
Investigating Ontology Infrastructures for
Execution-oriented Autonomous Agents

Robert E. Wray, Sean Lisse, Jonathan Beard

Soar Technology
3600 Green Court Suite 600

Ann Arbor, MI 48105
{wray,lisse,beard}@soartech.com

Abstract
Ontologies provide useful technology for organizing and
managing large-scale knowledge bases and enabling
interoperability in heterogeneous agent environments.
However, autonomous systems require not only large
knowledge bases and knowledge sharing; they also require
efficient run-time performance. In agents optimized for
performance, control structures and domain knowledge are
often intertwined, resulting in fast execution but knowledge
bases that are brittle and scale poorly. Our hypothesis is that
combining ontology representations and tools with agents
optimized for performance will capitalize on the strengths
of the individual approaches and reduce their weaknesses.
Our strategy is to use automatic translators that convert
ontological representations to agent representations, hand-
coded agent knowledge for ontological inference, and
explanation-based learning to cache ontological inferences.
The paper outlines the rationale for this approach and
design decisions and trade offs encountered. We also
discuss criteria for evaluating success and understanding the
consequences of design decisions on agent performance and
knowledge base manageability.

Introduction
Agents must act responsively, appropriately, and robustly
to the complexity inherent in their environments. Agents
that can find, evaluate, and apply the right knowledge for
the current situation, acting without human supervision or
intervention, can be considered autonomous. Because of
the primacy of responsiveness as a requirement, many
agent frameworks are procedurally oriented, focused on
providing agents with a robust, high-performance
execution platform. Examples include BDI architectures
(Georgeff & Lansky, 1987; Huber, 1999; Rao & Georgeff,
1991), Soar (Laird, Newell, & Rosenbloom, 1987; Newell,
1990; Wray & Laird, 2003), and 4D/RCS (Albus, 2001).
Such agents have been demonstrated in a spectrum of
high-capability, high-performance environments; however,
building and maintaining such agents is resource-intensive.
A drawback of procedural systems is that execution
knowledge often combines control knowledge and

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

declarative domain knowledge. While these systems
execute tasks efficiently, scaling their knowledge bases to
larger applications is difficult (Wray & Laird, 2003).

Ontologies (Uschold & Grüninger, 1996) can be pivotal
tools for addressing the limitations of procedural systems.
Ontologies are specifications of the terms used in a
particular domain and their relations to other terms.
Potentially, ontologies provide: knowledge scalability (the
ability to encode and manage very large knowledge bases),
reuse of knowledge (across agents and possibly domains),
increased robustness (agents can draw on ontological
relationships to reason about novel or unanticipated events
in the domain), and a foundation for interoperability
among heterogeneous agents. These benefits together
allow applications to be developed more quickly,
maintained less expensively, and adapted to new tasks
more readily.

Ontology languages and tools focus on definitions and
relationships more than the application of this knowledge
in the execution of agent tasks. For information retrieval
and web based applications, the performance costs of using
wholly declarative approaches may be acceptable (Huhns
& Singh, 1998). However, in performance environments,
such as robotics and real-time simulation, agent
responsiveness is an important requirement. At present,
procedural systems fill this application niche.

There is an inherent tension between the execution
performance of an agent framework, and the costs of
creating and managing knowledge within that framework.
This paper describes an on-going attempt to preserve the
benefits of procedural agents while reducing knowledge
management costs. We describe an agent infrastructure
with four components:
1. Ontologies for domain knowledge representations
2. Translators that bring ontology knowledge to agent

applications
3. Hand-coded ontology inference knowledge for

ontological reasoning
4. A learning mechanism that caches responses to queries,

obviating the need for repeated inference in response
to a repeated query

Our hypothesis is that combining ontological
representations and tools with agents optimized for
performance will capitalize on the strengths of the
individual approaches and reduce individual weaknesses.
In this paper, we discuss design decisions and trade-offs
when implementing this approach for agents that use the
Soar agent architecture. While some design decisions and
specific tools described depend on Soar, the general
approach and design do not. We also describe the
currently implemented solution. Finally, criteria for
evaluating success and understanding the consequences of
design decisions on agent performance and knowledge
base manageability and scalability are introduced.

