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Abstract 
We present an agent, called RosieTAG, which is implemented in Soar and interacts with an external 
robotic environment. Rosie learns new games through interactive instruction with a human via 
restricted natural language. Instead of learning policy or strategy information as is common in 
other game learners, Rosie learns multiple game formulations (the objects, players, and rules of a 
game) and then uses its own general strategies to solve them. We describe the structure and 
functionality of Rosie, and evaluate its competence, generality, communication efficiency, 
communication accessibility, and ability to continuously learn and accumulate new tasks and new 
task knowledge.  

1.  Introduction 
Although there have been many advances in the past decades in the problem-solving ability of 
machines, there has been little advancement in the ability of machines to acquire representations 
of novel problems and tasks from natural language. The predominant method of communicating 
the problem space of tasks is through standard programming languages, such as Java, Lisp, or 
C++. Cognitive architectures, such as Soar (Laird 2012), Icarus (Langley et al. 2004), FORR 
(Epstein 2001) or ACT-R (Anderson 2007) provide higher levels of abstraction; however, the 
user must still program the tasks at the symbol-level, using symbol structures that are specific to 
the given architecture and must include detailed instructions for coordinating the architecture’s 
processing components and memories as opposed to only describing the structure of the task.  

 Our long-term goal is to create taskable agents (Langley, Laird, Rogers 2009) – independent 
intelligent agents that can perform a wide variety of tasks and can learn new tasks while they are 
behaving in the world, no longer a prisoner to their original programming. The more immediate 
goal of our research is to take an important step toward general taskable agents by developing 
agents that learn from interactive instruction with humans via constrained natural language.  

 General taskability, especially in agents embodied in the real world, is extremely 
challenging. It requires the integration of many areas of AI including natural language processing, 
dialog management, object recognition and perception, actuation, language and concept 
grounding, spatial reasoning, knowledge representation, and general problem solving. Moreover, 
it requires that an agent can operationalize an external description of a task, converting it into a 
representation where it can attempt to solve it. Recent progress in AI, as well as more specifically 
in cognitive architectures, makes us optimistic that we now have sufficient understanding of these 
capabilities and their integration so that it is possible to create robotic agents that can learn to 
understand and solve novel tasks through interactive instruction.  
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In the work describe here, Rosie learns the formulation of a novel task, not a specific policy 
for controlling behavior in a task, but the definition of the task itself. Thus, Rosie learns a 
description of the task actions, as well as descriptions of goal and failure states, and then uses 
those descriptions to perform the task. In other prior work on taskable agents, such as by Langley 
et al. (2010) and Allen et al. (2007), a human teaches a specific policy for solving a task, such as 
giving directions to a location. These approaches teach a solution to a problem, rather than 
teaching the problem specifications. Such an approach is sufficient for tasks where there is a 
single, fixed solution for all problem instances. However, it is not applicable to tasks where the 
solution is dependent on variations in the initial state of the problem or an opponent’s actions, and 
where problem solving and search are necessary, such as in many puzzles and games. 

Not surprisingly, in our work we initially focus on developing an agent that can learn simple 
spatial games and puzzles, such as Towers of Hanoi, Tic-tac-toe, Connect-3, and the Knight’s 
Tour. There are many advantages to starting with games. Games include complex spatial relations 
with many different constraints, objects, and goals that are reflective of many real world tasks. 
Games are well structured, have clearly defined problem spaces and goals, and they require 
problem solving to play or solve. For the remainder of this paper, we will often refer to games 
and puzzles as tasks.  

In contrast to learning task specifications, the majority of existing work on game learning has 
focused on learning strategy. Early examples include systems that learn to play Checkers 
(Sammuel 1959), Backgammon (Tesaauro et al. 1989), and Othello (Buro 1999). These agents 
are preprogrammed with knowledge of the game, namely the state description, legal actions, and 
goals, and rather than learning how to play, they learn to play well. 

In this paper, we describe an agent that learns such simple tasks through interactive 
instruction. Following the acquisition of the task, the agent uses its innate problem solving 
capabilities to generate appropriate behavior to perform the tasks.  

We have identified five major desiderata for instructable, taskable agents, and they are listed 
below. These are the basis of the claims of our research, which in turn form the basis for our 
evaluation of our agent in Section 3. 

 
D1.  Competent 

The agent has the capability to learn the knowledge required to attempt a task, and has the 
capabilities necessary for making progress on the task.  We are defining competence as the 
ability to comprehend and attempt the task independent of the strategic or problem solving 
competence of the agent. We make the additional constraint that the tasks require interaction 
with an external environment. Our claim is that our approach is sufficient for our agent to be 
competent in the tasks we teach it. We evaluate this claim by demonstrating that it can solve 
the tasks in a mixture of a simulated and a real-world robotic environment.  

D2.  General 
The agent can learn a diverse set of tasks, which require a diverse set of concepts (objects, 
relations, actions). Meeting this challenge requires avoiding task specific representations or 
processing mechanisms. Our claim is that our approach is sufficient for our agent to learn a 
wide variety of tasks. We evaluate this claim by demonstrating that we can instruct our agent 
on the following eleven tasks: Blocks world, Connect-3, Frogs and Toads, Knight’s tour, Tic-
Tac-Toe, Towers of Hanoi, Peg Solitaire, Sokoban, 4 Queens, River Crossing (Fox, Goose, 
and Beans), and the 5 puzzle. 
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D3.  Efficient Communication 
The communication of the task should be concise and efficient. Our claim is that the amount 
of information required to instruct our agent is much less than that required in other common 
approaches and it approaches the efficiency of natural language. We evaluate this claim by 
comparing the number of symbols used in our approach for a subset of tasks to those required 
in Soar and GDL (Game Description Language), as well as to published natural language 
descriptions of those tasks. 

