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Abstract 
Ontologies provide useful technology for organizing and 
managing large-scale knowledge bases and enabling 
interoperability in heterogeneous agent environments. 
However, autonomous systems require not only large 
knowledge bases and knowledge sharing; they also require 
efficient run-time performance. In agents optimized for 
performance, control structures and domain knowledge are 
often intertwined, resulting in fast execution but knowledge 
bases that are brittle and scale poorly. Our hypothesis is that 
combining ontology representations and tools with agents 
optimized for performance will capitalize on the strengths 
of the individual approaches and reduce their weaknesses. 
Our strategy is to use automatic translators that convert 
ontological representations to agent representations, hand-
coded agent knowledge for ontological inference, and 
explanation-based learning to cache ontological inferences.  
The paper outlines the rationale for this approach and 
design decisions and trade offs encountered. We also 
discuss criteria for evaluating success and understanding the 
consequences of design decisions on agent performance and 
knowledge base manageability.   

Introduction 
Agents must act responsively, appropriately, and robustly 
to the complexity inherent in their environments.  Agents 
that can find, evaluate, and apply the right knowledge for 
the current situation, acting without human supervision or 
intervention, can be considered autonomous.  Because of 
the primacy of responsiveness as a requirement, many 
agent frameworks are procedurally oriented, focused on 
providing agents with a robust, high-performance 
execution platform.  Examples include BDI architectures 
(Georgeff & Lansky, 1987; Huber, 1999; Rao & Georgeff, 
1991), Soar (Laird, Newell, & Rosenbloom, 1987; Newell, 
1990; Wray & Laird, 2003), and 4D/RCS (Albus, 2001).  
Such agents have been demonstrated in a spectrum of 
high-capability, high-performance environments; however, 
building and maintaining such agents is resource-intensive.  
A drawback of procedural systems is that execution 
knowledge often combines control knowledge and  
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declarative domain knowledge.  While these systems 
execute tasks efficiently, scaling their knowledge bases to 
larger applications is difficult (Wray & Laird, 2003). 
 
Ontologies (Uschold & Grüninger, 1996) can be pivotal 
tools for addressing the limitations of procedural systems.  
Ontologies are specifications of the terms used in a 
particular domain and their relations to other terms. 
Potentially, ontologies provide: knowledge scalability (the 
ability to encode and manage very large knowledge bases), 
reuse of knowledge (across agents and possibly domains), 
increased robustness (agents can draw on ontological 
relationships to reason about novel or unanticipated events 
in the domain), and a foundation for interoperability 
among heterogeneous agents.  These benefits together 
allow applications to be developed more quickly, 
maintained less expensively, and adapted to new tasks 
more readily. 
 
Ontology languages and tools focus on definitions and 
relationships more than the application of this knowledge 
in the execution of agent tasks.  For information retrieval 
and web based applications, the performance costs of using 
wholly declarative approaches may be acceptable (Huhns 
& Singh, 1998).  However, in performance environments, 
such as robotics and real-time simulation, agent 
responsiveness is an important requirement.  At present, 
procedural systems fill this application niche. 
 
There is an inherent tension between the execution 
performance of an agent framework, and the costs of 
creating and managing knowledge within that framework.  
This paper describes an on-going attempt to preserve the 
benefits of procedural agents while reducing knowledge 
management costs.  We describe an agent infrastructure 
with four components:  
1. Ontologies for domain knowledge representations 
2. Translators that bring ontology knowledge to agent 

applications 
3. Hand-coded ontology inference knowledge for 

ontological reasoning  
4. A learning mechanism that caches responses to queries, 

obviating the need for repeated inference in response 
to a repeated query 



Our hypothesis is that combining ontological 
representations and tools with agents optimized for 
performance will capitalize on the strengths of the 
individual approaches and reduce individual weaknesses.  
In this paper, we discuss design decisions and trade-offs 
when implementing this approach for agents that use the 
Soar agent architecture.  While some design decisions and 
specific tools described depend on Soar, the general 
approach and design do not.  We also describe the 
currently implemented solution. Finally, criteria for 
evaluating success and understanding the consequences of 
design decisions on agent performance and knowledge 
base manageability and scalability are introduced. 

