
Proceedings of the Second Annual Conference on Advances in Cognitive Systems ACS-2013 (219-236)

© 2013 Cognitive Systems Foundation. All rights reserved.

Learning Task Formulations through Situated Interactive Instruction

James R. Kirk JRKIRK@UMICH.EDU
John E. Laird LAIRD@UMICH.EDU
Computer Science and Engineering, University of Michigan, Ann Arbor, MI USA

Abstract
We present an agent, called RosieTAG, which is implemented in Soar and interacts with an external
robotic environment. Rosie learns new games through interactive instruction with a human via
restricted natural language. Instead of learning policy or strategy information as is common in
other game learners, Rosie learns multiple game formulations (the objects, players, and rules of a
game) and then uses its own general strategies to solve them. We describe the structure and
functionality of Rosie, and evaluate its competence, generality, communication efficiency,
communication accessibility, and ability to continuously learn and accumulate new tasks and new
task knowledge.

1. Introduction
Although there have been many advances in the past decades in the problem-solving ability of
machines, there has been little advancement in the ability of machines to acquire representations
of novel problems and tasks from natural language. The predominant method of communicating
the problem space of tasks is through standard programming languages, such as Java, Lisp, or
C++. Cognitive architectures, such as Soar (Laird 2012), Icarus (Langley et al. 2004), FORR
(Epstein 2001) or ACT-R (Anderson 2007) provide higher levels of abstraction; however, the
user must still program the tasks at the symbol-level, using symbol structures that are specific to
the given architecture and must include detailed instructions for coordinating the architecture’s
processing components and memories as opposed to only describing the structure of the task.

 Our long-term goal is to create taskable agents (Langley, Laird, Rogers 2009) – independent
intelligent agents that can perform a wide variety of tasks and can learn new tasks while they are
behaving in the world, no longer a prisoner to their original programming. The more immediate
goal of our research is to take an important step toward general taskable agents by developing
agents that learn from interactive instruction with humans via constrained natural language.

 General taskability, especially in agents embodied in the real world, is extremely
challenging. It requires the integration of many areas of AI including natural language processing,
dialog management, object recognition and perception, actuation, language and concept
grounding, spatial reasoning, knowledge representation, and general problem solving. Moreover,
it requires that an agent can operationalize an external description of a task, converting it into a
representation where it can attempt to solve it. Recent progress in AI, as well as more specifically
in cognitive architectures, makes us optimistic that we now have sufficient understanding of these
capabilities and their integration so that it is possible to create robotic agents that can learn to
understand and solve novel tasks through interactive instruction.

J. R. KIRK AND J. E. LAIRD

220

In the work describe here, Rosie learns the formulation of a novel task, not a specific policy
for controlling behavior in a task, but the definition of the task itself. Thus, Rosie learns a
description of the task actions, as well as descriptions of goal and failure states, and then uses
those descriptions to perform the task. In other prior work on taskable agents, such as by Langley
et al. (2010) and Allen et al. (2007), a human teaches a specific policy for solving a task, such as
giving directions to a location. These approaches teach a solution to a problem, rather than
teaching the problem specifications. Such an approach is sufficient for tasks where there is a
single, fixed solution for all problem instances. However, it is not applicable to tasks where the
solution is dependent on variations in the initial state of the problem or an opponent’s actions, and
where problem solving and search are necessary, such as in many puzzles and games.

Not surprisingly, in our work we initially focus on developing an agent that can learn simple
spatial games and puzzles, such as Towers of Hanoi, Tic-tac-toe, Connect-3, and the Knight’s
Tour. There are many advantages to starting with games. Games include complex spatial relations
with many different constraints, objects, and goals that are reflective of many real world tasks.
Games are well structured, have clearly defined problem spaces and goals, and they require
problem solving to play or solve. For the remainder of this paper, we will often refer to games
and puzzles as tasks.

In contrast to learning task specifications, the majority of existing work on game learning has
focused on learning strategy. Early examples include systems that learn to play Checkers
(Sammuel 1959), Backgammon (Tesaauro et al. 1989), and Othello (Buro 1999). These agents
are preprogrammed with knowledge of the game, namely the state description, legal actions, and
goals, and rather than learning how to play, they learn to play well.

In this paper, we describe an agent that learns such simple tasks through interactive
instruction. Following the acquisition of the task, the agent uses its innate problem solving
capabilities to generate appropriate behavior to perform the tasks.

We have identified five major desiderata for instructable, taskable agents, and they are listed
below. These are the basis of the claims of our research, which in turn form the basis for our
evaluation of our agent in Section 3.

D1. Competent

The agent has the capability to learn the knowledge required to attempt a task, and has the
capabilities necessary for making progress on the task. We are defining competence as the
ability to comprehend and attempt the task independent of the strategic or problem solving
competence of the agent. We make the additional constraint that the tasks require interaction
with an external environment. Our claim is that our approach is sufficient for our agent to be
competent in the tasks we teach it. We evaluate this claim by demonstrating that it can solve
the tasks in a mixture of a simulated and a real-world robotic environment.

D2. General
The agent can learn a diverse set of tasks, which require a diverse set of concepts (objects,
relations, actions). Meeting this challenge requires avoiding task specific representations or
processing mechanisms. Our claim is that our approach is sufficient for our agent to learn a
wide variety of tasks. We evaluate this claim by demonstrating that we can instruct our agent
on the following eleven tasks: Blocks world, Connect-3, Frogs and Toads, Knight’s tour, Tic-
Tac-Toe, Towers of Hanoi, Peg Solitaire, Sokoban, 4 Queens, River Crossing (Fox, Goose,
and Beans), and the 5 puzzle.

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

221

D3. Efficient Communication
The communication of the task should be concise and efficient. Our claim is that the amount
of information required to instruct our agent is much less than that required in other common
approaches and it approaches the efficiency of natural language. We evaluate this claim by
comparing the number of symbols used in our approach for a subset of tasks to those required
in Soar and GDL (Game Description Language), as well as to published natural language
descriptions of those tasks.