D4.  Accessible Communication 
The language for communication should require minimal knowledge of the underlying 
computational architecture, and should require minimal training to use. Our claim is that our 
approach is more accessible than existing methods for task acquisition. Our evaluation of this 
claim is based on inspection of the specifications for tasks in our approach. As we discuss 
later, this area requires significantly more research to strengthen our ability to achieve this 
claim, both in improving accessibility and in developing empirical evaluations.  

D5.  Continuous, Accumulative Learning 
Instructable agents should not only accumulate their learning, but also transfer knowledge 
learned from a previous task to a new task, thereby reducing interactions with a human 
mentor and speeding task acquisition. Our claim is that in our approach, the learning process 
allows for refinements and requests for additional knowledge. We evaluate this claim by 
demonstrating that our agent transfers knowledge learned in one task to later tasks, 
significantly reducing the amount of instruction required in the later tasks.  

2.  Task Acquisition System 

Our approach builds on previous research on learning through situated interactive instruction 
(Mohan et al. 2012) in an agent we now call Rosie (RObotic Soar Instructable Entity). Rosie is 
embodied in a robot arm and Kinect sensor in a table-top world, where the arm can manipulate 
foam blocks. Rosie uses the Kinect sensor to detect the color, shape, size, location, and 
orientation of the blocks. A chat window allows Rosie to communicate with a mentor using 
restricted natural language. A simulator, developed by the APRIL lab, provides an accurate 
replication of the environment and is used in many of our experiments.  

 A human teacher and Rosie use mixed-initiative (the communication is bidirectional) and 
situated (embedded in a shared real-world environment) interaction. Rosie learns the meaning of 
new nouns (square, rectangle, triangle, …), adjectives (red, large, …), prepositions (in, to the 
right of, on, …), and verbs (move, store, cook, …) that refer to objects, properties, spatial 
relations, and actions in its environment. When learning new words, Rosie learns procedural 
knowledge (actions and control knowledge for verbs), object descriptions (such as feature 
detectors for the colors, shapes and sizes), and spatial relations. After Rosie learns a new word, 
the human can use it freely in future instructions and commands (move the green block to the 
pantry). Rosie can use learned words when responding to questions (that is a large green block).  

Rosie has only limited initial domain knowledge: action knowledge for performing its 
primitive actions (picking up a block and putting down a block), feature-space knowledge of 
object attributes (the fact that objects have a color, a size, and a shape), and primitive spatial 
knowledge on the alignment of objects. Rosie has additional task-independent processing 
knowledge for parsing sentences, managing interactions with the human, and learning new words. 
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Spatial reasoning is done within Soar’s Spatial Visual System (Laird 2012), which encodes a 3D 
model of the world as a scene graph and allows for mental projection of imagined objects and 
relations.   The details of how Rosie learns new words from this set of initial knowledge are 
described in more depth in (Mohan et al. 2012). 

Rosie is implemented in Soar (Laird, 2012). Soar has been in development and use for over 
30 years and has been applied to a wide variety of domains and tasks, including prior research on 
instruction, natural language understanding, and robot control. Recent advances in Soar, 
including SVS, episodic memory, and semantic memory have broadened the types of knowledge 
it can represent, use, and learn. One of our hypotheses is that the collective compatibilities of 
Soar are now sufficient for creating a general taskable agent. 

This research introduces a new agent based on Rosie, RosieTAG (Task Acquisition for Games). 
The task acquisition knowledge is encoded in Soar as an extension to Rosie and includes 
knowledge to support an interactive dialogue where the human introduces a new task, and then 
incrementally and interactively teaches it the available actions, goals, and constraints. For 
convenience, we will refer to the extended agent as Rosie.  

2.1  Task Characterization  

As mentioned earlier, this work focuses on games, which can be single or multiplayer, with single 
player games more commonly known as puzzles. Game formulations correspond to a definition 
of a problem space: the legal actions in the game, their precondition and effects, and descriptions 
of goal or failure states. Some game formulations may also include information such as the initial 
game state, which is necessary for agents not grounded in a representation of the game. Thus, 
acquiring a task also requires learning object, action, and spatial concepts.  

We take advantage of the fact that many games can be fully described by spatial relationships 
between different types of objects and locations. For example, in Tic-Toe-Toe, the objects are X’s 
and O’s that are placed on a three by three grid. The important spatial relation is whether three 
objects of the same type are in a line. Actions are defined by spatial preconditions and spatial 
effects, and goals are described by a set of desired spatial relationships. For example, in Tic-Toe-
Toe, the action is to place X in a grid location, with the precondition that the location is clear. 

Figure 1. Images from Rosie starting to solve the frogs and toads puzzle in the real 
world (on the left) and in simulation (on the right) 
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This tight coupling of games and spatial relations/reasoning requires the ability to learn 
representations of new spatial relationships. New spatial relations must be operationalized so that 
they can be used for both recognition and object placement.  