Mixing Declarative & Procedural Knowledge 
We have been investigating ontology tools and languages 
to use in conjunction with Soar agents.  Soar agents have 
been developed for complex, highly interactive domains 
such as tactical aircraft pilots and controllers for military 
air missions in real-time distributed simulation 
environments (Jones et al., 1999) and intelligent 
adversaries in interactive computer games (Laird, 2001; 
Wray, Laird, Nuxoll, & Jones, 2002) among others.  The 
design of Soar is based on functional principles such as 
associative memory retrieval, blackboard memories for 
state information, and goal-driven processing (Newell, 
1990).  A Soar agent’s knowledge is stored in the form of 
productions. Productions are rules that specify some 
predicate conditions and actions; actions change the state 
when the predicate conditions are satisfied.  Production 
systems can be used to realize a variety of control 
structures (Newell, 1973). This flexibility, along with 
efficient pattern matching via the RETE algorithm (Forgy, 
1982) and sophisticated truth maintenance (Laird & 
Rosenbloom, 1995; Wray & Laird, 2003), make Soar a 
good tool for creating high-performance agent systems. 
 
Production conditions test both the state of an executing 
procedure and declarative knowledge that provides 
constraint and rationale for the procedure.  For example, 
when a aircraft pilot agent (Jones et al., 1999) is 
maneuvering to launch a missile, productions used in the 
execution of this behavior test if particular altitude and 
heading objectives have been reached.  The specific values 
of these goals depend on characteristics of the aircraft 
being flown, on the particular target, and on the weapon 
chosen.  In naïve implementations, declarative facts such 
as the allowed altitude separation for launch are 
represented directly in the rules themselves.  In more 
refined formulations, declarative facts are represented 
elsewhere in agent memory and are referenced indirectly.  
Additional rules encode the relevant details of each 
weapon and aircraft and place them into Soar's blackboard 
memory.   
 
This second approach is superior to the naïve approach.  It 
provides greater separation of declarative from procedural 

knowledge and is generally the rule-of-thumb used in the 
development of complex Soar systems.  However, there 
are two obvious limitations.  First, because the declarative 
knowledge is encoded by rules, changing the values or 
adding new ones requires a knowledge engineer that 
understands the syntax of Soar programs.  Second, the 
refined approach can require more coding and is not 
enforced by developer tools.  As a consequence, the 
convention is often violated and declarative parameters 
(e.g., the range of some missile) become hard-coded into 
rules.  Obviously, this intermixing of procedural and 
declarative knowledge within individual rules leads to 
code that is very difficult to maintain, and, due to this 
difficulty, more brittle over time and agent evolution.   
 
Because declarative knowledge is difficult to separate 
completely from the execution knowledge, it is difficult to 
reuse even the simple declarative specifications encoded 
with the refined approach (e.g., aircraft maximum speed).  
Different agents might draw on that same domain 
knowledge, but code-level reuse requires that the identical 
rule be applicable in the new system.  Because inference is 
performed by rules custom-coded for the original system, 
such reuse is much more difficult to ensure. 

Solution Design Considerations 
We are adopting ontology tools and languages to address 
this limitation in current agent development 
methodologies.  There are four obvious mechanisms by 
which a procedural agent can utilize an ontology.  These 
mechanisms are listed in Table 1.  The table is organized 
along two dimensions.  First, the ontological information 
can be represented in the agent's dynamic memory (M) or 
in the agent's knowledge base (K).  In Soar, these 
dimensions correspond to blackboard memory and 
production knowledge respectively.  The second 
dimension regards whether the agent represents a complete 
ontology at one time (C), or incrementally accesses 
portions of an ontology as needed (I).  We assume that 
incremental access can be accomplished as part of an 
agent's tasks; thus, access to the ontology should occur 
"on-line" with task execution.  However, given the size of 
most domain ontologies, the complete incorporation of a 
domain ontology would usually need to be accessed and 
incorporated off-line from normal task execution. 
 
