
R. Camacho, R. King, A. Srinivasan (Eds.): ILP 2004, LNAI 3194, pp. 198–215, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Learning Goal Hierarchies from Structured Observations
and Expert Annotations

Tolga Könik and John Laird

Artificial Intelligence Lab., University of Michigan
1101 Beal Avenue, MI 48109, USA
{konik, laird}@umich.edu

Abstract. We describe a framework for generating agent programs that model
expert task performance in complex dynamic domains, using expert behavior
observations and goal annotations as the primary source. We map the problem
of learning an agent program on to multiple learning problems that can be
represented in a “supervised concept learning” setting. The acquired procedural
knowledge is partitioned into a hierarchy of goals and it is represented with first
order rules. Using an inductive logic programming (ILP) learning component
allows us to use structured goal annotations, structured background knowledge
and structured behavior observations. We have developed an efficient
mechanism for storing and retrieving structured behavior data. We have tested
our system using artificially created examples and behavior observation traces
generated by AI agents. We evaluate the learned rules by comparing them to
hand-coded rules.

1 Introduction

Developing autonomous agents that behave “intelligently” in complex environments
(i.e. large, dynamic, nondeterministic, and with unobservable states) usually presumes
costly agent-programmer effort of acquiring knowledge from experts and encoding it
into an executable representation. Machine learning can help automate this process. In
this paper, we present a framework for automatically creating an agent program using
the data obtained by observing experts performing tasks as the primary input. The
ultimate goal of this line of research is to reduce the cost and expertise required to
build artificial agents.

Learning from expert observations to replicate behavior is often called behavioral
cloning. Most behavioral cloning research to date has focused on learning sub-
cognitive skills in controlling a dynamic system such as pole balancing [10],
controlling a simulated aircraft [11, 16], or operating a crane [20]. In contrast, our
focus is capturing deliberate high-level reasoning.

Behavioral cloning was originally formulated as a direct mapping from states to
control actions, which produces a reactive agent. Later, using goals was proposed to
improved robustness of the learned agents. Camacho’s system [2] induced controllers
in terms goal parameter so that the execution system can use the same controllers
under varying initial conditions and goal settings. It did not however learn how to set
the goal parameters. Isaac and Sammut [5] present a two step approach where first a

Learning Goal Hierarchies from Structured Observations and Expert Annotations 199

mapping from states to goal parameters is learned, then control actions are learned in
terms of these goals. Suc and Bratko [19] describe induction of qualitative constraints
that model trajectories the expert is trying to follow to achieve goals. These
constraints are used in choosing control actions.

In the goal-directed behavioral cloning research mentioned above, goals are
predefined parameters of a dynamic system. For example, the learning-to-fly domain
has goal parameters such as target turn-rate. In contrast, we want to capture a
hierarchy of high-level goals. For example in a building navigation domain, an expert
may have a goal of choosing which door it should go through to get to a room
containing a particular item. Unlike the above approaches, we don’t assume that the
system has pre-existing definitions for the goals. Instead in our framework, the
meaning of goals are implicitly learned by learning when the experts select them
together with the decisions that become relevant once the goals are selected. To
facilitate this, we require that the experts annotate the observation traces with the
names and parameters of goals (i.e. select-door(d1)). This requirement is feasible in
our setting because high-level goals typically change infrequently and the experts are
likely to be conscious of them.

Our work is strongly influenced by van Lent’s [22] learning by observation
framework. His system, KnoMic, also represents and learns an explicit hierarchy of
high-level goals. KnoMic uses an attribute-value based representation that would run
into difficulties when structured properties of the environment are relevant, for
example if there are multiple objects of the same kind (i.e. two enemy planes in a
tactical air combat domain), structured domain knowledge (i.e. a building map in a
navigation domain), or inferred knowledge (i.e. shortest-path towards a target room)
is essential in choosing and executing the right strategy.

Our framework proposes a natural solution for the above limitations by framing the
learning problem in the first order setting of Inductive Logic Programming (ILP)
while maintaining most of the core features of KnoMic. Unlike KnoMic, our
framework allows parametric and structured goal annotations, structured background
knowledge, and structured sensors. In addition, KnoMic uses a simple single-pass
learning algorithm that cannot deal with noise and assumes that the expert exhibits
correct and consistent behavior at all times, while our framework uses an ILP
algorithm that is robust in the presence of noise. To be able to use ILP algorithms in
domains with large numbers of facts, we have developed an efficient mechanism to
store and access structured behavior data.

We use the general agent architecture Soar [8] as the target language for the
acquired knowledge. Soar uses a symbolic rule based representation that simplifies
the interaction with the ILP learning component. Although Soar influences how
knowledge is represented in our framework, we introduce the framework independent
of Soar to make our learning assumptions more explicit and to have results that are
transferable to other architectures.

The paper is organized as follows. Next, we describe our learning by observation
framework. In section 3, we present experimental results. In section 4, we discuss
related work. Finally, we conclude with remarks about future directions in section 5.

