
Computationally Efficient Forgetting via Base-Level Activation 
 

Nate Derbinsky (nlderbin@umich.edu) 
John E. Laird (laird@umich.edu) 

University of Michigan, 2260 Hayward Street 
Ann Arbor, MI 48109-2121 USA 

 
 

Keywords: large-scale cognitive modeling 

Introduction 
As we apply cognitive models to complex, temporally 
extended tasks, removing declarative knowledge from 
memory, or forgetting, will become important both to model 
human behavior, as well as to scale computationally. The 
base-level activation (BLA) model predicts that the 
availability of specific memories is sensitive to frequency 
and recency of use. Memory decay based on this model has 
long been a core commitment of the ACT-R theory 
(Anderson et al., 2004), as it has been shown to account for 
a class of memory retrieval errors (Anderson, Reder, & 
Lebiere, 1996), and has been used in Soar (Laird, 2012) to 
investigate task-performance effects of forgetting short-term 
(Chong, 2003) and procedural (Chong, 2004) knowledge. 
Prior work has addressed many of the computational 
challenges associated with retrieving a single memory 
according to the BLA model (Petrov, 2006; Derbinsky, 
Laird, & Smith, 2010; Derbinsky & Laird, 2011). However, 
efficiently removing items from memory, while preserving 
BLA-model fidelity, is a different problem, which we 
address here. We formally describe the computational 
problem; present a novel approach to forget according to 
BLA in large memories; and evaluate using synthetic data. 

Problem Formulation 
Let memory M be a set of elements, {m1, m2, …}. Let each 
element mi be defined as a set of pairs (aij, kij), where kij 
refers to the number of times element mi was activated at 
time aij. We assume |mi| ≤ c: the number of activation events 
for any element is bounded. These assumptions are 
consistent with the ACT-R declarative memory when 
bounding chunk-history size (Petrov, 2006). This is also 
consistent with the semantic memory in Soar (Laird, 2012). 

We assume that activation of an element m at time t is 
computed according to the BLA model (Anderson et al. 
2004), where d is a fixed decay parameter: 

B(m, t,d) = ln( kj ⋅[t − aj ]
−d )

j=1

|m|

∑  

We define an element as decayed, with respect to a 
threshold parameter θ if B(m,t,d) < θ. Given a static element 
m, we define L as the fewest number of time steps required 
for the element to decay, relative to time step t: 

L(m, t,d,θ ) := inf{td ∈ℵ:B(m, t + td,d)<θ}  

For example, element x = {(3, 1), (5, 2)} was activated once 
at time step three and twice at time step five. Assuming 
decay rate 0.5 and threshold -2, x has activation about 0.649 
at time step 7 and is not decayed: L(x,7,0.5,-2) = 489. 

During a model time step t, the following actions can 
occur with respect to memory M: 

S1. A new element is added to M. 
S2. An existing element is removed from M. 
S3. An existing element is activated y times. 

If S3 occurs with respect to element mi, a new pair (t, y) is 
added to mi. To maintain a bounded history size, if |mi| > c, 
the pair with smallest a (i.e. the oldest) is removed from mi. 

Thus, given a memory M, we define that the forgetting 
problem, at each time step, t, is to identify the subset of 
elements, D ⊆ M, that have decayed since the last time step. 

Efficient Approach 
Given this problem definition, a naïve approach is to 
determine the decay status of each element every time step. 
This test requires computation O(|M|), scaling linearly with 
average memory size. The computation expended upon each 
element, mi, will be linear in the number of time steps where 
mi ∈ M, estimated as O(L) for a static element. 

Our approach draws inspiration from the work of Nuxoll, 
Laird, and James (2004): rather than checking memory 
elements for decay status, “predict” the future time step 
when the element will decay. First, at each time step, 
examine elements that either (S1) weren’t previously in the 
memory or (S3) were activated. The number of items 
requiring inspection is bounded by the total number of 
elements (|M|), but may be a small subset. For each of these 
elements, predict the time of future decay (discussed 
shortly) and add the element to a map, where the map key is 
the predicted time step and the value is a set of elements 
predicted to decay at that time. If the element was already 
within the map (S3), remove it from its old location before 
adding to its new location. All insertions/removals require 
time at most logarithmic in the number of distinct decay 
time steps, which is bounded by the total number of 
elements (|M|). At any time step, the set D is those elements 
in the set indexed by the current time step that are decayed. 

To predict element decay, we perform a novel, two-phase 
process. After a new activation (S3), we first employ an 
approximation that is guaranteed to underestimate the true 
value of L. If, at a future time step, we encounter the 
element in D and it has not decayed, we then compute the 
exact prediction using a binary parameter search. 



We approximate L for an element m as the sum of L for 
each independent pair (a, k) ∈ m. Here we derive the closed-
form calculation: given a single element pair at time t, we 
solve for tp, the future time of element decay… 

ln(k ⋅[tp + (t − a)]
−d ) =θ  

ln(k)− d ⋅ ln(tp + (t − a)) =θ  

tp = e
θ−ln(k )
−d − (t − a)  

Since k refers to a single time point, a, we rewrite the 
summed terms as a product. Furthermore, we time shift the 
decay term by the difference between the current time step, 
t, and that of the element pair, a, thereby predicting L. 

Computing this approximation for a single pair takes 
constant time (and common values can be cached). Overall 
approximation computation is linear in the number of pairs, 
which is bounded by c, and therefore O(1). The computation 
required for binary parameter search of an element is 
O(log2L). However, this computation is only necessary if 
the element has not decayed, or removed from M. 

Evaluation 
This approach has been empirically evaluated for long-term 
tasks in the procedural and working memories of Soar 
(Derbinsky & Laird, 2012). In this paper, we focus on the 
quality and efficiency of our prediction approach and utilize 
synthetic data. Our data set comprises 50,000 memory 
elements, each with a randomly generated pair set.  The size 
of each element was randomly selected from between 1 and 
10, the number of activations per pair (k) was randomly 
selected between 1 and 10, and the time of each pair (a) was 
randomly selected between 1 and 999. We verified that each 
element had a valid history with respect to time step 1000, 
meaning that each element would not have decayed before 
t=1000. Also, each element contained a pair with at least 
one access at time point 999, which simulated a fresh 
activation (S3). For all synthetic experiments we used decay 
rate d=0.8 and threshold θ=-1.6. Given these constraints, the 
largest possible value of L for an element is 3332. 

We first evaluate the quality of the decay approximation. 
In Figure 1, the y-axis is the cumulative proportion of the 
elements and the x-axis plots absolute temporal error of the 
approximation, where a value of 0 indicates that the 
approximation was correct, and non-zero indicates how 
many time steps the approximation under-predicted. We see 
that the approximation was correct for over 60% of the 
elements, but did underestimate over 500 time steps for 20% 
of the elements and over 1000 time steps for 1% of the 
elements. Under the constraints of this data set, it is possible 
for this approximation to underestimate up to 2084 time 
steps. We also compared the prediction time, in 
microseconds, of the approximation to an exact calculation 
using binary parameter search. The maximum computation 
time across the data set was >19x faster for the 
approximation (1.37 vs. 26.28 µsec./element) and the 
average time was >15x faster (0.31 vs. 4.73 µsec./element). 

We did not compare these results with a naïve approach, as 
results would depend upon a model of memory size (|M|).  

In conclusion, we presented a novel, two-phase forgetting 
approach that maintains fidelity to the base-level activation 
model and scales to large memories. The experimental 
results show that the first phase is a high-quality 
approximation and is an order of magnitude less costly than 
the exact calculation in the second phase. 
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Figure 1. Evaluation of decay-approximation quality. 


