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Abstract   
Endowing an intelligent agent with an episodic memory 
provides knowledge that is invaluable for acting in the 
present, as well as supporting a wide range of cognitive 
capabilities. However, affording fast episode retrievals over 
long agent lifetimes presents significant theoretical and 
practical challenges. In this paper, we propose developing 
episodic memory systems that can efficiently store and 
retrieve experiences over the course of a year. 

 Introduction  
Episodic memory is a long-term, contextualized store of 
specific events (Tulving 1983). Episodic memory provides 
an agent with the ability to recall past sensing, situational 
interpretation, planning, and action results. Retrospective 
reasoning and learning over these experiences affords an 
agent a multitude of cognitive capabilities that may be 
crucial to its efficacy (Nuxoll & Laird 2007). Even in 
novel environments, the memory of recent events and 
situations can help in recognizing the return to already 
visited places, while the memory of older, but related 
events and situations can be useful in informing decision 
making and planning (“this reminds me of the last time I 
dove into a lake and almost broke my neck.”).  
 Although similar mechanisms have been studied in case-
based reasoning (Kolodner 1992), usually case-based 
reasoning systems are designed for specific tasks or classes 
of tasks, while episodic memory should be task-
independent and thus available for any and all problems an 
agent may face. Furthermore, the growth in an episodic 
store will typically be much faster than a case base, as an 
episodic store accumulates snapshots of agent experience 
over millions and tens of millions of episodes. 
 In the following sections, we characterize the functional 
requirements of a task-independent episodic memory. 
Furthermore, we discuss the computational challenges of 
maintaining efficient episode storage and retrievals over a 
year’s worth of memories. 
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Characterizing Episodic Memory 
Episodic memory is distinguished from other memory 
models by a set of functional requirements (Nuxoll 2007). 
First, episodic memory is an architectural ability that does 
not change from task to task. Second, episode storage is 
automatic, and thus does not require deliberate action by 
the agent. Finally, episodes reflect agent experience: there 
is no pre-specified set of features to be stored, nor are there 
pre-specified constraints on the features available for 
retrieval. For an agent with rich and varied experiences, an 
episodic memory must support whatever structures the 
agent perceives and reasons with.  

The Challenge 
We set one year of continual use of episodic memory as 
the challenge. One year is long enough to establish long-
term viability and usefulness, while anything longer could 
introduce difficulties in testing and evaluation. To fulfill 
these goals, episodic memory must be embedded within an 
agent that is engaged in and learning about multiple 
challenging tasks with novel components in a rich, 
dynamic environment. This requires the co-creation of 
technologies that can support the construction of  such an 
agent, which appear to be on the horizon. There are many 
possible environments for such an agent, from being a 
personal assistant (such as CALO; Myers et al. 2007), an 
internet assistant, a household robot, or even a character 
situated in a massively multiple online world, such as 
OpenSim, Second Life, or even World of Warcraft. 
 This is a grand challenge in that it is beyond the state of 
the art and fulfilling it will provide important functionality 
for autonomous agents. The value of episodic memory 
comes from its integration with reasoning, planning, 
decision making, learning, and other cognitive capabilities. 
To provide a focused and well-defined challenge, we have 
focused on the specific functionality afforded by episodic 
memory, which we maintain can be pursued in its own 
right. Thus, our proposal attempts to lay out a challenge 
that has specific criteria for achievement and that focuses 



on specific functional capabilities related to storing, 
maintaining and retrieving experiences. 

Efficiency Issues 
The challenge of creating an episodic memory for an agent 
that exists for a year arises from the real-time constraints 
on the agent’s decision making in a complex, dynamic 
environment. For episodic memory to be useful, episodic 
storage and retrievals must not interfere with the agent’s 
ability to respond to the dynamics of the environment – 
relevant information must be available quickly enough for 
it to be useful, even in a dynamic environment. 
Furthermore, real-world agents face bounded storage: 
while relatively cheap and plentiful, memory is not 
unlimited.  
 Below we decompose the computational challenges 
facing a task-independent episodic memory system into 
encoding, storage and retrieval. Before jumping into the 
analysis, we observe that in a year, a human is awake 
approximately 21 million seconds (assuming 16 hours of 
waking activity). Although this number seems small when 
compared to gigabytes of memory and gigahertz of 
processing cycles, for an ongoing agent with a non-trivial 
amount of distinctive data in its short-term memories, these 
numbers provide a significant challenge.  