Mixing Declarative & Procedural Knowledge
We have been investigating ontology tools and languages
to use in conjunction with Soar agents. Soar agents have
been developed for complex, highly interactive domains
such as tactical aircraft pilots and controllers for military
air missions in real-time distributed simulation
environments (Jones et al., 1999) and intelligent
adversaries in interactive computer games (Laird, 2001;
Wray, Laird, Nuxoll, & Jones, 2002) among others. The
design of Soar is based on functional principles such as
associative memory retrieval, blackboard memories for
state information, and goal-driven processing (Newell,
1990). A Soar agent’s knowledge is stored in the form of
productions. Productions are rules that specify some
predicate conditions and actions; actions change the state
when the predicate conditions are satisfied. Production
systems can be used to realize a variety of control
structures (Newell, 1973). This flexibility, along with
efficient pattern matching via the RETE algorithm (Forgy,
1982) and sophisticated truth maintenance (Laird &
Rosenbloom, 1995; Wray & Laird, 2003), make Soar a
good tool for creating high-performance agent systems.

Production conditions test both the state of an executing
procedure and declarative knowledge that provides
constraint and rationale for the procedure. For example,
when a aircraft pilot agent (Jones et al., 1999) is
maneuvering to launch a missile, productions used in the
execution of this behavior test if particular altitude and
heading objectives have been reached. The specific values
of these goals depend on characteristics of the aircraft
being flown, on the particular target, and on the weapon
chosen. In naïve implementations, declarative facts such
as the allowed altitude separation for launch are
represented directly in the rules themselves. In more
refined formulations, declarative facts are represented
elsewhere in agent memory and are referenced indirectly.
Additional rules encode the relevant details of each
weapon and aircraft and place them into Soar's blackboard
memory.

This second approach is superior to the naïve approach. It
provides greater separation of declarative from procedural

knowledge and is generally the rule-of-thumb used in the
development of complex Soar systems. However, there
are two obvious limitations. First, because the declarative
knowledge is encoded by rules, changing the values or
adding new ones requires a knowledge engineer that
understands the syntax of Soar programs. Second, the
refined approach can require more coding and is not
enforced by developer tools. As a consequence, the
convention is often violated and declarative parameters
(e.g., the range of some missile) become hard-coded into
rules. Obviously, this intermixing of procedural and
declarative knowledge within individual rules leads to
code that is very difficult to maintain, and, due to this
difficulty, more brittle over time and agent evolution.

Because declarative knowledge is difficult to separate
completely from the execution knowledge, it is difficult to
reuse even the simple declarative specifications encoded
with the refined approach (e.g., aircraft maximum speed).
Different agents might draw on that same domain
knowledge, but code-level reuse requires that the identical
rule be applicable in the new system. Because inference is
performed by rules custom-coded for the original system,
such reuse is much more difficult to ensure.

Solution Design Considerations
We are adopting ontology tools and languages to address
this limitation in current agent development
methodologies. There are four obvious mechanisms by
which a procedural agent can utilize an ontology. These
mechanisms are listed in Table 1. The table is organized
along two dimensions. First, the ontological information
can be represented in the agent's dynamic memory (M) or
in the agent's knowledge base (K). In Soar, these
dimensions correspond to blackboard memory and
production knowledge respectively. The second
dimension regards whether the agent represents a complete
ontology at one time (C), or incrementally accesses
portions of an ontology as needed (I). We assume that
incremental access can be accomplished as part of an
agent's tasks; thus, access to the ontology should occur
"on-line" with task execution. However, given the size of
most domain ontologies, the complete incorporation of a
domain ontology would usually need to be accessed and
incorporated off-line from normal task execution.

The most straightforward solution is for the agent to access
the ontology via queries and subsequent responses (IM).
In this design option, the ontology database can be viewed
as simply part of the agent's environment. The agent
queries the database when it recognizes it needs
information and then receives responses to the queries as
external input. This solution has the advantage of existing
protocols (such as agent communication languages and
Jini) for locating remote databases and interacting with
them. In contrast to CM solutions, this solution should
scale to very large ontologies.