D4. Accessible Communication
The language for communication should require minimal knowledge of the underlying
computational architecture, and should require minimal training to use. Our claim is that our
approach is more accessible than existing methods for task acquisition. Our evaluation of this
claim is based on inspection of the specifications for tasks in our approach. As we discuss
later, this area requires significantly more research to strengthen our ability to achieve this
claim, both in improving accessibility and in developing empirical evaluations.

D5. Continuous, Accumulative Learning
Instructable agents should not only accumulate their learning, but also transfer knowledge
learned from a previous task to a new task, thereby reducing interactions with a human
mentor and speeding task acquisition. Our claim is that in our approach, the learning process
allows for refinements and requests for additional knowledge. We evaluate this claim by
demonstrating that our agent transfers knowledge learned in one task to later tasks,
significantly reducing the amount of instruction required in the later tasks.

2. Task Acquisition System

Our approach builds on previous research on learning through situated interactive instruction
(Mohan et al. 2012) in an agent we now call Rosie (RObotic Soar Instructable Entity). Rosie is
embodied in a robot arm and Kinect sensor in a table-top world, where the arm can manipulate
foam blocks. Rosie uses the Kinect sensor to detect the color, shape, size, location, and
orientation of the blocks. A chat window allows Rosie to communicate with a mentor using
restricted natural language. A simulator, developed by the APRIL lab, provides an accurate
replication of the environment and is used in many of our experiments.

 A human teacher and Rosie use mixed-initiative (the communication is bidirectional) and
situated (embedded in a shared real-world environment) interaction. Rosie learns the meaning of
new nouns (square, rectangle, triangle, …), adjectives (red, large, …), prepositions (in, to the
right of, on, …), and verbs (move, store, cook, …) that refer to objects, properties, spatial
relations, and actions in its environment. When learning new words, Rosie learns procedural
knowledge (actions and control knowledge for verbs), object descriptions (such as feature
detectors for the colors, shapes and sizes), and spatial relations. After Rosie learns a new word,
the human can use it freely in future instructions and commands (move the green block to the
pantry). Rosie can use learned words when responding to questions (that is a large green block).

Rosie has only limited initial domain knowledge: action knowledge for performing its
primitive actions (picking up a block and putting down a block), feature-space knowledge of
object attributes (the fact that objects have a color, a size, and a shape), and primitive spatial
knowledge on the alignment of objects. Rosie has additional task-independent processing
knowledge for parsing sentences, managing interactions with the human, and learning new words.

J. R. KIRK AND J. E. LAIRD

222

Spatial reasoning is done within Soar’s Spatial Visual System (Laird 2012), which encodes a 3D
model of the world as a scene graph and allows for mental projection of imagined objects and
relations. The details of how Rosie learns new words from this set of initial knowledge are
described in more depth in (Mohan et al. 2012).

Rosie is implemented in Soar (Laird, 2012). Soar has been in development and use for over
30 years and has been applied to a wide variety of domains and tasks, including prior research on
instruction, natural language understanding, and robot control. Recent advances in Soar,
including SVS, episodic memory, and semantic memory have broadened the types of knowledge
it can represent, use, and learn. One of our hypotheses is that the collective compatibilities of
Soar are now sufficient for creating a general taskable agent.

This research introduces a new agent based on Rosie, RosieTAG (Task Acquisition for Games).
The task acquisition knowledge is encoded in Soar as an extension to Rosie and includes
knowledge to support an interactive dialogue where the human introduces a new task, and then
incrementally and interactively teaches it the available actions, goals, and constraints. For
convenience, we will refer to the extended agent as Rosie.

2.1 Task Characterization

As mentioned earlier, this work focuses on games, which can be single or multiplayer, with single
player games more commonly known as puzzles. Game formulations correspond to a definition
of a problem space: the legal actions in the game, their precondition and effects, and descriptions
of goal or failure states. Some game formulations may also include information such as the initial
game state, which is necessary for agents not grounded in a representation of the game. Thus,
acquiring a task also requires learning object, action, and spatial concepts.

We take advantage of the fact that many games can be fully described by spatial relationships
between different types of objects and locations. For example, in Tic-Toe-Toe, the objects are X’s
and O’s that are placed on a three by three grid. The important spatial relation is whether three
objects of the same type are in a line. Actions are defined by spatial preconditions and spatial
effects, and goals are described by a set of desired spatial relationships. For example, in Tic-Toe-
Toe, the action is to place X in a grid location, with the precondition that the location is clear.

Figure 1. Images from Rosie starting to solve the frogs and toads puzzle in the real
world (on the left) and in simulation (on the right)

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

223

This tight coupling of games and spatial relations/reasoning requires the ability to learn
representations of new spatial relationships. New spatial relations must be operationalized so that
they can be used for both recognition and object placement.

Although a goal of this research is generality, there are many limits to the types of games that
it can learn. A game must be fully observable, turn-based, deterministic, describable by spatial or
descriptive constraints, and playable with only discrete actions, or have an isomorphism to a
problem with these constraints. Currently, the game rules cannot require access to history or
temporal knowledge of the game play. For example, the agent could not learn the rule for castling
in Chess, which requires knowing whether the king has moved.

The system is also limited to learning games with objects of two different classes: blocks and
locations. Blocks can vary in size, shape, and color and those variances can be relevant to game
play. Locations are virtual objects defined in the world simulation that can have fixed names such
as final-pillar or grid-red. The types of games that can be described with these restrictions are
actually quite large and include many board games, basic puzzles, and some three-dimensional
problems. Some problems that do not conform to these constraints can be described as an
isomorphism that does. Most of the games studied involve a small number of objects and some
are smaller versions of well-known games. For example, the 5-puzzle is a smaller variant of the
8-puzzle, and Connect-3 is a smaller variant of Connect-4.The restriction on the number of
objects is not a fundamental limitation, but it leads to smaller problem spaces and allows the
agent to quickly solve problems using its simple brute-force search techniques, which are not
currently a focus of this research.