Although a goal of this research is generality, there are many limits to the types of games that 
it can learn. A game must be fully observable, turn-based, deterministic, describable by spatial or 
descriptive constraints, and playable with only discrete actions, or have an isomorphism to a 
problem with these constraints. Currently, the game rules cannot require access to history or 
temporal knowledge of the game play. For example, the agent could not learn the rule for castling 
in Chess, which requires knowing whether the king has moved. 

The system is also limited to learning games with objects of two different classes: blocks and 
locations. Blocks can vary in size, shape, and color and those variances can be relevant to game 
play. Locations are virtual objects defined in the world simulation that can have fixed names such 
as final-pillar or grid-red. The types of games that can be described with these restrictions are 
actually quite large and include many board games, basic puzzles, and some three-dimensional 
problems. Some problems that do not conform to these constraints can be described as an 
isomorphism that does. Most of the games studied involve a small number of objects and some 
are smaller versions of well-known games. For example, the 5-puzzle is a smaller variant of the 
8-puzzle, and Connect-3 is a smaller variant of Connect-4.The restriction on the number of 
objects is not a fundamental limitation, but it leads to smaller problem spaces and allows the 
agent to quickly solve problems using its simple brute-force search techniques, which are not 
currently a focus of this research.  

2.2  The Acquisition and Operationalization Process  

The task acquisition processing and operationalization has three phases, which are described in 
more depth in Sections 2.2.1-2.2.3. 

1. The agent acquires the rules of a new task through situated interactive instruction and 
translates the information into a task concept network (TCN), which is stored in Soar’s 
semantic memory. The TCN specifies all of the action knowledge, failure conditions, and 
goal states that are needed to determine legal play and find a solution. Through this 
process the agent also interactively acquires all of the necessary spatial relationships, 
object descriptions, and verb knowledge, as described in the beginning of section 2. 

2. When given a task, the agent uses pre-coded procedural knowledge to retrieve relevant 
TCN information from semantic memory, extract the needed information from the world, 
and then interpret the TCN to detect conditions, and find complete matches for legal 
actions, and goal and failure states. 

3. During play, the agent chooses its next action based on an internal look-ahead search that 
uses the action knowledge to simulate actions on an internal model of the environment, 
searching for goal states while avoiding terminal failure states. Once an action is chosen, 
the agent executes it in the external environment using its learned verb knowledge. 

2.2.1  Language Interaction 

The agent’s main learning focus is to acquire descriptions of the relevant objects, their properties, 
and the spatial and descriptive constraints between those objects. These are subsequently used to 
describe the preconditions for legal actions and the conditions for failure and goal states. Each 
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descriptive set contains a number of parameters described by the mentor in response to agent 
queries for information. Following our goal for task acquisition to be incremental and continuous, 
the agent asks for additional training information whenever it encounters novel or unknown 
concepts, such as the verb move or the preposition left of. For task actions, the human also must 
specify which verbs need to be performed to carry out the action. For example, in the teaching 
dialog in Table 1, the action place is defined using the verb move (lines 5-7). 

 The acquisition of a task begins with the mentor specifying the name of a new game: “the 
game is tic-tac-toe.” If the agent already knows the game, it prepares to play/solve it when it is 
informed that it is its turn. Otherwise the agent initiates a structured dialog with the mentor. 
Future work will address this restrictive structured ordering by making the process more mixed-
initiative, such as allowing the mentor to decide what to teach first, goals or actions.  The intent 
of this dialog is to learn legal actions in the game and their conditions, and the goal and any 
failure conditions of the game. An example of this dialog between RosieTAG (R) and mentor (M) 
for Tic-Tac-Toe is displayed below in Table 1. 

 
 

 Dialog Line 
M: The game is tic-tac-toe. 1 
R: I don’t know that game, how many players are there? 2 
M: Two. 3 
R: Please start by teaching me the name of a legal action in the game. 4 
M: place 5 
R: What are the verb and parameter arguments associated with this action? 6 
M: move 1 to 2 7 
R: Ok I know that verb, what kind of object is the first parameter? (block, 

location, or either) 
8 

M: M: block 9 
R: Please list all constraints for this parameter (such as ‘it is red’ or ‘it is 

on [parameter] 2’) and then finished 
10 

M: it is red 11 
M: it is not on a location 12 
M: finished 13 
R: What is the type of the next parameter? (or finished if no more) 14 
M: location 15 
R: What are the constraints? 16 
M: it is not under a block 17 

 
This interaction specifies the complete precondition knowledge for a move in Tic-Tac-Toe, as 

well as the action knowledge for what parameters to manipulate and how to manipulate them 
(learned previously from teaching examples of move.) If Rosie had not already learned move, it 
would query for teaching demonstrations of the unknown concept. More generally, two types of 
parameters can be taught: blocks and locations. In addition, there are two types of constraints that 
can be taught, descriptive and spatial. Descriptive constraints cover colors (red, blue), shapes 
(cross, rectangle, cylinder), sizes (small, large), and names (grid-green) of objects. Spatial 
constraints cover positive and negative relationships between 2 or 3 objects, such as it is [not] 

Table 1. Dialog between Rosie and Mentor during acquisition of “place” for Tic-Tac-Toe. 
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above a location. The spatial descriptions can refer to a general type of object, such as a location, 
or refer specifically to another parameter. This is done by directly referring to the number of that 
parameter: it [the block] is on 3. All of these concepts are learned through interaction with two 
exceptions. Smaller than and linear with are pre-encoded in the agent’s spatial reasoning system 
(SVS). Linear with is the only three-object spatial constraint currently accepted. These concepts 
are grounded in representations in SVS, and they make direct connections to perceptual input 
from the task environment.  