The most straightforward solution is for the agent to access 
the ontology via queries and subsequent responses (IM).  
In this design option, the ontology database can be viewed 
as simply part of the agent's environment.  The agent 
queries the database when it recognizes it needs 
information and then receives responses to the queries as 
external input.  This solution has the advantage of existing 
protocols (such as agent communication languages and 
Jini) for locating remote databases and interacting with 
them.  In contrast to CM solutions, this solution should 
scale to very large ontologies. 
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Table 1: Design options for agent access to ontology databases 
 

There are three long-term disadvantages of the 
Incremental-Memory approach.  First, agent knowledge is 
required to understand when ontology resources are 
needed, where to find them, and how to evaluate the 
trustworthiness of responses.  Thus, this solution requires 
highly developed meta-awareness capabilities.  Second, the 
ability of an agent to act correctly and/or responsively may 
be compromised by the network environment and access to 
needed information.  As the ontology becomes a more 
critical component of the agent's reasoning, tighter 
integration of ontology and agent knowledge will be 
necessary.  Third, in the case of simple queries without 
learning, queries may need to be repeated if memory no 
longer holds the answer to the prior query.  This repetition 
can lead to performance bottlenecks and require agents to 
manage memory at a low level (e.g., caching common 
queries). 
 
Incorporating the results of incremental accesses into the 
agent's knowledge base (IK) provides a solution to some of 
these issues.  It solves the third problem -- queries would 
automatically be incorporated into an agent’s long-term 
memory.  It mitigates the second: because the knowledge 
is incorporated into the knowledge base upon acquisition, 
repeating identical queries would not be necessary, 
resulting in less frequent reference to the external 
ontology.  Creating agent knowledge to encode when to 
learn and where to find information would provide 
guidance of what and when to learn, difficult problems in 
agent learning.  The primary drawback of incorporating 
ontology knowledge via learning is managing changes to 
the agent knowledge base.  Changes necessitate manually 
removing learned knowledge or leading the agent through 
a process of "unlearning" previously cached ontology 
knowledge. 
 
In contrast to the incremental approaches, it is also 
possible to incorporate complete ontologies within the 
agent's memory (CM) or knowledge base (CK).  These 
solutions eliminate many of the meta-awareness and 
network reliability challenges.  The agent can access 
ontology information without needing to access the 
external environment.  Representing all the ontological 
information in memory (CM) limits this solution to 
ontologies of modest size, as the inference speed of many 

agents is a function of the size of memory.  Because agent 
performance is often much less strongly determined by the 
total size of its knowledge base, this problem can be 
mitigated by incorporating the ontology information into 
the agent's long-term knowledge via learning (CK), using a 
process similar to the IK learning solution outlined above.  
Unlike the previous learning approach, because the agent 
is attempting to capture all the ontological information off-
line from a performance context, a unique challenge in this 
learning environment is capturing the correct conditions 
under which the knowledge should be applied when in a 
performance context.  This recognition problem is a 
critical issue when merging ontological knowledge with 
task execution and instance knowledge.  The agent must 
encode not only the ontological information but also the 
conditions that would allow it to recognize that ontological 
information would be relevant to a future situation.  
 
Long-term, our goal is to develop agent solutions that can 
accommodate all of these possibilities.  We are initially 
focusing on representing complete ontologies in agent 
memory (CM).  This focus avoids the necessity of 
solutions to on-line external access and to the recognition 
problem.  Because we are using ontologies to improve 
knowledge management and scalability, the target 
ontologies are modestly sized.  Representing these 
ontologies directly in memory does not adversely impact 
performance in Soar.  This solution also provides a way to 
explore incremental transition of the ontology to long-term 
memory (IK) via Soar's native learning mechanism, 
providing partial solutions to the recognition problem. 

DAML2Soar:  
A Complete Ontology/Agent Memory Solution 
The CM solution requires three functional components:  an 
ontology language, a translator that converts ontology 
knowledge to the agent language, and inference knowledge 
to extract relational information from ontological 
representations.  Because optimal performance remains a 
primary goal, we encode ontological inference knowledge 
by hand.   To further improve performance, Soar's learning 
mechanism is also used to cache ontological inferences.  
All of these components have been successfully prototyped 



as DAML2Soar, a system that uses DAML+OIL1 for 
ontology representation and Soar as the agent architecture.  
This section outlines each component of DAML2Soar.  
The following section provides an example that 
demonstrates the role of each component in providing 
domain knowledge representation solutions for agents. 