2.2 The Acquisition and Operationalization Process

The task acquisition processing and operationalization has three phases, which are described in
more depth in Sections 2.2.1-2.2.3.

1. The agent acquires the rules of a new task through situated interactive instruction and
translates the information into a task concept network (TCN), which is stored in Soar’s
semantic memory. The TCN specifies all of the action knowledge, failure conditions, and
goal states that are needed to determine legal play and find a solution. Through this
process the agent also interactively acquires all of the necessary spatial relationships,
object descriptions, and verb knowledge, as described in the beginning of section 2.

2. When given a task, the agent uses pre-coded procedural knowledge to retrieve relevant
TCN information from semantic memory, extract the needed information from the world,
and then interpret the TCN to detect conditions, and find complete matches for legal
actions, and goal and failure states.

3. During play, the agent chooses its next action based on an internal look-ahead search that
uses the action knowledge to simulate actions on an internal model of the environment,
searching for goal states while avoiding terminal failure states. Once an action is chosen,
the agent executes it in the external environment using its learned verb knowledge.

2.2.1 Language Interaction

The agent’s main learning focus is to acquire descriptions of the relevant objects, their properties,
and the spatial and descriptive constraints between those objects. These are subsequently used to
describe the preconditions for legal actions and the conditions for failure and goal states. Each

J. R. KIRK AND J. E. LAIRD

224

descriptive set contains a number of parameters described by the mentor in response to agent
queries for information. Following our goal for task acquisition to be incremental and continuous,
the agent asks for additional training information whenever it encounters novel or unknown
concepts, such as the verb move or the preposition left of. For task actions, the human also must
specify which verbs need to be performed to carry out the action. For example, in the teaching
dialog in Table 1, the action place is defined using the verb move (lines 5-7).

 The acquisition of a task begins with the mentor specifying the name of a new game: “the
game is tic-tac-toe.” If the agent already knows the game, it prepares to play/solve it when it is
informed that it is its turn. Otherwise the agent initiates a structured dialog with the mentor.
Future work will address this restrictive structured ordering by making the process more mixed-
initiative, such as allowing the mentor to decide what to teach first, goals or actions. The intent
of this dialog is to learn legal actions in the game and their conditions, and the goal and any
failure conditions of the game. An example of this dialog between RosieTAG (R) and mentor (M)
for Tic-Tac-Toe is displayed below in Table 1.

 Dialog Line
M: The game is tic-tac-toe. 1
R: I don’t know that game, how many players are there? 2
M: Two. 3
R: Please start by teaching me the name of a legal action in the game. 4
M: place 5
R: What are the verb and parameter arguments associated with this action? 6
M: move 1 to 2 7
R: Ok I know that verb, what kind of object is the first parameter? (block,

location, or either)
8

M: M: block 9
R: Please list all constraints for this parameter (such as ‘it is red’ or ‘it is

on [parameter] 2’) and then finished
10

M: it is red 11
M: it is not on a location 12
M: finished 13
R: What is the type of the next parameter? (or finished if no more) 14
M: location 15
R: What are the constraints? 16
M: it is not under a block 17

This interaction specifies the complete precondition knowledge for a move in Tic-Tac-Toe, as

well as the action knowledge for what parameters to manipulate and how to manipulate them
(learned previously from teaching examples of move.) If Rosie had not already learned move, it
would query for teaching demonstrations of the unknown concept. More generally, two types of
parameters can be taught: blocks and locations. In addition, there are two types of constraints that
can be taught, descriptive and spatial. Descriptive constraints cover colors (red, blue), shapes
(cross, rectangle, cylinder), sizes (small, large), and names (grid-green) of objects. Spatial
constraints cover positive and negative relationships between 2 or 3 objects, such as it is [not]

Table 1. Dialog between Rosie and Mentor during acquisition of “place” for Tic-Tac-Toe.

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

225

above a location. The spatial descriptions can refer to a general type of object, such as a location,
or refer specifically to another parameter. This is done by directly referring to the number of that
parameter: it [the block] is on 3. All of these concepts are learned through interaction with two
exceptions. Smaller than and linear with are pre-encoded in the agent’s spatial reasoning system
(SVS). Linear with is the only three-object spatial constraint currently accepted. These concepts
are grounded in representations in SVS, and they make direct connections to perceptual input
from the task environment.

After finishing all actions, the mentor is asked to name a goal and provide the parameters and
related constraints in the same manner as demonstrated above. This is also done for any failure
states (such as having a large disk on a smaller disk in Towers of Hanoi). There can be any
number of parameters and constraints, which provides flexibility in describing complex relations
that require a large number of parameters or spatial relationships.

At times, the dialog can be verbose and involve not only a large number of interactions, but
also require the mentor to remember the specific ordering of the parameters already specified and
possibly ones that have yet to be specified. In particular, when teaching multiple tasks, it is
frustrating to be forced to specify the same types of constraint concepts, whereas learned
knowledge about prepositions, adjectives, and verbs will transfer to new tasks. To combat this

issue, and be more faithful to the idea of incremental learning, Rosie can learn names for
concepts, like the action place, as seen in the dialog above, or the goal three-in-a-row. This
requires that the names of distinct concepts for actions, goals, and failure states be unique.

Figure 2A. (left): Partial TCN graphical representation of an action in Tic-Tac-Toe. 2B.
(right): the internal representation of the Tic-Tac-Toe board and the associated parameters.