After finishing all actions, the mentor is asked to name a goal and provide the parameters and 
related constraints in the same manner as demonstrated above. This is also done for any failure 
states (such as having a large disk on a smaller disk in Towers of Hanoi). There can be any 
number of parameters and constraints, which provides flexibility in describing complex relations 
that require a large number of parameters or spatial relationships. 

At times, the dialog can be verbose and involve not only a large number of interactions, but 
also require the mentor to remember the specific ordering of the parameters already specified and 
possibly ones that have yet to be specified. In particular, when teaching multiple tasks, it is 
frustrating to be forced to specify the same types of constraint concepts, whereas learned 
knowledge about prepositions, adjectives, and verbs will transfer to new tasks. To combat this  

 

 
issue, and be more faithful to the idea of incremental learning, Rosie can learn names for 
concepts, like the action place, as seen in the dialog above, or the goal three-in-a-row. This 
requires that the names of distinct concepts for actions, goals, and failure states be unique. 
 
 
 

Figure 2A. (left): Partial TCN graphical representation of an action in Tic-Tac-Toe. 2B. 
(right): the internal representation of the Tic-Tac-Toe board and the associated parameters. 
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2.2.2  Task Concept Network 

The task information that is learned through instruction is stored in Rosie’s semantic 
memory. We call this structure the Task Concept Network (TCN). The portion of the TCN 
created from the dialog for Tic-Tac-Toe in Table 1 is displayed in Figure 2A. The figure includes 
only the task name and the action that is learned. It does not show the additional structure that is 
learned for the goal or failure states. In the game, the only action is A1, which is the place action 
in Tic-Tac-Toe. Place is implemented with the move verb, which Rosie learned from a previous 
task. The preconditions of a task action are encoded as parameters and their associated 
constraints. In this example, the place action has two parameters, P_1 (a block) and P_2 (a 
location). The parameter constraints were learned in dialog lines 10-17, and are associated with 
C1. Thus, P_1 (the block being placed) has an attribute constraint (it must be red) and a spatial 
constraint (it must not already be on a board location), which is represented by the structure under 
S1. P_2 (the destination location for place) has a single spatial constraint (it must not be under a 
block, i.e., it is clear), which is represented by the structure under S2. In general, tasks can have 
multiple types of actions, and the actions can have any number of parameters and associated 
constraints. 

2.2.3  Knowledge Operationalization 

Once Rosie has learned the Task Concept Network for a new task, it must be able to convert that 
knowledge into action when it encounters the task in the future. Thus, when Rosie encounters a 
learned task, it retrieves the relevant TCN from semantic memory (looked up by the task name) 
and uses this information to determine valid instantiations of the action from the current visual 
scene. Rosie first indexes potential objects for each parameter in the action conditions (P_1 and 
P_2 in our example) by querying the current visual scene for objects with matching descriptions.  
 Figure 2B shows a representation of an intermediate state of a Tic-Tac-Toe game in simulation. 
The board is defined as a 3x3 grid of locations, with blue and red blocks representing X and O. In 
this game, the agent is playing O (red), and the opponent is playing X (blue).  
 In this state, P_1 initially has potential matches to all the red blocks, and P_2 has potential 
matches to all the locations.  Rosie then prunes the potential matches using the parameters’ 
spatial relationship constraints (S1 for the block and S2 for the location). The successful matches 
for P1are blocks labeled 1, and the successful matches for P2 are locations labeled 2. Rosie 
collects together those objects that satisfy the constraints for each parameter and uses them to 
create the set of possible legal actions for the current state. In this case, there are eight possible 
actions, as each of the two red blocks can be moved to each of the four open positions. To avoid 
this needless duplication, we usually stack the red blocks, so that at any time there is only one 
block of each color available for movement.  Rosie uses this same process to retrieve the task 
goal and failure state descriptions from semantic memory and then test to see if they successfully 
match the current state. 

 If only a single task action can be applied to the current state, it is selected, and the 
associated verb is executed using the instantiated parameters. However, if there are multiple legal 
actions, Rosie reaches a tie impasse, which indicates that there is a lack of knowledge for 
selecting the appropriate action.  For single-player puzzles, Rosie uses iterative deepening 
(implemented as recursive substates in Soar; Laird 2012) to search for the goal. The search takes 
advantage of SVS’s mental imagery capability to simulate potential actions using the learned verb 
actuation knowledge. For each state in the search, Rosie determines whether a goal or failure state 
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is present, and if not, iteratively extends the search until the current depth limit is reached by 
generating the legal actions for the new state. If a failure state is encountered, that search path is 
abandoned. If a goal state is encountered, the search terminates and the appropriate action is 
selected and the associated verb command is executed. If the task is a single-player puzzle, Rosie 
successively selects and executes the actions it discovered that were on the path to the goal. 

The internal search is possible because even though the full action model of an action is not 
specified by the instruction, the agent has the action knowledge of the associated verb. A full 
action effect model specifies not only the direct result of the action, but all the related 
relationships that change as a result. For example an action in 8-puzzle, slide, does not verbally 
encode the fact that a new location is made empty. That is, the preconditions of an action are 
encoded, but not all of its effects. However, because Rosie has grounded knowledge of the verb, 
it can simulate actions in its mental imagery module SVS to determine not only their primary 
effects (such as the movement of a tile to a new location), but also secondary effects (such as 
changes in spatial relations with other objects). This capability is unique compared to other game 
player systems, such as those using GDL, which must explicitly represent all primary and 
secondary action effects. 