 Location of Ontology Representation
 Dynamic Agent Memory (M) Agent Knowledge Base (K)

Incremental or partial
ontology

representation

(I)
On-demand access
(query & response) Translation + Learning

C
om

pl
et

en
es

s o
f

on
to

lo
gy

re

pr
es

en
ta

tio
n

Complete ontology
representation

(C)
Ontology-to-agent translation Translation + Learning

Table 1: Design options for agent access to ontology databases

There are three long-term disadvantages of the
Incremental-Memory approach. First, agent knowledge is
required to understand when ontology resources are
needed, where to find them, and how to evaluate the
trustworthiness of responses. Thus, this solution requires
highly developed meta-awareness capabilities. Second, the
ability of an agent to act correctly and/or responsively may
be compromised by the network environment and access to
needed information. As the ontology becomes a more
critical component of the agent's reasoning, tighter
integration of ontology and agent knowledge will be
necessary. Third, in the case of simple queries without
learning, queries may need to be repeated if memory no
longer holds the answer to the prior query. This repetition
can lead to performance bottlenecks and require agents to
manage memory at a low level (e.g., caching common
queries).

Incorporating the results of incremental accesses into the
agent's knowledge base (IK) provides a solution to some of
these issues. It solves the third problem -- queries would
automatically be incorporated into an agent’s long-term
memory. It mitigates the second: because the knowledge
is incorporated into the knowledge base upon acquisition,
repeating identical queries would not be necessary,
resulting in less frequent reference to the external
ontology. Creating agent knowledge to encode when to
learn and where to find information would provide
guidance of what and when to learn, difficult problems in
agent learning. The primary drawback of incorporating
ontology knowledge via learning is managing changes to
the agent knowledge base. Changes necessitate manually
removing learned knowledge or leading the agent through
a process of "unlearning" previously cached ontology
knowledge.

In contrast to the incremental approaches, it is also
possible to incorporate complete ontologies within the
agent's memory (CM) or knowledge base (CK). These
solutions eliminate many of the meta-awareness and
network reliability challenges. The agent can access
ontology information without needing to access the
external environment. Representing all the ontological
information in memory (CM) limits this solution to
ontologies of modest size, as the inference speed of many

agents is a function of the size of memory. Because agent
performance is often much less strongly determined by the
total size of its knowledge base, this problem can be
mitigated by incorporating the ontology information into
the agent's long-term knowledge via learning (CK), using a
process similar to the IK learning solution outlined above.
Unlike the previous learning approach, because the agent
is attempting to capture all the ontological information off-
line from a performance context, a unique challenge in this
learning environment is capturing the correct conditions
under which the knowledge should be applied when in a
performance context. This recognition problem is a
critical issue when merging ontological knowledge with
task execution and instance knowledge. The agent must
encode not only the ontological information but also the
conditions that would allow it to recognize that ontological
information would be relevant to a future situation.

Long-term, our goal is to develop agent solutions that can
accommodate all of these possibilities. We are initially
focusing on representing complete ontologies in agent
memory (CM). This focus avoids the necessity of
solutions to on-line external access and to the recognition
problem. Because we are using ontologies to improve
knowledge management and scalability, the target
ontologies are modestly sized. Representing these
ontologies directly in memory does not adversely impact
performance in Soar. This solution also provides a way to
explore incremental transition of the ontology to long-term
memory (IK) via Soar's native learning mechanism,
providing partial solutions to the recognition problem.

DAML2Soar:
A Complete Ontology/Agent Memory Solution
The CM solution requires three functional components: an
ontology language, a translator that converts ontology
knowledge to the agent language, and inference knowledge
to extract relational information from ontological
representations. Because optimal performance remains a
primary goal, we encode ontological inference knowledge
by hand. To further improve performance, Soar's learning
mechanism is also used to cache ontological inferences.
All of these components have been successfully prototyped

as DAML2Soar, a system that uses DAML+OIL1 for
ontology representation and Soar as the agent architecture.
This section outlines each component of DAML2Soar.
The following section provides an example that
demonstrates the role of each component in providing
domain knowledge representation solutions for agents.

Ontology Language and Tools
As part of the semantic web (Hendler, 2001), many
domain and higher-level ontologies have been developed
in the DAML+OIL language (Horrocks, Patel-Schneider,
& Harmelen, 2002). Given the widespread use of
DAML+OIL and its representational power, we chose
DAML+OIL for ontology representation. To create
ontologies and to manage and combine web-based
ontologies for our applications, we chose Protégé (Noy,
Fergerson, & Munsen, 2000), a DAML+OIL compliant,
open-source, Java-based ontology tool. Protégé is
designed for data entry and knowledge acquisition, in
combination with ontology representation.