J. R. KIRK AND J. E. LAIRD

226

2.2.2 Task Concept Network

The task information that is learned through instruction is stored in Rosie’s semantic
memory. We call this structure the Task Concept Network (TCN). The portion of the TCN
created from the dialog for Tic-Tac-Toe in Table 1 is displayed in Figure 2A. The figure includes
only the task name and the action that is learned. It does not show the additional structure that is
learned for the goal or failure states. In the game, the only action is A1, which is the place action
in Tic-Tac-Toe. Place is implemented with the move verb, which Rosie learned from a previous
task. The preconditions of a task action are encoded as parameters and their associated
constraints. In this example, the place action has two parameters, P_1 (a block) and P_2 (a
location). The parameter constraints were learned in dialog lines 10-17, and are associated with
C1. Thus, P_1 (the block being placed) has an attribute constraint (it must be red) and a spatial
constraint (it must not already be on a board location), which is represented by the structure under
S1. P_2 (the destination location for place) has a single spatial constraint (it must not be under a
block, i.e., it is clear), which is represented by the structure under S2. In general, tasks can have
multiple types of actions, and the actions can have any number of parameters and associated
constraints.

2.2.3 Knowledge Operationalization

Once Rosie has learned the Task Concept Network for a new task, it must be able to convert that
knowledge into action when it encounters the task in the future. Thus, when Rosie encounters a
learned task, it retrieves the relevant TCN from semantic memory (looked up by the task name)
and uses this information to determine valid instantiations of the action from the current visual
scene. Rosie first indexes potential objects for each parameter in the action conditions (P_1 and
P_2 in our example) by querying the current visual scene for objects with matching descriptions.
 Figure 2B shows a representation of an intermediate state of a Tic-Tac-Toe game in simulation.
The board is defined as a 3x3 grid of locations, with blue and red blocks representing X and O. In
this game, the agent is playing O (red), and the opponent is playing X (blue).
 In this state, P_1 initially has potential matches to all the red blocks, and P_2 has potential
matches to all the locations. Rosie then prunes the potential matches using the parameters’
spatial relationship constraints (S1 for the block and S2 for the location). The successful matches
for P1are blocks labeled 1, and the successful matches for P2 are locations labeled 2. Rosie
collects together those objects that satisfy the constraints for each parameter and uses them to
create the set of possible legal actions for the current state. In this case, there are eight possible
actions, as each of the two red blocks can be moved to each of the four open positions. To avoid
this needless duplication, we usually stack the red blocks, so that at any time there is only one
block of each color available for movement. Rosie uses this same process to retrieve the task
goal and failure state descriptions from semantic memory and then test to see if they successfully
match the current state.

 If only a single task action can be applied to the current state, it is selected, and the
associated verb is executed using the instantiated parameters. However, if there are multiple legal
actions, Rosie reaches a tie impasse, which indicates that there is a lack of knowledge for
selecting the appropriate action. For single-player puzzles, Rosie uses iterative deepening
(implemented as recursive substates in Soar; Laird 2012) to search for the goal. The search takes
advantage of SVS’s mental imagery capability to simulate potential actions using the learned verb
actuation knowledge. For each state in the search, Rosie determines whether a goal or failure state

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

227

is present, and if not, iteratively extends the search until the current depth limit is reached by
generating the legal actions for the new state. If a failure state is encountered, that search path is
abandoned. If a goal state is encountered, the search terminates and the appropriate action is
selected and the associated verb command is executed. If the task is a single-player puzzle, Rosie
successively selects and executes the actions it discovered that were on the path to the goal.

The internal search is possible because even though the full action model of an action is not
specified by the instruction, the agent has the action knowledge of the associated verb. A full
action effect model specifies not only the direct result of the action, but all the related
relationships that change as a result. For example an action in 8-puzzle, slide, does not verbally
encode the fact that a new location is made empty. That is, the preconditions of an action are
encoded, but not all of its effects. However, because Rosie has grounded knowledge of the verb,
it can simulate actions in its mental imagery module SVS to determine not only their primary
effects (such as the movement of a tile to a new location), but also secondary effects (such as
changes in spatial relations with other objects). This capability is unique compared to other game
player systems, such as those using GDL, which must explicitly represent all primary and
secondary action effects.

When playing a two-player game, Rosie only searches forward one step. Rosie currently
lacks knowledge about the opponent, or its actions. If the agent is one move away from a goal the
one-step search is sufficient; however, in other cases, the agent uses a general heuristic that
approximates the state’s distance to the goal. The approximation is calculated by counting the
number of partially matched goal parameters, which is much better than random behavior. In the
future we will add opponent modeling and more sophisticated heuristics and search methods
(which have been implemented in Soar, but not yet used in Rosie).

3. Evaluation

Although Rosie can interact with the real world, our primary mode of development and
evaluation has been to use a simulation of the robot environment. The real world has additional
problems unconnected to task learning, such as precision of actuation, object segmentation for
touching blocks, and tracking the existence of objects during manipulation. These all add
challenges, especially when the task requires stacking blocks. To date, Rosie has successfully
executed four of these tasks (Tic-Tac-Toe, Towers of Hanoi, Connect-3, and the Frog and Toad
puzzle) in the real world, and the remaining in simulation. Our evaluation is structured according
to the desiderata presented in the introduction. Overall, we have made significant progress;
however, this research is just the first steps in a long journey, so we also use this opportunity to
describe directions for future research related to each desideratum.