Encoding 
Encoding involves the storage of volatile data from an 
agent’s short-term memory into the long-term, persistent 
episodic store. It involves determining when to store an 
episode (episode initiation), what aspects of the current 
situation should be stored, and how it is represented 
(episode determination). 
Episode Initiation. Frequency of episode storage, with 
respect to agent lifetime, directly determines the number of 
episodes. Broadly, more episodes provides the agent with a 
finer-grain history of its experiences, but also implies more 
data to process in the store, and thus greater challenges to 
achieving system efficiency. 
 To fully reflect an agent’s experiences, an episodic 
memory system must capture all structural and feature 
changes that have taken place since the last recorded 
episode. In the worst case, environmental changes are 
dramatic and an episode must reproduce all 
structure/features. Frequency of episode initiation, with 
respect to agent lifetime, is a linear multiplier of this cost. 
In situations of frequent storage, efficient systems must 
attempt to identify and exploit data regularities, so as to 
reduce redundancy, both in time and space, of stored 
episodic data. Here we briefly discuss structural and 
temporal regularities. 
 To facilitate reasoning and achieve productive behavior 
in data-rich environments, intelligent agents must exploit 
structural data regularities across time and tasks. Episodic 
memory systems that recognize and adapt to these 

regularities can expend less storage and time recording 
data that is common across many episodes. 
 In real-world environments, features tend to change 
slowly and locally. Episodic memory systems that process 
only feature changes can realize dramatic performance 
gains by focusing computation on important changes, as 
opposed to static features (Nuxoll & Laird 2007). 
 Although it is unlikely there is one universal frequency 
of episode storage that applies to all agents and all tasks, 
we can get some indication of upper and lower bounds 
from human cognitive processing. For humans, the basic 
“cycle time” of deliberate behavior is on the order of 50ms. 
That provides an upper bound on the amount of episodic 
memory that must be stored in a year of 20 * 21 million 
episodes = 420 million. It is difficult to determine a lower 
bound, at least for humans, as on internal reflection it 
seems that the resolution of our episodic memory is 
significantly coarser – except for intense experiences. Our 
own experience with mobile robots falls somewhere 
between 2 and 10 episodes/second, which translates to 
between 42 million and 210 million episodes for a year.  
 These numbers also provide a limit as to how much 
processing is required in storing an episode. If we assume 
the availability of a dedicated processor for episodic 
memory, then it is well within the realm of today’s 
processors to process between 1 and 20 episodes/second 
(under the assumptions of episode content laid out in the 
next section).  
Episode Determination. In addition to the number of 
stored episodes, the contents of each episode can pose 
significant performance challenges. Here we consider the 
implications of episode size, its representation, as well as 
memory element distinctiveness. 
 In a rich environment, an agent will need to maintain a 
potentially large representation of the current situation. 
Clearly the larger the representation, the larger the storage 
requirements and the higher the computational cost of 
determining the appropriate episode during retrieval. This 
is one area that is wide open in terms of estimating upper 
and lower bounds. Attempting to base a lower-bound on 
the famous 7+/-2 size of human short-term memory (Miller 
1956) is fraught with error as those results were based on 
memory tests of lists of items of similar “types,” which did 
not take into account the human ability to remember rich 
representations when items have rich semantic content and 
distinctiveness. Episodes appear to capture rich 
representations of situations that require 10’s and 100’s or 
even 1,000’s of elements in current computer models. Our 
own experience with episodic memory for non-toy tasks is 
that somewhere between 100 and 1,000 elements are 
required per episode.  
 Real-world environments contain rich relational feature 
descriptions and thus agent episodes must be sufficiently 
expressive to represent arbitrarily complex structures. 
Thus, we impose the requirement that the underlying 
representation cannot be merely propositional, but must 
support relational representations. This level of 
expressiveness, however, can introduce significant 



performance challenges in the context of efficient storage 
and retrieval, such as tracking feature changes, indexing 
episodes for efficient retrievals, and reconstruction of 
episodes for agent use. An open question is whether non-
symbolic representations are also required, such as images 
or other perception-based representations. 
 In any representation, an episodic memory system must 
contend with the spectrum of feature distinctiveness. At 
one extreme is the problem of efficiently storing and 
searching episodes containing many qualitatively different 
features. For instance, consider searching over continuous 
sensor features in a robotics domain. Episodic memory 
systems in these domains must evaluate policies amongst 
efficient, but ineffective, qualitative matches and 
informative, but potentially costly, quantitative search 
(Stottler et al. 1989). 
 Real-world environments also challenge episodic 
memory systems with sets of qualitatively identical 
objects. Object identification can vastly reduce storage 
requirements by recognizing and compressing redundant 
object descriptors, but at the cost of computationally 
expensive comparison algorithms. A common approach 
during retrieval is a two-stage matching algorithm 
(Gentner & Forbus 1991; Tecuci & Porter 2007), bounding 
expensive search operations over a small/constant number 
of candidate episodes.  