200 T. Könik and J. Laird

Agent Architecture

Episodic
Database

Behavior trace

Decision
concept rules

R
ep

la
ce

 A
ge

nt
 P

ro
gr

am

Annotations

Agent
Program

Mode 1

Mode 2

Hand-coded
Knowledge

examples

Expert

Annotated
Behavior traces

Behavior and
Annotation
Recorder

Environmental
Interface

Training Set
Generator

Concept Learner
(ILP Component)

Agent
Generator

Environment

annotation
predicates

External
components

Internal
components

Fig. 1. General overview of our learning by observation framework. In mode 1, the expert
generates annotated behavior. In mode 2, an agent program executes behavior and the expert
accepts or rejects its annotations

2 Our Learning by Observation Framework

The execution cycle of our framework has two operation modes (Fig. 1). In the first
mode, the expert interacts with the environment. In the second mode, the
approximately correct agent created during previous learning interacts with the
environment. Both of these interactions are recorded to a behavior trace structure. In
the first mode, the expert annotates the behavior trace with the goals he/she has been
pursuing. In the second mode, the agent proposes similar annotations and the expert
accepts or rejects them. In both modes, the annotated behavior traces are inserted into
an episodic database that efficiently stores and retrieves the observed situations and
the expert annotations. The training set generator component maps the problem of
“obtaining an agent program” to multiple problems that can be represented in a
“supervised concept-learning” setting. These decision concepts are used in the
generated agent program. For each decision concept, the training set generator returns
positive and negative examples, using the information stored in the episodic database.
The concept learner component uses an ILP algorithm that learns rules representing
the decision concepts, using the examples in the training set and background
knowledge obtained by accessing the episodic database and hand-coded domain
theory. The agent generator component converts the decision concept rules to an
executable agent program. At each cycle, a new agent program is learned from scratch

Learning Goal Hierarchies from Structured Observations and Expert Annotations 201

but since more behavior traces are accumulated, a more accurate agent program is
expected to be learned, which can in turn generate new traces when the learned agent
program interacts with the environment in the second execution mode. At any time
during the agent performance (mode 2), the expert can intervene and take control
(mode 1) to generate traces, for example if the agent is doing very poorly at a goal.
This may help the learning focus on parts of the task where the agent program is
lacking knowledge most.

We have partially implemented this framework to conduct the experiments
reported in section 3.2. Our program works in the first mode of the execution cycle,
and instead of human expert generated behavior, we use behavior of hand-coded Soar
agents. At this stage of the research, cloning artificial agents is a cost-effective way to
evaluate our framework - it greatly simplifies data collection and it does not require
us to build domain specific components to track expert behavior and annotations.
Instead, we built a general interface that can extract annotations and behavior from
Soar agents on any environment Soar has been connected to.

2.1 Target Agent Architecture and Environments

We use Soar [8] as our target architecture. A long-term motivation is that Soar is one
of the few candidates of unified cognitive architectures [14] and has been successful
as the basis for developing knowledge-rich agents for complex environments [6, 9,
24] One practical reason for this choice is that there exist interfaces between Soar and
these environments that can be reused in our system. Moreover, the hand-coded
agents required significant human effort and they can form a basis of comparison for
the agents we create automatically.

In this paper we will use examples from “Haunt 2 game” [9], which is a 3-D first
person perspective adventure game built using the Unreal game engine. This
environment has a large, structured state space, real time decisions, continues space,
external agents and events.

2.2 Representation of the Environment and Task Performance Knowledge

In complex domains, an agent (expert/agent program) may receive vast amounts of
raw sensory data and the low level motor interaction the agent has to control may be
extremely complicated. Since we focus more on higher level reasoning of a cognitive
agent than low-level control, we assume that the agents interact with the environment
using an interface that converts the raw data to a symbolic environmental
representation (SER). While the expert makes his decisions using a visualization of
the raw data, the agent program will make decisions with corresponding symbolic
data. Moreover, both the expert and the agent program execute only symbolic actions
provided by SER, which is responsible for implementing these actions in the
environment at the control level.

At any given moment, SER maintains a set of facts that symbolically represent the
state of the environment as perceived from the expert’s perspective. Soar agents
represent their beliefs about the external world and internal state using a directed
graph of binary predicates. Adapting that style, we will assume that the environment
representation maintained by SER contains predicates of the form p(a, b) where p is a

202 T. Könik and J. Laird

relation between the objects in the environment denoted by a and b in SER. In the
Haunt domain, a “snapshot” of this time varying representation may be as depicted in
Fig. 2. The sensors are represented with a binary predicate where the first argument is
a special symbol (i.e. agent) and the second argument is the sensed value. The sensors
can be constant-valued such as the x-coordinate(agent, 35) or energy-
level(agent, high) as well as object-valued such as current-room(agent, r1). The object
valued sensors can be used to represent structured relations among perceived objects.
For example, when a book on top of a desk enters the visual display of the expert, it is
SER’s responsibility to build corresponding relations and to bind the sensors to these
relations. SER also has the responsibility of associating the directly sensed features of
the environment with the hand-coded factual knowledge. For example in Fig. 2, we
not only see that the expert is in the room r1, but we also know that he/she can go
towards a room r3 by following a path that goes through door d1. During the learning
phase both the observed dynamical features and the hand-coded factual knowledge
are used in a uniform way.