3.1 Competent

Rosie acquires task descriptions for eleven different tasks, listed in Table 2, in real time and can
solve all them, or in the case of Tic-Tac-Toe and Connect-3 play a competent game. To facilitate
quicker evaluations, we created simplifications of existing tasks: 5-puzzle instead of 8-puzzle;
Connect-3 instead of Connect 4; 4 Queens instead of 8 Queens; and we used simple Sokoban
puzzles. These simplifications were necessary to restrict the agent’s search space, as well as to
simplify the state representation the agent needed to maintain – large state representations of
similar objects can lead to combinatorics in matching rules, which slows execution. These

J. R. KIRK AND J. E. LAIRD

228

simplifications are not fundamental limitations, as descriptions of games can include any number
of objects, prepositions, colors, shapes, actions, or goals. However, the system does not currently
have the necessary mechanisms for avoiding the computational performance issues that arise with
large numbers of pieces or locations.
 There are a number of problems causing scalability issues that currently prevent Rosie from
handling larger games and tasks and achieving high-levels of strategic competence. Some of these
issues arise directly from the tasks, such as games like Chess where large branching factors make
forward search approaches like simple min-max computationally infeasible. Additional
computation problems arise from processing the visual scene, calculating spatial relationships
over large sets of objects (often calculated pairwise), and simulating actions to discover the
relational changes.
 Our future goals include improving Rosie’s ability to handle more complex tasks that include
more objects and constraints. To maintain efficient execution as the number of objects increase,
we plan on introducing some type of attention mechanism, which would allow Rosie to focus on
only a subset of the game state. We also plan on adding a mechanism to learn game-specific
action models so that agent can avoid simulations of its primitive actions. We also plan to
improve Rosie’s sensing and robotic capabilities so that all tasks can be solved in the real world.
A significant milestone would be for Rosie to learn through instruction to play a competent game
of real-world chess.

3.2 General

To evaluate the generality of the system, we instructed Rosie in ten different tasks and then
examined the diversity of concepts, actions, and goals required in them. These games range from
simple board/grid type games like Tic-Tac-Toe, to three dimensional puzzles like Towers of
Hanoi and Blocks World, to more complex transport puzzles such as Sokoban. Table 2 lists the
games that were taught, as well as the concepts required for each game.

Table 2. Description of the games learned and the concepts taught for each game

Game Spatial Concepts Actions Goal Failure
Tic-Tac-Toe on, under, linear place 3-in-a-row
Connect-3 on, under, linear stack-place 3-in-a-row
Towers of Hanoi on, under, smaller smaller-stack stacked
5 puzzle on, under, near,

diagonal
slide matching-

location

Frogs and Toads left, right, on,
under

slide-l, slide-r,
jump-l, jump-r

side-swap

4 Queens on, under, linear place all-placed no-attack
Blocks world on, under stack order-

stacked

Sokoban on, under, linear,
diagonal

push, slide blocks-in

Peg solitaire on, under, linear jump-remove one-left

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

229

Knight’s tour on, under, aligned-
vert, aligned-horiz

knight-a, knight-
b

all-placed

River crossing Left, right, aligned move-l, move-r,
carry-l, carry-r

Right-bank Fox-goose,
Goose-beans

On the positive side, the diversity of these tasks demonstrates that Rosie is general – it is does not
include task-specific knowledge, and it can learn a variety of concepts, actions, failure states, and
goal states. Moreover, once Rosie learns these tasks it can solve any of them – it is not a one-trick
robot. However, as described in Section 2.1, there are still many restrictions on the types of tasks
that Rosie can learn. The states of all these tasks are defined by objects and locations, which are
all visible to the agent. There are simple, spatially defined goals, and the actions can be defined
by discrete movements of objects. One of our most important goals for future research is to
expand Rosie’s capabilities so it can learn more types of tasks. As the number of tasks increases,
it will also be necessary to remove the assumption that the names for concepts are unique. The
agent will need to determine from context which meaning is being used. If it is unable to
determine the correct meaning, it will need to query the mentor—Is this the same as the action
place from Tic-Tac-Toe?

 Within the context of research on AI, one interesting point of comparison is to the General
Problem Solver: GPS (Ernst & Newell, 1969). GPS was the first AI system that had a general
method for problem solving (means-ends analysis) and it could solve the thirteen tasks that were
encoded in it. Cognitive architectures have taken this type of generality much further, so that
there have been at least a hundred different tasks encoded in ACT-R and Soar. With Rosie, the
system learns the multiple tasks through instruction instead of having to rely on programming.

3.3 Efficient Communication

The goal of efficient communication is minimize the effort to instruct the agent in a new task. We
take inspiration from evaluations of other forms of task specification in order to get some
measure, however crude, of the amount of information that must be communicated to the agent.
In programming languages, the number of lines of code is often used as a measure of the
complexity of software. We propose a finer-grain measure, which is the number of symbol tokens
required to communicate a task. For natural language, that includes the number of words and
punctuation symbols, such as commas and periods. For computer languages, we include tokens,
such as variable names and constants, reserved words, such as “if” or “while”, and punctuation,
such as parentheses, equal signs, etc.

 We know of no existing benchmarks or methods of comparison, so it is a bit uncertain as to
what are appropriate alternatives to compare Rosie’s efficiency to. We chose three tasks (Towers
of Hanoi (ToH), Tic-Tac-Toe, and 8-Puzzle) to get some diversity and then examined the number
of symbol tokens required to specify these tasks using four different approaches, which were
determined in part by availability of data (unfortunately there are not available comparable
implementations in other task specification systems such as HERBAL (Cohen 2008)).
• Instructions to Rosie. These are the instructions that the mentor communicated to Rosie in

order to learn the task. We have two cases, one where many common concepts that are
shared among many tasks have already been learned (Rosie+), and the second where all
concepts must be taught (Rosie).

J. R. KIRK AND J. E. LAIRD

230

• Natural language descriptions of the tasks. Our data on natural language was derived from
existing description of the tasks “in the wild,” such as in Wikipedia or AI textbooks. The
values are averages of three independent descriptions. We expect that natural language will
be very efficient for communicating these tasks.

• Soar. Soar is a state of the art cognitive architecture and the amount of knowledge required
should be representative of what is required to program a cognitive architecture. The
Towers of Hanoi and Eight Puzzle agents were developed many years ago, whereas the
Tic-Tac-Toe system was developed by the authors explicitly for this evaluation.

• The Game Description Language (GDL). As described in the related work section, GDL is
a language designed for specifying games for the General Game Playing competition. The
GDL descriptions were found online and not developed by the authors.