One significant advantage of Protégé is its automated
support for knowledge acquisition. Whenever a class is
defined in the ontology, Protégé automatically creates a
form-based data entry window for that class. The forms
can be extended and customized, and exported for
inclusion in other applications. This capability makes it
straightforward to create tools that domain experts can use
to enter ontological information. Using Protégé, experts
do not require technical knowledge of the agents that will
use the knowledge, nor do they need to know the details of
the underlying ontology language.

The DAML2Soar Ontology Translator
We have implemented a translator that maps DAML+OIL
ontologies into Soar production rules. DAML2Soar
provides straightforward representation of ontology classes
and relationships in Soar memory. Users control when and
how often ontology information is relayed to Soar,
simplifying version control and configuration
management. No on-line access to Protégé (or to a Protégé
server) is needed during execution. This solution limits
interactions between an agent and the ontology knowledge
base (transfer is one-way) and requires explicit
compilation/translation during agent development.

DAML2Soar creates Soar productions that build a special
structure in agent blackboard memory. This structure acts
as a data interface layer used by the agent’s execution
knowledge to send queries to and read responses from the
ontology. While the mechanism of DAML2Soar
superficially resembles the Complete Ontology-
Knowledge approach, it actually fits the CM approach in
terms of function. The translated productions provide no

1 DARPA Agent Markup Language + Ontology Interface
Language: www.daml.org.

solution to the recognition problem, and become
immediately active when the agent is instantiated. We
chose to translate to productions (rather than, for example,
insert the ontology directly into Soar’s blackboard)
because this solution does not require run-time access to
the agent or modification of the agent architecture.

DAML2Soar supports DAML+OIL classes, properties,
super/subclass relations, namespaces, and a small set of
queries (discussed below). It has been tested using
ontologies gathered from the World Wide Web, including
the Suggested Upper Ontology (SUO/SUMO) and Cyc’s
Upper Ontology (OpenCyc), as well as domain ontologies.
The SUMO ontology, consisting of 628 classes and 17,896
slots, was translated into 629 Soar productions in 42
seconds on a standard PC workstation. Each production
corresponds to a specific class from the ontology, with one
“boot strap” production to create “world knowledge” and
“ontology” divisions of the blackboard memory.
Translation computation time does not scale linearly. The
OpenCyc ontology (1694 classes and 152,333 slots) was
processed into 1695 productions in 22 minutes. These
results show that DAML2Soar can feasibly provide off-
line translations of ontologies. Computational demands
are not trivial, but are reasonable enough that changes to
the ontology can be easily ported to the agents.

DAML2Soar does not currently support all aspects of
DAML+OIL. Planned extensions to DAML2Soar include
property restrictions, additional relations, and the
representation of instances/individuals. DAML2Soar
could also easily be adapted to other ontology
representation languages, such as OWL, and to other
production languages (e.g., CLIPS, JESS, or ACT-R).

Ontological Inference
Because the complete ontology is represented in agent
memory, inference knowledge can be represented within
the agent’s execution knowledge. Rather than attempting
to represent every possible inference, initially, we have
developed a set of hand-coded rules that recognize the
queries in Table 2, and then search the ontology to answer
the queries.2 Additional queries will be supported as
additional DAML+OIL representational elements are
incorporated within the translator.

Search over ontological knowledge is triggered via queries
posted to a “query” structure on the “world knowledge”
blackboard. Each query type is defined by a unique name,

2The productions that manage query generation, query syntax
checking, and query posting, as well as the domain-general query
search knowledge are hand-created, but then incorporated as a
module of the DAML2Soar translator. This ensures every agent
using the translator receives the domain-general components,
eases agent maintenance costs as the ontology representation
formats change, and immediately provides evidence of (small
scale) reuse.

used by the inference productions to discern one type of
query from another. When activated by a query, the
inference productions search the ontology. Results are
posted under the query structure. Unique tags indicate
when a query is not satisfiable by the ontology, and when a
query cannot be processed (e.g., syntax errors in query
formation).