When playing a two-player game, Rosie only searches forward one step. Rosie currently 
lacks knowledge about the opponent, or its actions. If the agent is one move away from a goal the 
one-step search is sufficient; however, in other cases, the agent uses a general heuristic that 
approximates the state’s distance to the goal. The approximation is calculated by counting the 
number of partially matched goal parameters, which is much better than random behavior. In the 
future we will add opponent modeling and more sophisticated heuristics and search methods 
(which have been implemented in Soar, but not yet used in Rosie).  

3.  Evaluation 

Although Rosie can interact with the real world, our primary mode of development and 
evaluation has been to use a simulation of the robot environment. The real world has additional 
problems unconnected to task learning, such as precision of actuation, object segmentation for 
touching blocks, and tracking the existence of objects during manipulation. These all add 
challenges, especially when the task requires stacking blocks. To date, Rosie has successfully 
executed four of these tasks (Tic-Tac-Toe, Towers of Hanoi, Connect-3, and the Frog and Toad 
puzzle) in the real world, and the remaining in simulation. Our evaluation is structured according 
to the desiderata presented in the introduction. Overall, we have made significant progress; 
however, this research is just the first steps in a long journey, so we also use this opportunity to 
describe directions for future research related to each desideratum.  

3.1  Competent 

Rosie acquires task descriptions for eleven different tasks, listed in Table 2, in real time and can 
solve all them, or in the case of Tic-Tac-Toe and Connect-3 play a competent game. To facilitate 
quicker evaluations, we created simplifications of existing tasks: 5-puzzle instead of 8-puzzle; 
Connect-3 instead of Connect 4; 4 Queens instead of 8 Queens; and we used simple Sokoban 
puzzles. These simplifications were necessary to restrict the agent’s search space, as well as to 
simplify the state representation the agent needed to maintain – large state representations of 
similar objects can lead to combinatorics in matching rules, which slows execution. These 
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simplifications are not fundamental limitations, as descriptions of games can include any number 
of objects, prepositions, colors, shapes, actions, or goals. However, the system does not currently 
have the necessary mechanisms for avoiding the computational performance issues that arise with 
large numbers of pieces or locations.  
 There are a number of problems causing scalability issues that currently prevent Rosie from 
handling larger games and tasks and achieving high-levels of strategic competence. Some of these 
issues arise directly from the tasks, such as games like Chess where large branching factors make 
forward search approaches like simple min-max computationally infeasible. Additional 
computation problems arise from processing the visual scene, calculating spatial relationships 
over large sets of objects (often calculated pairwise), and simulating actions to discover the 
relational changes. 
 Our future goals include improving Rosie’s ability to handle more complex tasks that include 
more objects and constraints. To maintain efficient execution as the number of objects increase, 
we plan on introducing some type of attention mechanism, which would allow Rosie to focus on 
only a subset of the game state.  We also plan on adding a mechanism to learn game-specific 
action models so that agent can avoid simulations of its primitive actions. We also plan to 
improve Rosie’s sensing and robotic capabilities so that all tasks can be solved in the real world. 
A significant milestone would be for Rosie to learn through instruction to play a competent game 
of real-world chess.  

3.2  General 

To evaluate the generality of the system, we instructed Rosie in ten different tasks and then 
examined the diversity of concepts, actions, and goals required in them. These games range from 
simple board/grid type games like Tic-Tac-Toe, to three dimensional puzzles like Towers of 
Hanoi and Blocks World, to more complex transport puzzles such as Sokoban. Table 2 lists the 
games that were taught, as well as the concepts required for each game. 

 
Table 2. Description of the games learned and the concepts taught for each game 
 
Game Spatial Concepts Actions Goal Failure 
Tic-Tac-Toe on, under, linear place 3-in-a-row  
Connect-3 on, under, linear stack-place 3-in-a-row  
Towers of Hanoi on, under, smaller smaller-stack stacked  
5 puzzle on, under, near, 

diagonal 
slide matching-

location 
 

Frogs and Toads left, right, on, 
under 

slide-l, slide-r, 
jump-l, jump-r 

side-swap  

4 Queens on, under, linear place all-placed no-attack 
Blocks world on, under stack order-

stacked 
 

Sokoban on, under, linear, 
diagonal 

push, slide blocks-in  

Peg solitaire on, under, linear jump-remove one-left  
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Knight’s tour on, under, aligned-
vert, aligned-horiz 

knight-a, knight-
b 

all-placed  

River crossing Left, right, aligned move-l, move-r, 
carry-l, carry-r 

Right-bank Fox-goose, 
Goose-beans 

 
On the positive side, the diversity of these tasks demonstrates that Rosie is general – it is does not 
include task-specific knowledge, and it can learn a variety of concepts, actions, failure states, and 
goal states. Moreover, once Rosie learns these tasks it can solve any of them – it is not a one-trick 
robot. However, as described in Section 2.1, there are still many restrictions on the types of tasks 
that Rosie can learn. The states of all these tasks are defined by objects and locations, which are 
all visible to the agent. There are simple, spatially defined goals, and the actions can be defined 
by discrete movements of objects. One of our most important goals for future research is to 
expand Rosie’s capabilities so it can learn more types of tasks.  As the number of tasks increases, 
it will also be necessary to remove the assumption that the names for concepts are unique. The 
agent will need to determine from context which meaning is being used. If it is unable to 
determine the correct meaning, it will need to query the mentor—Is this the same as the action 
place from Tic-Tac-Toe? 