AGENT

r2

r1

d1 d2

connection

o1

p2 r3

i3

2

connection

contains
current-room

path

distance

path

has-door

in pathdoor

in

destination

in

visible

x-coordinate
Directly sensed data

Hand-coded factual
 knowledge35energy-level

“high”

visible

on

contains

type type

“table” “book”

i5

o2

Sensors
contains

Fig. 2. A snapshot of the data maintained in the symbolic environmental representation (SER)
in Haunt domain. SER dynamically updates directly sensed relations and associates factual
background knowledge with the sensed objects

We assume that the performance knowledge of the target agent program is
decomposed into a hierarchy of operators that represent the goals that the agents
pursue and the actions that they take to achieve their goals (Fig. 3). With this
assumption, we decompose the “learning an agent program” problem to multiple
“learning to maintain an operator” problems. The suboperators correspond to
strategies that the agent can use as part of achieving the goal of the parent operator.
The agent has to continuously maintain the activity of these operators based on
current sensors and internal knowledge. When the agent selects an operator, it must
also instantiate the parameters. It then executes the operator by selecting and
executing suboperators. The real execution on the environment occurs when actions,
the lowest level operators, are selected. The names of the selected actions and their
parameters are sent to the SER, which applies them in the environment. The actions
are continuously applied on the environment as long as the agent keeps them active.
We assume that there may be at most one operator active at each level of the

Learning Goal Hierarchies from Structured Observations and Expert Annotations 203

hierarchy. This simplifies the learning task because the learner associates the
observed behavior only with the active operators and each operator is learned in the
context of a single parent operator.

 get-item(Item)

get-item-in-room(Item) get-item-different-room(Item)

go-towards-door(Door) go-through-door(Door)

Fig. 3. An Operator Hierarchy in a Building Navigation Domain

For example, if an agent decides to get an item i1 in a different room by selecting
the operator get-item-different-room(Item) with the instantiation Item=i1, to achieve the
task, it could select the suboperator go-towards-door(Door), where Door should be
instantiated with the door object on the shortest path from current room to the room
where i1 is in. The real execution occurs with primitive SER actions such as
go(forward) or turn(left).

In this representation, information about how the operators are selected implies
information about how the operators are executed because execution of an operator at
one level is realized by selection of the suboperators at the lower level. Among other
more complex possibilities, suboperators may represent alternative or sequential ways
of reaching a goal, depending on the learned knowledge of how to maintain the
activity of the operators. For example in Fig. 3, get-item-different-room and
get-item-in-room are two alternative strategies that may be used to reach the parent
goal get-item. Which one of them is preferred depends upon whether the target item is
in the current room or not. On the other hand, the operators go-towards-door and
go-through-door should be executed sequentially in a loop to achieve their high-level
goal. Each time the agent enters a room that does not contain the target item, the agent
selects a door and moves towards it (go-towards-door), until the agent is close enough
to go through the door to enter a new room (go-through-door). If the item is not in the
new room, the agent reselects a door and goes towards it (go-towards-door). If the
agent enters a room containing the item, the operator get-item-different-room is
immediately retracted with all of its suboperators and get-item-in-room is selected.

The initial knowledge that the system has about the operators consists of their
names, the hierarchical relation among them and the scope of their parameters. The
final agent obtained as the result of learning should have the capability of maintaining
the activity of the operators (i.e. selecting them with correct parameters, stopping
them when they achieve their goal, abandoning them in preference of other operators,
etc.) and executing them (managing the suboperators).

2.3 Behavior and Annotation Recorder

While the expert or the agent program is performing a task, symbolic state of the
environment is recorded into a structure called a behavior trace. The symbolic

204 T. Könik and J. Laird

representation that the SER maintains is sampled in small intervals, at consecutively
enumerated time points si called situations. We assume that the domain dependent
sampling frequency is sufficiently high so that no significant changes occur between
two consecutive situations. We say that the observed situation predicate p(si, a, b)
holds if and only if p(a, b) was in SER at the situation si.

If the environment contains static facts (i.e. rooms, doors, etc...) that do not change
over different situations, that information can be added to the beginning of the
behavior trace manually, even if the expert does not perceive them directly. This
corresponds to the assumption that the expert already knows about these features and
the learning system will use this information as background knowledge as it creates
the model of the expert. If p(x, y) is such a static fact, we say that the assumed
situation predicate p(si, x, y) is true for any si.

In the first execution mode, the expert annotates the situations in his/her behavior
with the names of the operators and parameters that he/she selects from the operator
hierarchy (i.e. Fig. 3). A valid selection that satisfies the semantics of the operator
hierarchy must form a connected path of operators starting from the root of the
operator hierarchy. Since the actions are executed using SER directly, action
annotations can be recorded automatically without any expert effort. In the second
execution mode, the expert inspects the annotated behavior traces proposed by the
agent program and verifies or rejects the annotations.

We assume that the expert annotates a set of consecutive situations at a time. For a
set of consecutive situations R and an operator op(x) where x is an instantiated
operator parameter vector, if the expert annotates the situations in R with op(x), we
say accepted-annotation(R, op(x)) where R is called the annotation region. Similarly,
we say rejected-annotation(R, op(x)), if the expert has rejected the agent program’s
annotation of R with op(x).

