1 std. dev.

Discussion
This work contributes evidence that we can develop models
that improve using RL in tasks with large state spaces.
Currently, it is typical to explicitly represent the entire state
space, which is not feasible in complex problems. Instead,
Soar learns rules to represent only those portions of the
space it experiences, and our policy retains only those rules
that include feedback from environmental reward. Future
work needs to validate this approach in other domains.

Concluding Remarks
This paper presents and evaluates two policies for effective
retention of learned knowledge from complex environments.
While forgetting mechanisms are common in cognitive
modeling, this work pursues this line of research for
functional reasons: improving computational-resource usage
while maintaining reasoning competence. We have
presented compelling results from applying these policies in
two complex, temporally extended tasks, but there is
additional work to evaluate these policies, and their
parameters, across a wider variety of problem domains.

This paper does not address the computational challenges
associated with efficiently implementing these policies.
Derbinsky and Laird (2012) present and evaluate algorithms
for implementing forgetting via base-level activation.

Acknowledgments
We acknowledge the funding support of the Air Force
Office of Scientific Research, contract FA2386-10-1-4127.

References
Altmann, E., Gray, W. (2002). Forgetting to Remember:

The Functional Relationship of Decay and Interference.
Psychological Science, 13 (1), 27-33.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., Qin, Y. (2004). An Integrated Theory of the
Mind. Psychological Review, 111 (4), 1036-1060.

Anderson, J. R., Reder, L., Lebiere, C. (1996). Working
Memory: Activation Limitations on Retrieval. Cognitive
Psychology, 30, 221-256.

Chong, R. (2003). The Addition of an Activation and Decay
Mechanism to the Soar Architecture. Proc. of the 5th Intl.
Conf. on Cognitive Modeling (pp. 45-50).

Chong, R. (2004). Architectural Explorations for Modeling
Procedural Skill Decay. Proc. of the 6th Intl. Conf. on
Cognitive Modeling.

Daelemans, W., Van Den Bosch, A., Zavrel, J. (1999).
Forgetting Exceptions is Harmful in Language Learning.
Machine Learning, 34, (pp. 11-41).

Derbinsky, N., Laird, J. E. (2009). Efficiently Implementing
Episodic Memory. Proc. of the 8th Intl. Conf. on Case-
Based Reasoning (pp. 403-417).

Derbinsky, N., Laird, J. E. (2010). Extending Soar with
Dissociated Symbolic Memories. Symposium on Human
Memory for Artificial Agents, AISB (pp. 31-37).

Derbinsky, N., Laird, J. E. (2012). Computationally
Efficient Forgetting via Base-Level Activation. Proc. of
the 11th Intl. Conf. on Cognitive Modeling.

Derbinsky, N., Laird, J. E., Smith, B. (2010). Towards
Efficiently Supporting Large Symbolic Declarative
Memories. Proc. of the 10th Intl. Conf. on Cognitive
Modeling (pp. 49-54).

Doorenbos, R. B. (1995). Production Matching for Large
Learning Systems. Ph.D. Diss., Computer Science Dept.
Carnegie Mellon, Pittsburgh, PA.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19 (1), 17-37.

Kennedy, W. G., Trafton, J. G. (2007). Long-term Symbolic
Learning. Cognitive Systems Research, 8, 237-247.

Laird, J. E. (2012). The Soar Cognitive Architecture, MIT
Press.

Laird, J. E., Derbinsky, N., Tinkerhess, M. (2011). A Case
Study in Integrating Probabilistic Decision Making and
Learning in a Symbolic Cognitive Architecture: Soar
Plays Dice. Papers from the 2011 Fall Symposium Series:
Advances in Cognitive Systems (pp. 162-169).

Laird, J. E., Derbinsky, N., Voigt, J. R. (2011). Performance
Evaluation of Declarative Memory Systems in Soar. Proc.
of the 20th Behavior Representation in Modeling &
Simulation Conf. (pp. 33-40).

Laird, J. E., Rosenbloom, P. S., Newell, A. (1986).
Chunking in Soar: The Anatomy of a General Learning
Mechanism. Machine Learning, 1 (1), 11-46.

Markovitch, S., Scott, P. D. (1988). The Role of Forgetting
in Learning. Proc. of the 5th Intl. Conf. on Machine
Learning (pp. 459-465).

Minton, S. (1990). Qualitative Results Concerning the
Utility of Explanation-Based Learning. Artificial
Intelligence, 42, 363-391.

Nason, S., Laird, J. E. (2005). Soar-RL: Integrating
Reinforcement Learning with Soar. Cognitive Systems
Research, 6 (1), 51-59.

Nuxoll, A., Laird, J. E., James, M. (2004). Comprehensive
Working Memory Activation in Soar. Proc. of the 6th Intl.
Conf. on Cognitive Modeling (pp. 226-230).

Petrov, A. (2006). Computationally Efficient Approximation
of the Base-Level Learning Equation in ACT-R. Proc. of the
7th

 Intl. Conf. on Cognitive Modeling (pp. 391-392).
Schooler, L., Hertwig, R. (2005). How Forgetting Aids

Inference. Psychological Review, 112 (3), 610-628.
Smyth, B., Cunningham, P. (1996). The Utility Problem

Analysed: A Case-Based Reasoning Perspective. LNCS,
1168, 392-399.

Smyth, B., Keane, M. T. (1995). Remembering to Forget: A
Competence-Preserving Case Deletion Policy for Case-
Based Reasoning Systems. Proc. of the 13th Intl. Joint
Conf. on Artificial Intelligence (pp. 377-382).

Tambe, N., Newell, A., Rosenbloom, P. S. (1990). The
Problem of Expensive Chunks and its Solution by
Restricting Expressiveness. Machine Learning, 5, 299-349.