What are: Is:
Superclasses-of-class X X a subclass of Y
subclasses-of X X a superclass of Y
properties-of X
namespace-of X
Table 2: Examples of queries supported by current agent
inference knowledge

One of the advantages of this approach is that the
importance of performing some particular inference can be
considered in the overall context of agent reasoning. For
example, if an agent was attempting to evaluate the best
weapon and ordnance to choose for a particular target and
it recognized that it had come under fire itself, it could
deliberately choose to make activities related to evasion
more important than reasoning related to weapon selection.
This prioritization requires additional knowledge.

Caching Ontological Inference
Soar includes a learning mechanism, chunking (Newell,
1990), that can be easily applied to cache individual query
responses. Each query triggers a Soar impasse, a situation
that indicates the agent needs to bring additional
knowledge to bear on the problem. The impasse leads to a
new problem-solving context in which ontology search
knowledge is activated. This search attempts to answer the
query and resolve the impasse. The chunking algorithm
identifies world knowledge elements that were used to
answer a query and resolve the impasse. Once this
information has been learned, any previously answered
query can be re-answered immediately, avoiding the
impasse and the consequent deliberation. This learning
leads to the automatic integration of the declarative domain
knowledge from the ontology into the agent’s procedural
knowledge.

Cached inferences may need to be removed or updated
when the ontology changes. Currently, we delete all
cached inferences when the ontology changes. However, a
significantly better solution would be to identify what
cached knowledge needs to be removed or updated, and
what can be preserved without change. Ontology
versioning solutions, along with tools that examine cached
productions, could automate an analysis of which rules to
retain and which to excise following ontology
modification.

Current Application:
Networked Command, Control and

Communication
The approach outlined above is being explored and
implemented for Cooperative Interface Agents for
Networked Command, Control, and Communications
(CIANC3) (Wood, Zaientz, Beard, Frederiksen, & Huber,
2003), a Department of the Army Small Business
Innovation Research project sponsored by the U. S. Army
Research at Fort Knox. The “CIANC3 ontology” is a
collection of taxonomies, communication protocols, and
deontic relationships for tactical mechanized infantry
operations (Kumar, Huber, Cohen, & McGee, 2002). For
example, the ontology includes descriptions of the types of
vehicles one would expect to find on a future infantry
battlefield, their weapons, and operational parameters
(speeds, size of crew, etc). The ontology is being
represented in Protégé and translated into Soar via
DAML2Soar.

Figure 1 illustrates how the agent uses knowledge from
the CIANC3 ontology to perform its tasks. Production rules
from DAML2Soar instantiate the ontology in the agent’s
blackboard memory. The ontological knowledge can be
queried by searching via “standard” ontological
relationships (e.g., subclass). This knowledge would allow
an agent to recognize, for example, that “M1A1” is a kind
of tank and that the characteristics of its primary weapon
determines the maximum range at which it can directly
engage hostile forces. These productions are not
application or agent specific and can be used in any
application using the solution presented here.

Figure 1. Use of the complete ontology/agent memory
solution in the Cooperative Interface Agents for
Networked Command, Control, and Communications
application

Domain
Ontological
Reasoning

Generic
Ontological
Reasoning

Specialized
Ontology Relation

Queries

Standard Ontology
Relation Queries

 Ontology
Representation

Query Mechanics

Reasoning
Infrastructure

DAML2Soar
Translator

CIANC3: Tactical Behaviors
(agent procedural knowledge)

"Common Sense" inferences that can
automatically be drawn from results of
standard & specialized queries

Hand-coded Soar production rules
designed to answer queries about
relations specific to autonomous agents

Hand-coded Soar production rules
designed to answer queries about
general ontological relations