2.4 Episodic Database

In practice, it is inefficient to store the list of all predicates that hold at each situation
explicitly, especially in domains where sampling frequencies are high and there is
much sensory input. The episodic database efficiently stores and retrieves the
information contained in structured behavior traces and expert annotations. In each
execution cycle, the training set generator accesses the episodic database while
creating positive and negative examples of the decision concepts to be learned.
Similarly, the ILP component accesses it to check whether particular situation
predicates in the background knowledge hold in the behavior trace. Although the
examples are generated only once for each concept, the background situation
predicates may be accessed many times during learning. Typically, ILP systems
consider many hypotheses before they return a final hypothesis as the result of
learning and each time a different hypothesis is considered, the validity of background
situation predicates that occur in the hypothesis must be tested. To make learning
practical in large domains, it is crucial that the episodic database is an efficient
structure.

We assume that for each situation predicate p, the arguments are classified as input
or output types. Many ILP systems already require a similar specification for

Learning Goal Hierarchies from Structured Observations and Expert Annotations 205

background predicates.1 The episodic database receives situation predicate queries of
the form p(s, x, y) where s is an instantiated situation, x is an instantiated vector of
input variables, y is a vector of not instantiated output variables. The result of the
query is y vectors that satisfy the query.

y1 y1
y2

y1
y2

y3

y1

y3

y3 y2

y3

s25s15 s80 s50

y3

s65s20

s40

sinitial s15 s20 s25 s40 s50 s65 s80

Hash Table
…

(contains, x1)
…

Fig. 4. Search for the query contains(s23, x1, Y) in the episodic database

In episodic database, each situation predicate is stored using multiple binary trees
(Fig. 4). The leaves store the output values explicitly wherever they change and the
nodes store the situations where these changes occur. More formally, for each pair
(p, x), where p is a situation predicate and x is an input vector, the episodic database
explicitly stores the output values Ys, the set of all y vectors satisfying p(s, x, y) for
each situation s, where Ys has changed compared to previous situation. Moreover, for
each (p, x), it contains a binary search tree, where the nodes are these change
situations and the leaves are the Ys vectors. For example in Fig. 4, we have the index
structure that represents the predicate contains(+Situation, +Room, -Item). This
particular tree shows that room x1 does not contain any objects in the initial situation.
At situation s15, the item y1 appears in the room x1. No changes occur, until the
situation s20 when a new item y2 is added to the room and so on. For example, to
answer the query contains(s23, x1, Item), first the correct index tree associated with the
pair (contains, x1) is located using a hash table, then by a binary search, the last
change before s23 is located. In this case, the last change occurs at s20 and Item will be
instantiated with y1 and y2.

In our system, hand-coded static background knowledge is an important special
case that is handled very easily by the episodic database. These predicates are added
to the behavior trace once and then are never changed. The episodic database stores
them very efficiently because their index trees will be reduced to single nodes. The
expert annotation predicates are also stored in episodic database by using the operator
name as input variable, and the operator arguments as output variables.

The episodic database stores the behavior traces efficiently, unless there are multi-
valued predicates (multiple output instantiations at a situation) that change frequently

1 Arguments that are declared constants are treated as input in episodic database

representation.

206 T. Könik and J. Laird

or background predicates that have multiple mode definitions (input/output variable
specifications) each requiring a separate set of index trees. In the domains we applied
our system to, the first problem is negligible and the second problem does not occur.

Struyf, Ramon and Blockeel [18] describe a general formalization for compactly
representing ILP background knowledge in domains that have redundancy between
examples, which corresponds to consecutive situations in our case. Their system
would represent our situation predicates by storing a list of predicate changes between
each pair of consecutive situations. In that representation, to test a particular situation
predicate, the behavior trace would have to be traced forward from the initial node,
completely generating all facts in all situations until the queried situation is reached.
For an ILP system that tests each rule over multiple examples, our approach would be
more time efficient in domains having many facts at each situation because we don’t
need to generate complete states and we don’t have to trace all situations. Instead, the
episodic database makes binary tree searches only for the predicates that occur in the
rule to be tested. In our learning by observation system, the gain from the episodic
database is even more dramatic because the examples of the learned concepts are
sparsely distributed over situation history.

2.5 Decision Concepts and Generating Examples

In section 2.2, we discuss how the problem of “learning an agent program” is
decomposed into multiple “learning to maintain the activity of an operator” problems.
In this section, we further decompose it into multiple “decision concept learning”
problems that can be framed in an ILP setting.

A decision concept of an operator op is a mapping from the internal state and
external observations of an agent to a “decision suggestion” about the activity of op.
We currently define four decision concepts: selection-condition (when the operator
should be selected if it is not currently selected), overriding-selection-condition (when
the operator should be selected even if another operator is selected), maintenance-
condition (what must be true for the operator to be maintained during its application),
and termination-condition (when the operator has completed and should be
terminated). For each decision concept, we have to define how their examples should
be constructed from the observation traces and how they are used during execution. In
general, for a concept of kind con and an operator op(x), we get a decision concept
con(s, op(x)) where s is a situation and x a parameter vector of op. For example
selection-condition(S, go-to-door(Door)) would describe under which situation S the
selection of go-to-door(Door) is advised and with what value Door should be
instantiated.