 Within the context of research on AI, one interesting point of comparison is to the General 
Problem Solver: GPS (Ernst & Newell, 1969). GPS was the first AI system that had a general 
method for problem solving (means-ends analysis) and it could solve the thirteen tasks that were 
encoded in it. Cognitive architectures have taken this type of generality much further, so that 
there have been at least a hundred different tasks encoded in ACT-R and Soar. With Rosie, the 
system learns the multiple tasks through instruction instead of having to rely on programming. 

3.3  Efficient Communication 

The goal of efficient communication is minimize the effort to instruct the agent in a new task. We 
take inspiration from evaluations of other forms of task specification in order to get some 
measure, however crude, of the amount of information that must be communicated to the agent. 
In programming languages, the number of lines of code is often used as a measure of the 
complexity of software. We propose a finer-grain measure, which is the number of symbol tokens 
required to communicate a task. For natural language, that includes the number of words and 
punctuation symbols, such as commas and periods. For computer languages, we include tokens, 
such as variable names and constants, reserved words, such as “if” or “while”, and punctuation, 
such as parentheses, equal signs, etc.  

 We know of no existing benchmarks or methods of comparison, so it is a bit uncertain as to 
what are appropriate alternatives to compare Rosie’s efficiency to. We chose three tasks (Towers 
of Hanoi (ToH), Tic-Tac-Toe, and 8-Puzzle) to get some diversity and then examined the number 
of symbol tokens required to specify these tasks using four different approaches, which were 
determined in part by availability of data (unfortunately there are not available comparable 
implementations in other task specification systems such as HERBAL (Cohen 2008)). 
• Instructions to Rosie. These are the instructions that the mentor communicated to Rosie in 

order to learn the task. We have two cases, one where many common concepts that are 
shared among many tasks have already been learned (Rosie+), and the second where all 
concepts must be taught (Rosie).  



J. R. KIRK AND J. E. LAIRD 

230 

• Natural language descriptions of the tasks. Our data on natural language was derived from 
existing description of the tasks “in the wild,” such as in Wikipedia or AI textbooks. The 
values are averages of three independent descriptions. We expect that natural language will 
be very efficient for communicating these tasks. 

• Soar. Soar is a state of the art cognitive architecture and the amount of knowledge required 
should be representative of what is required to program a cognitive architecture. The 
Towers of Hanoi and Eight Puzzle agents were developed many years ago, whereas the 
Tic-Tac-Toe system was developed by the authors explicitly for this evaluation.  

• The Game Description Language (GDL). As described in the related work section, GDL is 
a language designed for specifying games for the General Game Playing competition. The 
GDL descriptions were found online and not developed by the authors.  

 
In making these comparisons, we excluded the specifications of the initial state (which are found 
in the Soar and GDL descriptions) because our agent has access to the initial state through 
perception and does not need to learn it. In the future, we plan to extend Rosie so it can learn 
those representations, potentially from a visual demonstration. For Rosie, we have two different 
entries that correspond to the number of tokens needed to describe the game, with and without, 
already learned knowledge about common verbs, colors, and prepositions. The assumption is that 
in many cases, Rosie will have already learned those concepts from prior instruction. A 
comparison of these results is in Figure 3, which shows the number of tokens required for each 
approach across the three tasks. 

 
 Somewhat surprisingly, Rosie is comparable in token communication efficiency to natural 

language, except for the 8-puzzle. As illustrated by the data for the 8-puzzle, one failing of 
efficient communication in Rosie is in the specification of goal states. The goal specification 
includes 16 arguments, 8 objects (identified by us with colors) that must be in 8 locations 
(identified by their names). One of our future goals is to improve the instructional system to allow 
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more natural, less pedantic and more concise specifications such as ‘all blocks are in a location of 
the same color.’ In addition to learning the initial state by demonstration, the goal configurations 
could also potentially be learned by visual demonstration. These additionally capabilities would 
reduce the number of interactions. 

 Both natural language and Rosie are significantly more efficient than Soar or GDL. Although 
it is encouraging to see that the number of words in our specification is close to natural language, 
and significantly better than Soar and GDL, we are hesitant to make any strong claims in terms of 
communication efficiency at this time. The natural language descriptions are unstructured and 
assume significant background knowledge and language expertise, whereas Rosie requires 
structured and grammatically limited instructions. Moreover, in contrast to Soar and GDL, Rosie 
makes strong assumptions about the nature of spatial problems and games, and has strong 
expectations as to what information it is expecting from the human mentor. It is possible that 
there is an underlying tradeoff between generality and efficiency that will compromise Rosie’s 
advantages as we extend it to more tasks. However, there are indications that Rosie’s 
communication efficiency is real. Rosie’s ability to ground referents in the shared environment 
makes it possible for the instructor to use very short instructions. Finally, the inclusion of 
previously learned concepts (Rosie+ vs. Rosie) further reduces the amount of information that 
must be communicated, which should continue to contribute to communication efficiency as 
Rosie learns more and more task (see Section 3.5 for more evidence of this). 