Ontology Language and Tools 
As part of the semantic web (Hendler, 2001), many 
domain and higher-level ontologies have been developed 
in the DAML+OIL language (Horrocks, Patel-Schneider, 
& Harmelen, 2002). Given the widespread use of 
DAML+OIL and its representational power, we chose 
DAML+OIL for ontology representation.  To create 
ontologies and to manage and combine web-based 
ontologies for our applications, we chose Protégé (Noy, 
Fergerson, & Munsen, 2000), a DAML+OIL compliant, 
open-source, Java-based ontology tool.  Protégé is 
designed for data entry and knowledge acquisition, in 
combination with ontology representation.   
 
One significant advantage of Protégé is its automated 
support for knowledge acquisition. Whenever a class is 
defined in the ontology, Protégé automatically creates a 
form-based data entry window for that class.  The forms 
can be extended and customized, and exported for 
inclusion in other applications.  This capability makes it 
straightforward to create tools that domain experts can use 
to enter ontological information.  Using Protégé, experts 
do not require technical knowledge of the agents that will 
use the knowledge, nor do they need to know the details of 
the underlying ontology language.   

The DAML2Soar Ontology Translator 
We have implemented a translator that maps DAML+OIL 
ontologies into Soar production rules.  DAML2Soar 
provides straightforward representation of ontology classes 
and relationships in Soar memory.  Users control when and 
how often ontology information is relayed to Soar, 
simplifying version control and configuration 
management.  No on-line access to Protégé (or to a Protégé 
server) is needed during execution.  This solution limits 
interactions between an agent and the ontology knowledge 
base (transfer is one-way) and requires explicit 
compilation/translation during agent development. 
 
DAML2Soar creates Soar productions that build a special 
structure in agent blackboard memory.  This structure acts 
as a data interface layer used by the agent’s execution 
knowledge to send queries to and read responses from the 
ontology.  While the mechanism of DAML2Soar 
superficially resembles the Complete Ontology-
Knowledge approach, it actually fits the CM approach in 
terms of function.  The translated productions provide no 
                                                 
1 DARPA Agent Markup Language + Ontology Interface 
Language: www.daml.org.  

solution to the recognition problem, and become 
immediately active when the agent is instantiated.  We 
chose to translate to productions (rather than, for example, 
insert the ontology directly into Soar’s blackboard) 
because this solution does not require run-time access to 
the agent or modification of the agent architecture.  
 
DAML2Soar supports DAML+OIL classes, properties, 
super/subclass relations, namespaces, and a small set of 
queries (discussed below).  It has been tested using 
ontologies gathered from the World Wide Web, including 
the Suggested Upper Ontology (SUO/SUMO) and Cyc’s 
Upper Ontology (OpenCyc), as well as domain ontologies. 
The SUMO ontology, consisting of 628 classes and 17,896 
slots, was translated into 629 Soar productions in 42 
seconds on a standard PC workstation.  Each production 
corresponds to a specific class from the ontology, with one 
“boot strap” production to create “world knowledge” and 
“ontology” divisions of the blackboard memory.  
Translation computation time does not scale linearly.  The 
OpenCyc ontology (1694 classes and 152,333 slots) was 
processed into 1695 productions in 22 minutes.  These 
results show that DAML2Soar can feasibly provide off-
line translations of ontologies.  Computational demands 
are not trivial, but are reasonable enough that changes to 
the ontology can be easily ported to the agents.   
 
DAML2Soar does not currently support all aspects of 
DAML+OIL.  Planned extensions to DAML2Soar include 
property restrictions, additional relations, and the 
representation of instances/individuals.  DAML2Soar 
could also easily be adapted to other ontology 
representation languages, such as OWL, and to other 
production languages (e.g., CLIPS, JESS, or ACT-R). 

Ontological Inference 
Because the complete ontology is represented in agent 
memory, inference knowledge can be represented within 
the agent’s execution knowledge.  Rather than attempting 
to represent every possible inference, initially, we have 
developed a set of hand-coded rules that recognize the 
queries in Table 2, and then search the ontology to answer 
the queries.2  Additional queries will be supported as 
additional DAML+OIL representational elements are 
incorporated within the translator. 
 