DAML2Soar production rules place
ontology knowledge into agent memory

CIANC3

Ontology

At the next higher level, the ontology reasoning
infrastructure includes productions that can reason across
domain- or agent-specific relations. These production
rules comprise some “common sense” reasoning for the
domain and compare the results of ontological queries with
the agent’s mental representation of the world-state (Beard,
Nielsen, & Kiessel, 2002). These comparisons allow the
agent to draw further domain specific inferences on the
basis of ontological relationships amongst objects
represented in the agent’s perceived world-state. For
example, by recognizing that an M1A1’s primary weapon
is a direct fire weapon, the agent could determine that the
tank must have a direct line-of-fire to a target for
engagement of that weapon. The productions in the
ontological reasoning layer have limited reusability
(because the semantics of relations are defined
operationally in the productions, rather than formally in the
ontology), but provide a very convenient tool for
expressing relationships that are difficult to express
formally (such as the tactical consequences of the
differences between guns and howitzers). Further, these
productions can capture complex relationships that could
be derived via ontological inference, but only with
significant inference effort. This level thus offsets some of
the performance costs to be expected when implementing
queries without also using the optimizations inherent in
databases. At the highest level, agents are able to evaluate
their own perceived state in the context of the ontology-
based retrievals and make decisions that are consistent
with that world state, querying the ontology and acting
based on its interpretation of the results.

Considerations for Evaluation
We have argued that the approach outlined in this paper
will lead to lower knowledge management costs and
increased scalability, without degrading the performance
of an agent optimized for execution. We have
implemented a prototype solution and are now beginning
to evaluate it. Our evaluation will concentrate on
measuring performance costs and knowledge
representation improvements.

The first priority for the new solution is to maintain
acceptable performance. The cost of agent development
precludes developing both the standard agent
representations and the new ontology-based
representations in order to make empirical comparisons.
However, we can compare the performance of existing
Soar performance systems (such as TacAir-Soar) to the
CIANC3 DAML2Soar solution. Clearly, there will be
some cost in the DAML2Soar system, because the agent
now retrieves declarative information from the ontology
rather than accessing it directly. Empirical testing will
provide evidence of the extents and consequences of this
cost.

Ontology agents may or may not have larger knowledge
bases than typical agents, but they certainly will have
larger blackboards: relationships implicitly represented in
rules will now be explicitly represented in the ontology.
We must determine the impact of the size of these larger
blackboard memories on the performance of ontology-
based agents. There will likely be a “break point” in terms
of ontology size. After the break point is surpassed,
performance may severely degrade. To date, we have not
observed such a point with the ontologies we have tested
in Soar, but, because one goal of the ontology-based
solution is scalability, we must find the break point in
order to understand the limits of the DAML2Soar solution.

Measuring development cost and reuse are also difficult.
One particular challenge is to compare the cost of
developing and maintaining ontologies to the original
agent methodologies. However, qualitative measures
should provide some indication of any benefit the ontology
solution provides. First, any general knowledge will
transfer immediately to new applications needing that
knowledge. For example, the CIANC3 ontology will
include representations of authority, communications, and
teamwork that should transfer to other applications
needing these capabilities. For most Soar systems, even
those designed as reusable rule sets, reuse without
significant re-implementation has not been common.
However, we have demonstrated rule-level reuse in an
ontology-based communications component (Wray,
Beisaw et al., 2002). If DAML2Soar improves such reuse,
it will represent a categorical improvement, at least for
Soar systems. Second, we can measure the ratio of reused
and automatically created rules to total rules. As described
previously, in most Soar agent systems, this ratio is very
small, due to the intermixing of declarative and procedural
representations. With the CIANC3 agents, we will
establish a baseline ratio. Over time, if ontological reuse is
successful and our solution scales, the ratio should grow
larger for new applications.

Conclusion
Ontologies provide the potential to improve knowledge
manageability, scalability and reuse for intelligent systems.
Autonomous agents that employ large knowledge bases
will benefit from such technologies. In this paper, we have
introduced a number of design dimensions for
consideration when combining ontological approaches
with procedural agent systems. One of these options has
been prototyped and we are currently evaluating its
potential to provide more cost-effective knowledge
management while maintaining excellent performance.
Preliminary results suggest that ontologies have the
potential to improve reuse of agent knowledge
significantly, at least in rule-based agent systems.

Acknowledgements
This report was prepared under a Department of the Army
Small Business Innovation Research Program 2000.2
contract for topic A02-024 (contract #DASW01-03-c-
0019). We gratefully acknowledge the sponsorship of this
research by the United States Army Research Institute and
thank ARI Program Manager Carl Lickteig for his
guidance and support.