In making these comparisons, we excluded the specifications of the initial state (which are found
in the Soar and GDL descriptions) because our agent has access to the initial state through
perception and does not need to learn it. In the future, we plan to extend Rosie so it can learn
those representations, potentially from a visual demonstration. For Rosie, we have two different
entries that correspond to the number of tokens needed to describe the game, with and without,
already learned knowledge about common verbs, colors, and prepositions. The assumption is that
in many cases, Rosie will have already learned those concepts from prior instruction. A
comparison of these results is in Figure 3, which shows the number of tokens required for each
approach across the three tasks.

 Somewhat surprisingly, Rosie is comparable in token communication efficiency to natural

language, except for the 8-puzzle. As illustrated by the data for the 8-puzzle, one failing of
efficient communication in Rosie is in the specification of goal states. The goal specification
includes 16 arguments, 8 objects (identified by us with colors) that must be in 8 locations
(identified by their names). One of our future goals is to improve the instructional system to allow

0

100

200

300

400

500

600

700

800

NL
average

Rosie+ Rosie Soar GDL

To
ke

ns

ToH

Tic-Tac-Toe

8-puzzle

Figure 3. Comparison of the number of tokens required in different task specification
approaches for three different tasks.

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

231

more natural, less pedantic and more concise specifications such as ‘all blocks are in a location of
the same color.’ In addition to learning the initial state by demonstration, the goal configurations
could also potentially be learned by visual demonstration. These additionally capabilities would
reduce the number of interactions.

 Both natural language and Rosie are significantly more efficient than Soar or GDL. Although
it is encouraging to see that the number of words in our specification is close to natural language,
and significantly better than Soar and GDL, we are hesitant to make any strong claims in terms of
communication efficiency at this time. The natural language descriptions are unstructured and
assume significant background knowledge and language expertise, whereas Rosie requires
structured and grammatically limited instructions. Moreover, in contrast to Soar and GDL, Rosie
makes strong assumptions about the nature of spatial problems and games, and has strong
expectations as to what information it is expecting from the human mentor. It is possible that
there is an underlying tradeoff between generality and efficiency that will compromise Rosie’s
advantages as we extend it to more tasks. However, there are indications that Rosie’s
communication efficiency is real. Rosie’s ability to ground referents in the shared environment
makes it possible for the instructor to use very short instructions. Finally, the inclusion of
previously learned concepts (Rosie+ vs. Rosie) further reduces the amount of information that
must be communicated, which should continue to contribute to communication efficiency as
Rosie learns more and more task (see Section 3.5 for more evidence of this).

3.4 Accessible Communication

We have not formally or empirically evaluated the accessibility of Rosie’s method of
communication. However, based on inspection, Rosie appears to be more accessible than a
cognitive architecture such as Soar or ACT-R, or a programming language such as LISP, Java, or
C++. Those approaches require that the mentor learn a specialized syntax and the structure of the
architecture, including the memories systems and decision mechanisms.

 However, there are still challenges in using Rosie, as it requires that a mentor understand
Rosie’s structuring of tasks (the concepts of parameters, constraints, and actions), and the mentor
must be able communicate that structure using the limited instructional syntax prompted by
agent-driven requests for the actions, failures, and goals. However, the interactive nature of Rosie
has the advantage that the mentor does not need to know all of the concepts that Rosie has learned
and also does not need knowledge of how the underlying Soar rules or Soar architecture works. If
an existing concept is used by the mentor, Rosie is able to use it. If a novel concept is introduced,
Rosie initiates a dialog to acquire that concept, leading the user through the interaction.

One of our future goals is to extend Rosie’s language abilities by increasing its background
knowledge of common concepts and by enhancing its ability to process a broader range of natural
language. We also plan to find ways to move away from the structured dialogs so that the human
mentor has more flexibility in specifying the task knowledge. Instead of referencing parameters
with specific numbers, parameters for actions can be introduced in more concise, natural
statements—Move a free red block on to a clear location. These changes should also help to
reduce the number of interactions. The learning process is currently not robust to errors, so that
teaching mistakes often require reinitializing the agent or reteaching an entire task. Future work
will need to investigate capabilities to correct mistakes through interactive instruction. We also
plan to explore other modalities for interaction, including using more gestural interactions and
potentially sketching (Hinrichs et al. 2013). Finally, we plan to develop methodologies for

J. R. KIRK AND J. E. LAIRD

232

comparing and evaluating the accessibility of communication, drawing on those used by others
(Cohen 2008).

3.5 Interactive Continuous Learning

Our final evaluation is of Rosie’s ability to learn interactively and continuously. One positive
indication of this is that learning in Rosie is cumulative. Rosie can learn more than one task at a
time, building up a repertoire of games incrementally through instruction. More interesting is that
not only are the tasks available, but the concepts learned in earlier tasks are available when a new
tasks is learned. This includes common concepts such as the verb move, or the preposition on, but
also higher-level concepts that define the actions or goals used in a task. Some of the benefits of
this were evident in the comparison of Rosie to Rosie+ in Table 2. If an agent attempts to learn a
game with no initial knowledge of spatial prepositions, adjectives, nouns, or verbs, the interaction
is significantly longer than if Rosie already knows those concepts. As the agent acquires

knowledge of concepts, fewer interactions are required, and concepts transfer to new games. The
capability to learn and transfer common goal, action, and failure state concepts further reduces
interactions. Another goal of future work is to increase the number and types of concepts that can
be taught to aid in transfer between games and to reduce the number of needed interactions. For
example, instead of describing a location as not below a block, it could be described simply as
clear.