Search over ontological knowledge is triggered via queries 
posted to a “query” structure on the “world knowledge” 
blackboard.  Each query type is defined by a unique name, 
                                                 
2The productions that manage query generation, query syntax 
checking, and query posting, as well as the domain-general query 
search knowledge are hand-created, but then incorporated as a 
module of the DAML2Soar translator.  This ensures every agent 
using the translator receives the domain-general components, 
eases agent maintenance costs as the ontology representation 
formats change, and immediately provides evidence of (small 
scale) reuse. 



used by the inference productions to discern one type of 
query from another.  When activated by a query, the 
inference productions search the ontology.  Results are 
posted under the query structure.  Unique tags indicate 
when a query is not satisfiable by the ontology, and when a 
query cannot be processed (e.g., syntax errors in query 
formation). 
 
What are: Is: 
Superclasses-of-class X X a subclass of Y 
subclasses-of X X a superclass of Y 
properties-of X  
namespace-of X  
Table 2: Examples of queries supported by current agent 
inference knowledge 
 
One of the advantages of this approach is that the 
importance of performing some particular inference can be 
considered in the overall context of agent reasoning.  For 
example, if an agent was attempting to evaluate the best 
weapon and ordnance to choose for a particular target and 
it recognized that it had come under fire itself, it could 
deliberately choose to make activities related to evasion 
more important than reasoning related to weapon selection.  
This prioritization requires additional knowledge. 

Caching Ontological Inference 
Soar includes a learning mechanism, chunking (Newell, 
1990), that can be easily applied to cache individual query 
responses.   Each query triggers a Soar impasse, a situation 
that indicates the agent needs to bring additional 
knowledge to bear on the problem.  The impasse leads to a 
new problem-solving context in which ontology search 
knowledge is activated.  This search attempts to answer the 
query and resolve the impasse.  The chunking algorithm 
identifies world knowledge elements that were used to 
answer a query and resolve the impasse.  Once this 
information has been learned, any previously answered 
query can be re-answered immediately, avoiding the 
impasse and the consequent deliberation.  This learning 
leads to the automatic integration of the declarative domain 
knowledge from the ontology into the agent’s procedural 
knowledge.   
 
Cached inferences may need to be removed or updated 
when the ontology changes.  Currently, we delete all 
cached inferences when the ontology changes.  However, a 
significantly better solution would be to identify what 
cached knowledge needs to be removed or updated, and 
what can be preserved without change.  Ontology 
versioning solutions, along with tools that examine cached 
productions, could automate an analysis of which rules to 
retain and which to excise following ontology 
modification.   

Current Application:  
Networked Command, Control and 

Communication  
The approach outlined above is being explored and 
implemented for Cooperative Interface Agents for 
Networked Command, Control, and Communications 
(CIANC3) (Wood, Zaientz, Beard, Frederiksen, & Huber, 
2003), a Department of the Army Small Business 
Innovation Research project sponsored by the U. S. Army 
Research at Fort Knox. The “CIANC3 ontology” is a 
collection of taxonomies, communication protocols, and 
deontic relationships for tactical mechanized infantry 
operations (Kumar, Huber, Cohen, & McGee, 2002).  For 
example, the ontology includes descriptions of the types of 
vehicles one would expect to find on a future infantry 
battlefield, their weapons, and operational parameters 
(speeds, size of crew, etc).  The ontology is being 
represented in Protégé and translated into Soar via 
DAML2Soar.  
 
Figure 1 illustrates how the agent uses knowledge from 
the CIANC3 ontology to perform its tasks. Production rules 
from DAML2Soar instantiate the ontology in the agent’s 
blackboard memory.  The ontological knowledge can be 
queried by searching via “standard” ontological 
relationships (e.g., subclass).  This knowledge would allow 
an agent to recognize, for example, that “M1A1” is a kind 
of tank and that the characteristics of its primary weapon 
determines the maximum range at which it can directly 
engage hostile forces.  These productions are not 
application or agent specific and can be used in any 
application using the solution presented here.   
 