3.4  Accessible Communication 

We have not formally or empirically evaluated the accessibility of Rosie’s method of 
communication. However, based on inspection, Rosie appears to be more accessible than a 
cognitive architecture such as Soar or ACT-R, or a programming language such as LISP, Java, or 
C++. Those approaches require that the mentor learn a specialized syntax and the structure of the 
architecture, including the memories systems and decision mechanisms. 

 However, there are still challenges in using Rosie, as it requires that a mentor understand 
Rosie’s structuring of tasks (the concepts of parameters, constraints, and actions), and the mentor 
must be able communicate that structure using the limited instructional syntax prompted by 
agent-driven requests for the actions, failures, and goals. However, the interactive nature of Rosie 
has the advantage that the mentor does not need to know all of the concepts that Rosie has learned 
and also does not need knowledge of how the underlying Soar rules or Soar architecture works. If 
an existing concept is used by the mentor, Rosie is able to use it. If a novel concept is introduced, 
Rosie initiates a dialog to acquire that concept, leading the user through the interaction.  

One of our future goals is to extend Rosie’s language abilities by increasing its background 
knowledge of common concepts and by enhancing its ability to process a broader range of natural 
language. We also plan to find ways to move away from the structured dialogs so that the human 
mentor has more flexibility in specifying the task knowledge. Instead of referencing parameters 
with specific numbers, parameters for actions can be introduced in more concise, natural 
statements—Move a free red block on to a clear location.  These changes should also help to 
reduce the number of interactions.  The learning process is currently not robust to errors, so that 
teaching mistakes often require reinitializing the agent or reteaching an entire task. Future work 
will need to investigate capabilities to correct mistakes through interactive instruction. We also 
plan to explore other modalities for interaction, including using more gestural interactions and 
potentially sketching (Hinrichs et al. 2013). Finally, we plan to develop methodologies for 
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comparing and evaluating the accessibility of communication, drawing on those used by others 
(Cohen 2008).  

3.5  Interactive Continuous Learning 

Our final evaluation is of Rosie’s ability to learn interactively and continuously. One positive 
indication of this is that learning in Rosie is cumulative. Rosie can learn more than one task at a 
time, building up a repertoire of games incrementally through instruction. More interesting is that 
not only are the tasks available, but the concepts learned in earlier tasks are available when a new 
tasks is learned. This includes common concepts such as the verb move, or the preposition on, but 
also higher-level concepts that define the actions or goals used in a task. Some of the benefits of 
this were evident in the comparison of Rosie to Rosie+ in Table 2. If an agent attempts to learn a 
game with no initial knowledge of spatial prepositions, adjectives, nouns, or verbs, the interaction 
is significantly longer than if Rosie already knows those concepts. As the agent acquires 

knowledge of concepts, fewer interactions are required, and concepts transfer to new games. The 
capability to learn and transfer common goal, action, and failure state concepts further reduces 
interactions.  Another goal of future work is to increase the number and types of concepts that can 
be taught to aid in transfer between games and to reduce the number of needed interactions.  For 
example, instead of describing a location as not below a block, it could be described simply as 
clear. 

 We evaluate the transfer of knowledge between interactions in the following experiment. 
First three games, Connect-3, Tic-Tac-Toe, and the 4 Queens puzzle, are taught to Rosie 
separately, starting with no previously learned concepts. A second experiment teaches the three 
games in succession, so that instruction in the later tasks can take advantage of concepts learned 
in the earlier tasks. Figure 4 shows the number of interactions, defined as number of separate 
mentor commands or responses, for each of these cases. The left-most data bar for each task 
shows the number of interactions required before any previous task was learned. For Tic-Tac-
Toe, the second data bar shows that the number of interactions drops significantly when Connect-

Figure 4. Transfer of knowledge of concepts evaluated by number of interactions needed 
to describe games separately and sequentially. 
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3 is taught before Tic-Tac-Toe. Similarly, the number of interactions for 4-Queens drops 
significantly when Connect-3 and Tic-Tac-Toe are taught first. This improvement is partially due 
to the transfer of preposition, verb, and adjective knowledge between games, but also due to the 
transfer of game concepts, namely the goal three-in-a-row (Connect-3 and Tic-Tac-Toe) and the 
action place (Tic-Tac-Toe and 4-Queens). As further evidence of transfer, when both Connect-3 
and 4 Queens are taught before Tic-Tac-Toe, the number of interactions drops to six (not shown). 

4.  Related Work 

Below we review related research, starting from those approaches that support task execution and 
specification, but not incremental acquisition, to those most relevant to this work where tasks are 
dynamically acquired. We also mention some of the related work on game learning that focuses 
on strategy learning given a specification, such as in GDL, rather than learning that 
representation. For each approach we evaluate it according to our desiderata by denoting the 
relevant item from Section 1 (D1-D5). 

4.1  Task Specification Languages 

Almost since the inception of cognitive architectures, there have been attempts to create abstract 
task specification languages that make it easier for a user to develop agents. TAQL (Task 
Acquisition Language; Yost 1993) was an abstract language based on the problem space model of 
computation that was compiled into Soar. Other task specification languages that compile into 
Soar include HERBAL (Cohen 2008) and HLSR (Jones et al. 2006). HLSR was also extended to 
compile into ACT-R. (See Cohen 2008 for an extensive review of task specification languages.) 
A related approach is described by Langley et al. (2010), where an instructional command 
language allows the specification of behavior for agents in Icarus. Although they are more 
efficient and accessible than Soar, ACT-R or Icarus, they are not as efficient or accessible as 
natural language. Moreover, they all require independent batch systems that compile the task 
specifications into the target language, so they are not integrated into an agent that supports 
dynamic continuous learning (D5) or interactive task specification. 