References
Albus, J. S. (2001). Engineering of Mind: An Introduction

to the Science of Intelligent Systems: John Wiley and
Sons.

Beard, J., Nielsen, P., & Kiessel, J. (2002, December).
Self-Aware Synthetic Forces: Improved Robustness
Through Qualitative Reasoning. Paper presented at the
Proceedings of 2002 Interservice/Industry Training
Simulation and Education Conference, Orlando, FL.

Forgy, C. L. (1982). RETE: A fast algorithm for many
pattern/many object pattern matching problem. Artificial
Intelligence, 19, 17-37.

Georgeff, M., & Lansky, A. L. (1987, August). Reactive
reasoning and planning. Paper presented at the 6th
National Conference on Artificial Intelligence, Seattle,
Washington.

Hendler, J. (2001). Agents on the Web. IEEE Intelligent
Systems, 16(2), 30-37.

Horrocks, I., Patel-Schneider, P. F., & Harmelen, F. v.
(2002). Reviewing the Design of DAML+OIL: An
Ontology Language for the Semantic Web. Paper
presented at the 18th National Conference on Artificial
Intelligence.

Huber, M. (1999, May). JAM: A BDI-theoretic Mobile
Agent Architecture. Paper presented at the Proceedings
of the Third International Conference on Autonomous
Agents (Agents'99), Seattle, Washington.

Huhns, M. N., & Singh, M. P. (1998). Agents and
multiagent systems: Themes, approaches, and challenges.
In M. P. Singh (Ed.), Readings in Agents (pp. 1-23):
Morgan Kaufman.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P. G., & Koss, F. V. (1999). Automated
Intelligent Pilots for Combat Flight Simulation. AI
Magazine, 20(1), 27-42.

Kumar, S., Huber, M., Cohen, P., & McGee, D. (2002).
Toward a Formalism for Conversational Protocols Using
Joint Intention Theory. Journal of Computational
Intelligence, 18(2), 174-229.

Laird, J. E. (2001). It Knows What You're Going To Do:
Adding Anticipation to a Quakebot. Paper presented at

the Fifth International Conference on Autonomous
Agents (Agents 2001), Montreal, Canada.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:
An architecture for general intelligence. Artificial
Intelligence, 33(3), 1-64.

Laird, J. E., & Rosenbloom, P. S. (1995). The evolution of
the Soar cognitive architecture. In T. Mitchell (Ed.),
Mind Matters. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Newell, A. (1973). Production Systems: Models of Control
Structures. In W. Chase (Ed.), Visual Information
Processing. New York: Academic Press.

Newell, A. (1990). Unified Theories of Cognition.
Cambridge, Massachusetts: Harvard University Press.

Noy, N. F., Fergerson, R. W., & Munsen, M. A. (2000).
The knowledge model of Protege-2000: combining
interoperability and flexibility. Paper presented at the
Proceedings of EKAW 2000.

Rao, A. S., & Georgeff, M. P. (1991). Modeling rational
agents within a BDI-architecture. Paper presented at the
Proceedings of the Second International Conference on
Principles of Knowledge Representation and Reasoning.

Uschold, M., & Grüninger, M. (1996). Ontologies:
Principles, Methods and Applications. Knowledge
Engineering Review, 11(2), 93-155.

Wood, S., Zaientz, J., Beard, J., Frederiksen, R., & Huber,
M. (2003). CIANC3: An Agent-Based Intelligent
Interface for the Future Combat System. Paper presented
at the 2003 Conference on Behavior Representation in
Modeling and Simulation (BRIMS), Scottsdale, Arizona.

Wray, R. E., Beisaw, J. C., Jones, R. M., Koss, F. V.,
Nielsen, P. E., & Taylor, G. E. (2002, May). General,
maintainable, extensible communications for computer
generated forces. Paper presented at the Eleventh
Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida.

Wray, R. E., & Laird, J. E. (2003). An architectural
approach to consistency in hierarchical execution.
Journal of Artificial Intelligence Research, 19, 355-398.

Wray, R. E., Laird, J. E., Nuxoll, A., & Jones, R. M.
(2002). Intelligent Opponents for Virtual Reality
Training. Paper presented at the Inter-service/Industry
Training, Simulation, and Education Conference
(I/ITSEC), Orlando, FL.