The training set generator constructs the positive and negative examples of
decision concepts, using the expert annotation information stored in episodic
database. For a decision concept con and expert annotation op(x0), where x0 is an
instantiated parameter vector, a positive (negative) example is a ground term
con(s, op(x0)), where s is an element of a set of situations called positive (negative)
example region of op(x0). Fig. 5 depicts the positive and negative example regions of
an operator opA, for different kind of decision concepts. The horizontal direction
represents time (situations) in the behavior trace and the boxes represent the accepted
annotation regions P, A, and B of three operators parent(opA), opA, and opB such that
parent(opA) is the parent operator of opA, and opB is an arbitrary selected operator that

Learning Goal Hierarchies from Structured Observations and Expert Annotations 207

shares the same parent with opA. opB may be the same kind of operator with opA, but it
should have a different parameter instantiation. The positive example region of the
selection condition of opA is where the expert has started pursuing opA and its negative
example region is where another operator is selected (Fig. 5.b). As an example, if we
have opA = go-towards-door(d1), A=s20-s30, and B=s50-s60, we could have the positive
example selection-condition(s20, go-towards-door(d1)) and the negative example
selection-condition(s50, go-towards-door(d1)).

(a) termination-condition(opA) (b) selection-condition(opA)

(c) overriding-selection-condition(opA) (d) maintenance-condition(opA)

P
A B

+ + + − − − − − − − −

P
A B

+ + + + + + + − − − − − − −

P
A

− − − − − − + + +

P
A B

+ + + − − −

Fig. 5. The positive and negative example regions of different concepts. A, B, and P are the
annotation regions of the operators op

A
, op

B
, and their parent operator parent(op

A
)

In general, the examples of decision concepts of an operator opA are selected only
from situations where there is the right context to consider a decision about it. Since
the operator hierarchy dictates that parent(opA) must be active at any situation where
opA is active, all decision concept examples of opA are obtained only at situations
where parent(opA) is active. Similarly during the execution, the decision concepts of
opA are considered only at situations where parent(opA) is active.

Different concepts will have different, possibly conflicting suggestions on how the
operators should be selected. For example, a situation where termination-
condition(opA) holds suggests that the agent has to terminate opA, if opA is active and
that opA should not be selected if it not active. selection-condition(opA) would be useful
to decide whether opA should be selected, if a previous operator opB is already
terminated (i.e. because of termination-condition(opB)), it would not be very useful
while opB is still active because such situations are not considered as examples for
selection-condition(opA). On the other hand, overriding-selection-condition(A) could
indicate terminating opB and selecting opA, even during the situations where opB is
active. Neither selection-condition(opA) nor overriding-selection-condition(opA) makes a
suggestion while opA is active, because their examples are not collected in such
regions. Finally, like overriding-selection-condition(opA), maintenance-condition(opA)
suggests that opA should start even if another operator is still active. Unlike the other
selection conditions, absence of maintenance-condition(opA) suggests that opA should
not be started at situations where it is not active, and that opA should be terminated, if
it is active.

If our goal were programming an agent manually, having only a subset of these
concepts could be sufficient. For example, the rules in Soar version 7 are closer to
termination/selection conditions while the rules of Soar version 8 are closer to
maintenance conditions. Nevertheless, given a representation language, a particular
operator may be more compactly represented using a subset of concepts, making it
easier to learn inductively.

208 T. Könik and J. Laird

In general, different decision concepts of an operator may have conflicting
suggestions. There are several possibilities for dealing with this problem. One can
commit to particular priority between the decision concepts. For example KnoMic
[21] learns only selection and termination conditions. In execution, KnoMic assumes
that termination conditions have higher priority. Another alternative is to have a
dynamic conflict resolution strategy. For example, a second learning step could be
used to learn weights for each concept such that the learned weight vector best
explains the behavior traces. In this paper, we don’t further explore conflict resolution
strategies but we concentrate on learning individual decision concepts.

2.6 Learning Concepts

The learning component uses an ILP algorithm, currently inverse entailment [13], to
learn a theory that represents decision concepts using the examples received from the
training set generator, the situation predicates stored in the episodic database, and
hand-coded domain knowledge.

selection-condition(S, go-to-door(Door)) ←
 active-operator(S, get-item(Item)),
 current-room(S, agent, Room1),
 has-door(S, Room1, Door),
 path(S, Room1, Path),
 pathdoor(S, Path, Door),
 destination(S, Path, Room2),
 contains(S, Room2, Item).

Fig. 6. A desired hypothesis for the selection condition of go-to-door operator

Soar stores its binary predicates as a directed graph (Fig. 2), and regular Soar
programs take advantage of this property by using only rules that instantiate the first
arguments of these predicates before testing them. Fortunately, this structural
constraint can be very naturally represented in inverse entailment (and many other
ILP algorithms) using mode definitions and it significantly reduces the search space.
Fig. 6 depicts a correct rule that is learned during the experiment reported in section
3.1. It reads as: “At any situation S with an active high-level operator get-item(Item),
the operator go-to-door(Door) should be selected if Door can be instantiated with the
door on the shortest path from the current room to the room where Item is in.”

The learning system models the selection decision of go-to-door by checking the
high-level goals and retrieving relevant information (active-operator retrieves
information about the desired item), by using structured sensors (i.e. current-room),
and domain knowledge (i.e. has-door, path)

During evaluation of a hypothesis, the situation predicates, such as current-room or
contains, call background predicates that query the episodic database structure. active-
operator is a special hand-coded background predicate that generates the parameters
of the active parent operator2 by calling the accepted-annotation predicates stored in
the episodic database.