Salvucci (2013) introduces another approach to cognitive skill acquisitions within ACT-R. His 
work focuses on the integration and reuse of previous skill knowledge (D5) and the 
proceduralization of this knowledge. While achieving competent behavior (D1) in many diverse 
tasks, the commands are limited to a restrictive syntax (D4) that only specifies policy behavior 
rather than general task and goal knowledge. 

Cantrell et al. (2012) describe a mobile robotic system that can be taught individual 
commands via language commands by specifying preconditions (“you are at a closed door”), 
action definitions (“you push it one meter”), and postconditions (“you will be in the room”). The 
instruction language is accessible (D4), possibly more so than our instruction language; however 
it does not learn new concepts, such as spatial relationships, nor can it learn tasks that involve 
constraints, failure states, and specific goal conditions.  

4.2  Game Description Language 

The Game Description Language (GDL) is used in the General Game Playing (GGP) competition 
(Genesereth & Love, 2005). GDL is a high level formal language that allows for the specification 
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of a large variety of games, although it is not easy for a human to write or interpret (D4). Multiple 
systems interpret GDL specifications, achieving competence (D1) and generality (D2), but none 
of them acquire GDL incrementally and continuously (D5). There is no goal for communication 
efficiency (D3), and it is an empirical question as to the degree of efficiency (see Section 3).  

 Thielscher (2011) surveyed the current state of research in general game playing, and 
highlighted areas that are not being investigated. One area is spatial reasoning. GDL specifies 
relationships like on(x, y) but these are not connected to any spatial meaning and are just a name 
for a proposition that can be true or false. Spatial reasoning requires not only learning what those 
terms mean, but also learning how to ground that spatial knowledge in the game environment so 
that these relationships can be recognized and modified though actions. Another described area is 
natural language processing. They recognize that GDL is not a language that any human would 
desire to specify a game in, even someone that is technically competent. A third area is game-
playing robotics, and the general desire for robots than can handle arbitrary new tasks specified as 
games. Our work tackles all three of these areas and the issues that arise from their integration, 
and it also provides a means to incrementally interactively provide the problem formulation. 

4.3  Learning Game Rules 

Current work that parallels the work described here is being done by Hinrichs et al. (2013) using 
CogSketch to teach an agent developed in the Companions architecture how to play simple games 
like Tic-Tac-Toe and Hexapawn. In their approach, the system incrementally creates a GDL 
description of the task from an interaction with a user that includes instruction and demonstration. 
The GDL specification is then interpreted so that a Companions agent can play the game. Their 
approach focuses more on the naturalness and the accessibility of communication (D3, D4) than 
on the generality (D2) of the information communicated. They plan on expanding the generality, 
including adding the abilities to learn vocabulary for new concepts, such as spatial relations. 

 There has been some prior research on learning the rules of games in physical environments 
through observation of game play. Barbu et al. (2010) describe a robotic arm system that learns to 
play simple 3x3 board games, like Tic-Tac-Toe and Hexapawn, by observing random legal game 
play between two other agents. Kaiser (2012) makes many improvements on learning board game 
rules through visual observation by reducing the amount of pre-coded background knowledge and 
using more expressive representations of state. They represent the game state with relational 
structures, instead of formulas, but these structures are predefined, namely rows, columns, and 
diagonals in the board grid. These projects are not focused on accumulative, continuous online 
learning (D5) or learning representational structures to increase the generality (D2). Although 
video demonstrations are a fairly accessible communication means (D4) and enable competent 
game play (D1), they can require large numbers of demonstrations, including of labeled illegal 
game play, reducing the efficiency of communication (D3). 

5.  Conclusions 

In this paper we have described Rosie, an agent that learns new tasks through interactive situated 
instruction with a human. Some of Rosie’s strengths are its ability to learn many different tasks, 
learn many different types of knowledge that transfer between tasks (including new spatial 
relations, object features, actions, and game concepts), and interactively request information 
when novel concepts are introduced. We evaluated Rosie along are a variety of dimensions, 
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comparing her performance to other approaches, while also pointing out her weaknesses and 
areas for future research.  
 The major weaknesses of the current system are its restrictive, formulaic instruction syntax, its 
inability to scale to larger games, and its limited problem-solving capabilities. Addressing these 
concerns raises many goals for future work. These include improving the accessibility of 
communication by expanding the types and flexibility of interactions and extending the natural 
language processing and grounding system.  It includes research into mechanisms to reduce the 
search space and redundant calculations. This could include additional mentor interactions such 
as advice on task-specific heuristics that reduce the search space—In Towers of Hanoi never 
move the same object twice in a row. Finally, one of the most important areas for future research 
is to improve Rosie’s strategic competence for solving diverse tasks in complex environments. 
 To date, we have only scratched the surface in terms of the research challenges in creating 
general taskable agents and the potential for them to change the way we develop and interact with 
AI systems. Closer to home, taskability has the potential to be the next grand challenge for 
cognitive systems. Not only does it require the complete set of cognitive capabilities we associate 
with intelligent behavior, but it also involves those capabilities that distinguish human-level 
behavior from other animals. It has the potential of uniting cognitive systems research with 
common goals and exciting problems.  
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