Storage 
Episode Structure. The simplest and most expensive 
model of episodic memory is to store a distinct snapshot in 
each cognitive cycle. Based on our earlier worst-case 
analysis, this would translate to one episode (1,000 
elements) every 50ms (20 times/second) for 1 year (21 
million seconds), which equals 420 billion items. Our best-
case scenario would be one episode (100 elements) every 
500ms (2 times/second) for 1 year (21 million seconds), 
which equals 4.2 billion items. There is an additional 
multiplier for representing an item, which we estimate to 
be between 10 and 100 bytes, giving a range of memory 
requirements of between 42 GB and 42 TB.  
 More sophisticated approaches to encoding episodes, 
such as taking advantage of temporal continuity and 
redundant structures, can decrease these demands, at the 
cost of additional indexing. In our work, we have seen a 
minimum of a factor of 2 decrease from compression. 
Thus, a reasonable estimate is between 21 GB and 21 TB 
using current approaches. Both of these are within range of 
today’s commodity secondary storage systems. The lower 
end of the range is possible with primary memory for 
servers, which appear to have a current practical limit of 
256 GB. This analysis suggests that memory alone is 
probably not a limiting factor for achieving year-long 
episodic memory.  
Episode Dynamics. The continued growth of episodes 
introduces computational challenges both in the amount of 
memory for storage and the computational resources 
required for retrieval. To decrease the growth or even 
bound the size of the episodic store, a forgetting or 

consolidation mechanism could be introduced. Such a 
mechanism could maintain statistics about the episodic 
store (retrieval frequency, age, usefulness, redundancy, etc) 
and, upon reaching maximum capacity, make a decision 
about which episode(s)/episode feature(s) to remove or 
consolidate. An important issue is whether the gain in 
computational performance through forgetting outweighs 
the potential negative impact on reasoning that arises from 
the loss of episodes that could be useful in future 
reasoning.  

Retrieval 
Retrieving a memory involves matching a cue against the 
stored episodes, determining a best match, and 
reconstructing the episode so it can be used in reasoning. 
Cue matching over a growing episodic store has the 
potential to be the most costly episodic operation as a 
complete search of the store is at least linear in the number 
of episodes, and because the episodes have complex 
relational structures.  
 Moreover, the frequency of retrievals and source of 
retrieval cues can significantly affect the computational 
cost of the implementation. For instance, supporting 
spontaneous cues (i.e. episodic retrieval over the entirety of 
the present state) demands an implementation that is 
continually searching episodic memory using cues with 
relatively large numbers of features. Although spontaneous 
retrieval is potentially beneficial, we take as a starting 
point for this challenge that retrieval is based on 
deliberately constructed cues that are significantly smaller 
than individual episodes.  
  Within the context of a broader agent, a retrieval does 
not necessarily have to be tied directly to the time scale of 
primitive deliberation. In humans, an episodic retrieval can 
be on a time scale of many primitive cycles (50 ms). 
However, a memory will lose its utility if it has not been 
retrieved within some limited amount of time after cue 
initiation. Clearly this depends on the dynamics of the task. 
To give a ballpark figure, we will assume 1 second, which 
corresponds to 20 primitive cycles. We also assume that a 
retrieval can be executed asynchronously using its own 
processing resources, making 1 second a fixed bound.  
 Consider a linear search of the best case for a year’s 
worth of memories (21 GB) stored sequentially in [an 
extended] primary memory given modern hardware (2GHz 
CPU). Ideal conditions would require at least 10 seconds 
for the processor to read every memory element. This 
estimate will increase by multiple orders of magnitude 
when search comparisons are taken into account. And this 
is the best case with the worst case requiring 1,000 times as 
much data to be processed.  
 This defines the real challenge: how to organize episodic 
data, as it is learned over a year, so that it can be searched 
in bounded time. There are two basic approaches. The first 
is to develop algorithms and data structures that speed the 
matching processes but still guarantee a best match. 
Although these could potentially achieve high performance 
in the average case, in the worst case they must examine 



every episode; however, with massive parallel processing, 
it might be possible to still achieve the requisite reactivity. 
 An alternative is to develop heuristic approaches that no 
longer guarantee a best match, but can provide guaranteed 
performance (possibly through an anytime algorithm). 
Some possible approaches include history compression 
(Schmidhuber 1992) and query caching/optimization 
(Chaudhuri 1998; Gupta et al. 1997). If this challenge is 
accepted, it will be necessary not only to define 
computational performance requirements, but also metrics 
for assessing the quality of the retrieved episodes.  

Conclusions 
Prior work has shown that endowing an agent with an 
episodic memory provides knowledge to support a vast 
array of cognitive abilities crucial for intelligent behavior. 
We have proposed the challenge of developing episodic 
memory systems that can capture the experience of an 
agent that exists for a year and runs in real time. We have 
attempted to provide bounds on the computational 
resources required for such a system. These are very broad, 
spanning multiple orders of magnitude and providing 
answers that are more specific, unfortunately, awaits the 
development of agents that actually exist for a year.  
 It appears that the computational resources required to 
encode and store the resulting episodes are within reach. 
Developing algorithms that can support sufficiently fast 
bounded retrievals is the real challenge. Meeting that 
challenge will involve drawing on recent work in large 
scale relational databases, but given the open-endedness of 
the structures that must be stored, the challenge will 
require significant extensions to existing work. In addition 
to research in data structures and algorithms, we foresee a 
considerable need for empirical evaluation across a range 
of tasks and environments. We surmise that these 
performance benchmarks will draw on and contribute to a 
variety of experienced-based reasoning research. 
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