2 The actual syntax of this predicate is slightly more complex to comply with the restrictions of

the ILP algorithm used.

Learning Goal Hierarchies from Structured Observations and Expert Annotations 209

The operator hierarchy simplifies the search for a hypothesis in two ways. First, the
decisions about an operator are learned in the context of the parent operator. The
conditions for maintaining a parent operator are implicit conditions of the child
operator; they don’t need to be learned and as a result the conditions get simpler and
easier to learn. At a level of the hierarchy, learning only the distinctions of selecting
between sibling operators may be sufficient. Second, object-valued parameters of a
parent operator can provide access to the more relevant parts of the background
knowledge (i.e. active-operator), in effect simplifying the learning task. For example
in Fig. 6, the conditions for selecting the correct door could be very complex and
indirect if the parent operator did not have the Item parameter that guides the search
(i.e. the towards the room that contains the item).

We have two mechanisms for encoding domain knowledge to be used in learning.
In section 2.2, we described the assumed situation predicates that are added to the
behavior trace as factual information the expert may be using. An alternative is to use
a hand-coded theory written in Prolog. In our example in Fig. 6, the rule uses assumed
knowledge about path structures between each pair of rooms (i.e. path, pathdoor,
destination). An alternative would be that the agent infers that information
dynamically during learning, for example using knowledge about the connectivity of
neighbor rooms. For example we could have a shortest-path(+Situation, +Room1,
+Room2, -Door) predicate which infers that Door in Room1 is on the shortest path
from Room1 to Room2.

2.7 Agent Generation for a Particular Agent Architecture

At the end of each learning phase, the learned concepts should be compiled to an
executable program in an agent architecture, in our case Soar. In general, the
conditions at the if-part of the decision concepts should be “testable” by the agent
program. The translation of observed situation predicates is trivial. On the other hand,
for each hand-coded background predicate, we should have corresponding hand-
coded implementations in the agent program. For example, while the active-operator
is a prolog program that checks accepted-annotation predicate during learning, it
should have an agent architecture specific implementation to be used in execution that
checks and returns information about the active high-level operators.

3 Experiments

We have conducted two set of experiments to evaluate our approach. In the first
experiment, we generated artificial examples for a selection condition concept in a
building navigation problem. We used the inverse entailment implementation Progol
[13] for that experiment. For the second experiment, we used behavior data generated
by Soar agents with our learning by observation framework (Fig. 1), partially
implemented in SWI-Prolog. Our program intercepts the symbolic interaction of Soar
agents with the environment, stores the interactions in an episodic database, creates
decision concept examples, and declarative bias (such as mode definitions), and calls
the ILP engine Aleph [17] that we have embedded in our system. In these more recent
experiments, we have used Aleph instead of Prolog because Aleph is more

210 T. Könik and J. Laird

customizable. It was easier to embed Aleph into our system because it also runs on
SWI-Prolog. Using behavior of hand-coded Soar agents to create new “clone” agents
allows us to easily experiment with and evaluate our framework. Since Soar agents
already use hierarchical operators, it is easy to extract the required goal annotations
from them. While the intercepted environmental interaction is used to create the
behavior trace, the internal reasoning of the agents is only used to extract the goal
annotations.

3.1 Learning from Artificially Created Data

In our first experiment the selection condition of go-to-door is learned in the context
of get-item using artificially created examples. One possible correct hypothesis in this
problem is depicted in Fig. 6. The goal is to learn to select a door such that it is on a
path towards an item that the agent wants to get.

In this experiment, we have artificially created situations where go-to-door(Door)
operator is selected. First, we generated random map structures consisting of rooms,
doors, items, paths, and shortest path distances between rooms. Then, we have
generated random situations by choosing different rooms for the current-room sensor,
and different items as the parameter of the high-level get-item goal. Finally, we have
generated positive examples of our target concept by choosing a situation and the
parameter of the go-to-door operator, namely, the correct door objects that leads
toward the target item.

Instead of using negative examples, we marked a varying number of positive
examples with a “complete selection” tag, indicating that the expert returns all of the
best parameter selections for that situation (i.e. there maybe multiple doors that are on
a shortest path). We used declarative bias to eliminate hypotheses that satisfy Door
variables that are not among the expert selection for these marked examples.

To cover qualitatively different cases, we have generated 6 maps using 2
possibilities for the number of items on the map (1 or 3 items) and 3 possibilities for
connectivity of the rooms (0, 3, or 6 extra connections where 0 means a unique path
between each pair of rooms.). In these examples, a varying number of examples are
marked with the “complete selection” tag (0-5 positive examples are marked). For
these 36 combinations, we have conducted 5 experiments each with 5 positive
examples. We ran Progol with noise setting turned off, searching for the best
hypothesis that cover all positives while satisfying declarative bias.

We measured the learned hypothesis in terms of over-generality, over-specifity and
accuracy. For example if for a situation s the doors that satisfy the correct hypothesis
are {d1,d2,d3} and the doors that satisfy learned hypothesis h are {d1,d2,d4,d5,d6}, then
we get: accuracy(h, s) = 2/6, overgenerality(h, s) = 3/6, and overspecifity(h, s) = 1/6.