 
Figure 1.  Use of the complete ontology/agent memory 
solution in the Cooperative Interface Agents for 
Networked Command, Control, and Communications 
application 
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At the next higher level, the ontology reasoning 
infrastructure includes productions that can reason across 
domain- or agent-specific relations.  These production 
rules comprise some “common sense” reasoning for the 
domain and compare the results of ontological queries with 
the agent’s mental representation of the world-state (Beard, 
Nielsen, & Kiessel, 2002). These comparisons allow the 
agent to draw further domain specific inferences on the 
basis of ontological relationships amongst objects 
represented in the agent’s perceived world-state.  For 
example, by recognizing that an M1A1’s primary weapon 
is a direct fire weapon, the agent could determine that the 
tank must have a direct line-of-fire to a target for 
engagement of that weapon.  The productions in the 
ontological reasoning layer have limited reusability 
(because the semantics of relations are defined 
operationally in the productions, rather than formally in the 
ontology), but provide a very convenient tool for 
expressing relationships that are difficult to express 
formally (such as the tactical consequences of the 
differences between guns and howitzers). Further, these 
productions can capture complex relationships that could 
be derived via ontological inference, but only with 
significant inference effort.  This level thus offsets some of 
the performance costs to be expected when implementing 
queries without also using the optimizations inherent in 
databases.  At the highest level, agents are able to evaluate 
their own perceived state in the context of the ontology-
based retrievals and make decisions that are consistent 
with that world state, querying the ontology and acting 
based on its interpretation of the results. 

Considerations for Evaluation  
We have argued that the approach outlined in this paper 
will lead to lower knowledge management costs and 
increased scalability, without degrading the performance 
of an agent optimized for execution.  We have 
implemented a prototype solution and are now beginning 
to evaluate it.  Our evaluation will concentrate on 
measuring performance costs and knowledge 
representation improvements. 
 
The first priority for the new solution is to maintain 
acceptable performance.  The cost of agent development 
precludes developing both the standard agent 
representations and the new ontology-based 
representations in order to make empirical comparisons.  
However, we can compare the performance of existing 
Soar performance systems (such as TacAir-Soar) to the 
CIANC3 DAML2Soar solution.  Clearly, there will be 
some cost in the DAML2Soar system, because the agent 
now retrieves declarative information from the ontology 
rather than accessing it directly.  Empirical testing will 
provide evidence of the extents and consequences of this 
cost.   
 

Ontology agents may or may not have larger knowledge 
bases than typical agents, but they certainly will have 
larger blackboards: relationships implicitly represented in 
rules will now be explicitly represented in the ontology.  
We must determine the impact of the size of these larger 
blackboard memories on the performance of ontology-
based agents.  There will likely be a “break point” in terms 
of ontology size.  After the break point is surpassed, 
performance may severely degrade.  To date, we have not 
observed such a point with the ontologies we have tested 
in Soar, but, because one goal of the ontology-based 
solution is scalability, we must find the break point in 
order to understand the limits of the DAML2Soar solution.  
 
Measuring development cost and reuse are also difficult.  
One particular challenge is to compare the cost of 
developing and maintaining ontologies to the original 
agent methodologies.  However, qualitative measures 
should provide some indication of any benefit the ontology 
solution provides.  First, any general knowledge will 
transfer immediately to new applications needing that 
knowledge.  For example, the CIANC3 ontology will 
include representations of authority, communications, and 
teamwork that should transfer to other applications 
needing these capabilities.  For most Soar systems, even 
those designed as reusable rule sets, reuse without 
significant re-implementation has not been common.  
However, we have demonstrated rule-level reuse in an 
ontology-based communications component (Wray, 
Beisaw et al., 2002).  If DAML2Soar improves such reuse, 
it will represent a categorical improvement, at least for 
Soar systems.  Second, we can measure the ratio of reused 
and automatically created rules to total rules.  As described 
previously, in most Soar agent systems, this ratio is very 
small, due to the intermixing of declarative and procedural 
representations.  With the CIANC3 agents, we will 
establish a baseline ratio.  Over time, if ontological reuse is 
successful and our solution scales, the ratio should grow 
larger for new applications.   

Conclusion 
Ontologies provide the potential to improve knowledge 
manageability, scalability and reuse for intelligent systems.  
Autonomous agents that employ large knowledge bases 
will benefit from such technologies.  In this paper, we have 
introduced a number of design dimensions for 
consideration when combining ontological approaches 
with procedural agent systems. One of these options has 
been prototyped and we are currently evaluating its 
potential to provide more cost-effective knowledge 
management while maintaining excellent performance.  
Preliminary results suggest that ontologies have the 
potential to improve reuse of agent knowledge 
significantly, at least in rule-based agent systems.  
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