 We evaluate the transfer of knowledge between interactions in the following experiment.
First three games, Connect-3, Tic-Tac-Toe, and the 4 Queens puzzle, are taught to Rosie
separately, starting with no previously learned concepts. A second experiment teaches the three
games in succession, so that instruction in the later tasks can take advantage of concepts learned
in the earlier tasks. Figure 4 shows the number of interactions, defined as number of separate
mentor commands or responses, for each of these cases. The left-most data bar for each task
shows the number of interactions required before any previous task was learned. For Tic-Tac-
Toe, the second data bar shows that the number of interactions drops significantly when Connect-

Figure 4. Transfer of knowledge of concepts evaluated by number of interactions needed
to describe games separately and sequentially.

0

10

20

30

40

50

60

70

80

Connect-3 Tic-Tac-Toe 4-Queens

N
um

be
r

of
 In

te
ra

ct
io

ns

No transfers

After Connect-3

After Connect-3
and Tic-Tac-
Toe

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

233

3 is taught before Tic-Tac-Toe. Similarly, the number of interactions for 4-Queens drops
significantly when Connect-3 and Tic-Tac-Toe are taught first. This improvement is partially due
to the transfer of preposition, verb, and adjective knowledge between games, but also due to the
transfer of game concepts, namely the goal three-in-a-row (Connect-3 and Tic-Tac-Toe) and the
action place (Tic-Tac-Toe and 4-Queens). As further evidence of transfer, when both Connect-3
and 4 Queens are taught before Tic-Tac-Toe, the number of interactions drops to six (not shown).

4. Related Work

Below we review related research, starting from those approaches that support task execution and
specification, but not incremental acquisition, to those most relevant to this work where tasks are
dynamically acquired. We also mention some of the related work on game learning that focuses
on strategy learning given a specification, such as in GDL, rather than learning that
representation. For each approach we evaluate it according to our desiderata by denoting the
relevant item from Section 1 (D1-D5).

4.1 Task Specification Languages

Almost since the inception of cognitive architectures, there have been attempts to create abstract
task specification languages that make it easier for a user to develop agents. TAQL (Task
Acquisition Language; Yost 1993) was an abstract language based on the problem space model of
computation that was compiled into Soar. Other task specification languages that compile into
Soar include HERBAL (Cohen 2008) and HLSR (Jones et al. 2006). HLSR was also extended to
compile into ACT-R. (See Cohen 2008 for an extensive review of task specification languages.)
A related approach is described by Langley et al. (2010), where an instructional command
language allows the specification of behavior for agents in Icarus. Although they are more
efficient and accessible than Soar, ACT-R or Icarus, they are not as efficient or accessible as
natural language. Moreover, they all require independent batch systems that compile the task
specifications into the target language, so they are not integrated into an agent that supports
dynamic continuous learning (D5) or interactive task specification.

Salvucci (2013) introduces another approach to cognitive skill acquisitions within ACT-R. His
work focuses on the integration and reuse of previous skill knowledge (D5) and the
proceduralization of this knowledge. While achieving competent behavior (D1) in many diverse
tasks, the commands are limited to a restrictive syntax (D4) that only specifies policy behavior
rather than general task and goal knowledge.

Cantrell et al. (2012) describe a mobile robotic system that can be taught individual
commands via language commands by specifying preconditions (“you are at a closed door”),
action definitions (“you push it one meter”), and postconditions (“you will be in the room”). The
instruction language is accessible (D4), possibly more so than our instruction language; however
it does not learn new concepts, such as spatial relationships, nor can it learn tasks that involve
constraints, failure states, and specific goal conditions.

4.2 Game Description Language

The Game Description Language (GDL) is used in the General Game Playing (GGP) competition
(Genesereth & Love, 2005). GDL is a high level formal language that allows for the specification

J. R. KIRK AND J. E. LAIRD

234

of a large variety of games, although it is not easy for a human to write or interpret (D4). Multiple
systems interpret GDL specifications, achieving competence (D1) and generality (D2), but none
of them acquire GDL incrementally and continuously (D5). There is no goal for communication
efficiency (D3), and it is an empirical question as to the degree of efficiency (see Section 3).

 Thielscher (2011) surveyed the current state of research in general game playing, and
highlighted areas that are not being investigated. One area is spatial reasoning. GDL specifies
relationships like on(x, y) but these are not connected to any spatial meaning and are just a name
for a proposition that can be true or false. Spatial reasoning requires not only learning what those
terms mean, but also learning how to ground that spatial knowledge in the game environment so
that these relationships can be recognized and modified though actions. Another described area is
natural language processing. They recognize that GDL is not a language that any human would
desire to specify a game in, even someone that is technically competent. A third area is game-
playing robotics, and the general desire for robots than can handle arbitrary new tasks specified as
games. Our work tackles all three of these areas and the issues that arise from their integration,
and it also provides a means to incrementally interactively provide the problem formulation.

4.3 Learning Game Rules

Current work that parallels the work described here is being done by Hinrichs et al. (2013) using
CogSketch to teach an agent developed in the Companions architecture how to play simple games
like Tic-Tac-Toe and Hexapawn. In their approach, the system incrementally creates a GDL
description of the task from an interaction with a user that includes instruction and demonstration.
The GDL specification is then interpreted so that a Companions agent can play the game. Their
approach focuses more on the naturalness and the accessibility of communication (D3, D4) than
on the generality (D2) of the information communicated. They plan on expanding the generality,
including adding the abilities to learn vocabulary for new concepts, such as spatial relations.

 There has been some prior research on learning the rules of games in physical environments
through observation of game play. Barbu et al. (2010) describe a robotic arm system that learns to
play simple 3x3 board games, like Tic-Tac-Toe and Hexapawn, by observing random legal game
play between two other agents. Kaiser (2012) makes many improvements on learning board game
rules through visual observation by reducing the amount of pre-coded background knowledge and
using more expressive representations of state. They represent the game state with relational
structures, instead of formulas, but these structures are predefined, namely rows, columns, and
diagonals in the board grid. These projects are not focused on accumulative, continuous online
learning (D5) or learning representational structures to increase the generality (D2). Although
video demonstrations are a fairly accessible communication means (D4) and enable competent
game play (D1), they can require large numbers of demonstrations, including of labeled illegal
game play, reducing the efficiency of communication (D3).