To evaluate the learned hypothesis, we have created test sets consisting of 6
random maps each with 10 fully connected rooms, choosing from 3 possibilities for
connectivity (0, 5, or 10 extra connections) and 2 possibilities for the number of items
(1 or 3 items). We have intentionally used test maps larger than training maps to
ensure that hypotheses that may be specific to the training map size are not measured
as accurate during testing.

Learning Goal Hierarchies from Structured Observations and Expert Annotations 211

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5

Number of
Tagged Examples

Average accuracy

Average overgenerality

Average overspecifity

Fig. 7. Average accuracy, overspecifity and overgenerality of learned hypotheses on test data.
Each data point is the average of 30 learned hypotheses

For each map, we have tested both the learned hypothesis and the correct
hypothesis over all possible situations on these maps. (All possible combinations of
current room and target item values.) For each of them, we have compared the output
variables the hypotheses generate, namely the instantiations of the door variables. Fig.
7 shows the average accuracy is steadily increasing with the number of tagged
examples.

3.2 Learning from Agent Program Generated Data

In this experiment, we have used the annotated behavior traces generated by a Soar
agent in Haunt domain. All behavior data is created using a single level map
consisting of 13 fully connected rooms that are marked with symbolic nodes to help
the navigation of the agent. For each door, there are nodes on each side of the door.

The Soar agent controls a virtual character that has previously explored the level
and built up an internal map of the rooms and the location of items in the level. In our
experiment, we concentrated on the behavior it generates to retrieve items. The Soar
agent randomly chooses an item, and selects the goal goto-room(Room) by
instantiating Room with the room where the item is in. It then uses
goto-node-in-room(Node) and goto-node-next-room(Node) operators to go towards
Room. The agent selects goto-node-in-room operator to move to a node in front a door
that leads towards Room. To go through the door, the agent chooses
goto-node-next-room with a node on the other side of the door and moves towards it.
These two operators are used in a loop until the agent is in the target room and the
parent operator goto-room is retracted.

In this experiment, our goal is to learn the selection and termination concepts (Fig.
5 a, b) of goto-node-in-room in the context of a given goto-room operator. We have
collected 3 minutes of behavior trace of the Soar agent (~30000 situations).

We have recorded several numerical sensors such as x-coordinate, distance to
visible objects, and object valued sensors that monitor the last visited node, the nodes
the agent can see, the nodes in front of the agent, the nearest visible node, the current
room, and the previous room among others. The learning system used background

212 T. Könik and J. Laird

knowledge about the locations of nodes, rooms, doors, and their relation to each other.
A typical situation contained over 2000 situation predicates and a typical bottom
clause (generated to variable depth 4) has over 500 literals. 600 positive and 200
negatives examples are generated for each concept. We ran Aleph with its default
inverse entailment strategy. The numerical sensors are only used in a limited way;
only within conditions that test whether sensors are close to constant values.

Although this experiment returned the correct termination condition, we got an
overgeneral theory for the selection condition that may select a random node in the
current room. Probably this stems from the fact that the negative examples are
generated at situations where the learned operator is not selected (Fig. 5.b). These
situations do not provide sufficient information about which parameter selections
would be incorrect at a situation where the learned operator is selected.

Based on this observation, we have conducted another experiment where the
selection condition of goto-node-in-room is learned correctly using a slightly different
approach. For each positive example cond(s, op(x1)), we generated negative examples
of the form cond(s, op(x2)) using the same situation s but different operator
parameters. In our case, x2 would be a node that the expert has not selected in situation
s. This approach resembles the positive-only learning strategy described by
Muggleton [13] except that in our case, the negative examples are generated by
choosing only the operator parameters randomly not the situations. We have selected
these parameters randomly from the set of parameters observed in expert annotations.
Using the positive examples in previous experiment and generating 20 random
negatives for each, we get the correct rule in Fig. 8.

selection-cond(S, goto-node-in-room(TargetNode)) ←
 active-operator(S, goto-room(TargetRoom)),
 current-room(S, agent, CurrentRoom),
 path(S, CurrentRoom, Path),
 pathnode(S, Path, TargetNode),
 destination(S, Path, TargetRoom).

Fig. 8. Selection condition of goto-node-in-room operator induced using only positive examples

In this experiment, we have demonstrated that general correct concepts for
selecting and terminating operators can be learned in structured domains using only
correct expert behavior. Our experiment indicates that negative examples obtained at
situations where an operator is not selected may not be sufficient in learning operators
with parameters. Generating negative examples with random parameters may solve
this problem.

4 Related Work

Khardon [7] studied learnability of action selection policies from observed behavior
of a planning system and demonstrated results on small planning problems. His
framework requires that goals are given to the learner in an explicit representation,
while we try to inductively learn the goals.