5. Conclusions

In this paper we have described Rosie, an agent that learns new tasks through interactive situated
instruction with a human. Some of Rosie’s strengths are its ability to learn many different tasks,
learn many different types of knowledge that transfer between tasks (including new spatial
relations, object features, actions, and game concepts), and interactively request information
when novel concepts are introduced. We evaluated Rosie along are a variety of dimensions,

 LEARNING TASK FORMULATIONS THROUGH SITUATED INTERACTIVE INSTRUCTION

235

comparing her performance to other approaches, while also pointing out her weaknesses and
areas for future research.
 The major weaknesses of the current system are its restrictive, formulaic instruction syntax, its
inability to scale to larger games, and its limited problem-solving capabilities. Addressing these
concerns raises many goals for future work. These include improving the accessibility of
communication by expanding the types and flexibility of interactions and extending the natural
language processing and grounding system. It includes research into mechanisms to reduce the
search space and redundant calculations. This could include additional mentor interactions such
as advice on task-specific heuristics that reduce the search space—In Towers of Hanoi never
move the same object twice in a row. Finally, one of the most important areas for future research
is to improve Rosie’s strategic competence for solving diverse tasks in complex environments.
 To date, we have only scratched the surface in terms of the research challenges in creating
general taskable agents and the potential for them to change the way we develop and interact with
AI systems. Closer to home, taskability has the potential to be the next grand challenge for
cognitive systems. Not only does it require the complete set of cognitive capabilities we associate
with intelligent behavior, but it also involves those capabilities that distinguish human-level
behavior from other animals. It has the potential of uniting cognitive systems research with
common goals and exciting problems.

Acknowledgements
The work described here was supported in part by the Office of Naval Research under grant
number N00014-13-1-0217. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressly or
implied, of the ONR or the U.S. Government.

References
Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., Swift, M., and Taysom, W. PLOW:

A Collaborative Task Learning Agent. In Proc. Conference on Artificial Intelligence (AAAI).
2007. Vancouver, Canada.

Anderson, J. R. 2007. How Can the Human Mind Occur in the Physical Universe? New York,
NY: Oxford University Press.

Barbu, A.; Narayanaswamy, S.; and Siskind, J. M. 2010. Learning physically-instantiated game
play through visual observation. In Proc. of ICRA’10, 1879–1886.

Björnsson, Y. and Finnsson, H. Cadiaplayer: A simulation-based general game player. IEEE
Transactions on Computational Intelligence and AI in Games, 1(1):4–15. 2009

Buro, M. How Machines have Learned to Play Othello, IEEE Intelligent Systems J. 14(6) 1999,
12-14

Cantrell, R., Talamadupula, K., Schermerhorn, P., Benton, J., Kambhampati, S., & Scheutz, M.
2012. Tell me when and why to do it!: Run-time planner model updates via natural language
instruction. In Proceedings of the 7th ACM/IEEE International Conference on Human-Robot
Interaction (HRI-12) (pp. 471–478). Boston, USA: ACM.

Cohen, M., 2008. A Theory-based Environment for Creating Reusable Cognitive Models, Ph.D.
Dissertation, Penn State University.

J. R. KIRK AND J. E. LAIRD

236

Epstein, S. L. 2001. Learning to Play Expertly: A Tutorial on Hoyle. Machines That Learn to
Play Games. J. Furnkranz and M. Kubat. Huntington, NY, Nova Science: 153-178.

Ernst, G., & Newell, A. 1969. GPS: A Case Study in Generality and Problem Solving, Academic
Press, New York.

Genesereth, M., and Love, N. 2005. General game playing: Game description language
specification. Technical report, Computer Science Department, Stanford University, Stanford,
CA, USA.

Hinrich, T., and Forbus, K. 2013. X Goes First: Teaching Simple Games through Multimodal
Interaction. Proceedings of the Second Conference on Advances in Cognitive Systems.

Jones, R. M., Crossman, J. A., Lebiere, C., & Best, B. J. 2006. An abstract language for cognitive
modeling. In Proceedings of the Seventh International Conference on Cognitive Modeling,
160-165. Trieste, Italy.

Kaiser, Ł. Learning Games from Videos Guided by Descriptive Complexity. In Proceedings of
the 26th Conference on Artificial Intelligence, AAAI-12, pp. 963–970. AAAI Press, 2012.

Laird, J. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press.
Langley, P., Cummings, K., & Shapiro, D. (2004). Hierarchical skills and cognitive architectures.

In Proceedings of the twenty-sixth annual conference of the cognitive science society (pp. 779–
784). Chicago, IL.

Langley, P., Laird, J. E., & Rogers, S. 2009. Cognitive architectures: Research issues and
challenges. Cognitive Systems Research, 10, 141–160.

Langley, P. Trivedi, N. and Banister, M. 2010. A command language for taskable virtual agents.
Sixth Conference Artificial Intelligence and Interactive Digital Entertainment. Stanford, Ca,
AAAI Press.

Mohan, S., Mininger, A., Kirk, J., & Laird, J. (2012). Acquiring Grounded Representation of
Words with Situated Interactive Instruction. Advances in Cognitive Systems

Salvucci, D. D. (2013). Integration and reuse in cognitive skill acquisition. Cognitive Science 37.
829-860.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal 3 (3): 210–229

Tesauro, G., Sejnowski, T. J. (1989). A parallel network that learns to play backgammon.
Artificial Intelligence 39, 357–390

Thielscher, M. 2011. General Game Playing in AI Research and Education. In J. Bach & S.
Edelkamp (Eds.), Proceedings of the German Annual Conference on Artificial Intelligence (KI)
(Vol. 7006, pp. 26–37). Berlin, Germany: Springer

Yost, G. 1993. Acquiring knowledge in Soar. IEEE Expert, 8(3), 26-34.