Learning Goal Hierarchies from Structured Observations and Expert Annotations 213

To learn procedural agent knowledge, there are at least two alternatives to learning
by observation. One approach is to learn how the agent actions change the perceived
environment and then use that knowledge in a planning algorithm to execute
behavior. TRAIL [1] combines expert observations and experimentations to learn
STRIPS like teleoperators using ILP. OBSERVER [23] uses expert observations to
learn planning operators in a rich representation (not framed in an ILP setting). Moyle
[12] describes an ILP system that learns theories in event calculus, while Otero
describes an ILP system that learn effects in situation calculus [15]. These systems
could have difficulty if changes caused by the actions are difficult to observe,
possibly because the actions cause delayed effects that are difficult to attribute to
particular actions. In these cases, our approach of trying to replicate expert decisions,
without necessarily understanding what changes they will cause, may be easier to
learn.

Another alternative to learning by observation is to use reinforcement learning.
Relational reinforcement learning [4] uses environmental feedback to first learn utility
of actions in a particular state and then compiles them to an action selection policy.
Recently, expert behavior traces have been combined with the traces obtained from
experimentation on the environment [3]. Expert guidance helps their system to more
quickly reach states that return feedback. In this system, the selections of the experts
are not treated as positive examples and learning still uses only environmental
feedback. In complex domains, our strategy of capturing the expert behavior may be
easier than trying to justify actions in terms of future gains, especially when the
reward is sparse. Moreover, replicating the problem solving style of an expert, even if
he/she makes sub-optimum decisions, is an important requirement for some
applications such as creating “believably human-like” artificial characters. Unlike
learning by observation, none of the two approaches above are very suitable for that
purpose because their decision evaluation criteria is not based on similarity to expert
but success in the environment.

5 Conclusions and Future Work

We have described a framework to learn procedural knowledge from structured
behavior traces, structured goal annotations and complex background knowledge. We
decomposed the learning an agent program problem to the problem of learning
individual goals and actions by assuming that they are represented with operators that
are arranged hierarchically. We operationalized learning to use these operators by
defining decision concepts that can be learned in a supervised learning setting. We
have described an episodic database formalism to compactly store structured behavior
data. Episodic database was crucial in testing our system in a large domain. We have
partially implemented the first cycle of our framework, where the learning system
uses only correct behavior data. We have conducted two experiments to evaluate our
approach. In the first experiment, we used a small data set of artificially created
situations. Here, the target concept is successfully learned, but we required additional
expert input in addition to the correct decisions. In the second experiment, we used a
large data set generated from the behavior of a hand-coded agent in a complex
domain. Learning selection conditions as defined in Fig. 5 generated overgeneral
results, because the learning system did not have sufficient information to eliminate

214 T. Könik and J. Laird

incorrect parameter selections. When selection conditions are learned with a “positive
examples only” strategy, this problem is overcome and a correct concept is learned.

 Our first goal for future work is to implement the second execution cycle of our
framework. We predict that the behavior data obtained this way will provide valuable
examples and improve learning results. A formal evaluation of our episodic
database formalism is also left for future work. We are currently extending this
formalism so that it not only compactly represents behavior data, but also test rules
more efficiently by testing the rules on a range of situations at once.

Acknowledgements. This work was partially supported by ONR contract N00014-
03-10327.

References

1. Benson, S., Nilsson, N.: Inductive Learning of Reactive Action Models. In: Prieditis, A.,
Russell, S.: Machine Learning: Proceedings of the Twelfth International Conference.
Morgan Kaufmann, San Fransisco, CA (1995) 47-54

2. Camacho, R.: Inducing Models of Human Control Skills. In: 10th European Conference
on Machine Learning (ECML-1998). Chemnitz, Germany (1998)

3. Driessens, K., Dzeroski, S.: Integrating Experimentation and Guidance in Relational
Reinforcement Learning. In: Sammut, C., Hoffmann, C. (eds.): Proceedings of the
Nineteenth International Conference on Machine Learning (ICML-2002). Morgan
Kaufmann Publishers (2002) 115-122

4. Dzeroski, S., Raedt, L. D., Driessens, K.: Relational Reinforcement Learning. Machine
Learning 43 (2001) 5-52

5. Isaac, A., Sammut, C.: Goal-directed Learning to Fly. In: Fawcett, T., Mishra, N. (eds.):
Proceedings of the Twentieth International Conference (ICML 2003). AAAI Press (2003)

6. Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P. G., Koss, F. V.:
Automated Intelligent Pilots for Combat Flight Simulation. AI Magazine 20 (1999) 27-42

7. Khardon, R.: Learning to Take Actions. Machine Learning 35 (1999) 57-90
8. Laird, J. E., Newell, A., Rosenbloom, P. S.: Soar: An Architecture for General

Intelligence. Artificial Intelligence 33 (1987) 1-64
9. Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., Stokes, D.: AI Characters and

Directors for Interactive Computer Games. In: The 16th Innovative Applications of
Artificial Intelligence (IAAI-2004). San Jose, CA (2004)

10. Michie, D., Bain, M., Hayes-Michie, J.: Cognitive Models from Subcognitive Skills. In:
Grimble, M., McGhee, J., Mowforth, P. (eds.): Knowledge-Based Systems in Industrial
Control. Peter Peregrinus, Stevenage (1990) 71-90

11. Michie, D., Camacho, R.: Building Symbolic Representations of Intuitive Real-Time
Skills From Performance Data. In: Machine Intelligence 13 Workshop (MI-1992).
Glasgow, U.K (1992)

12. Moyle, S.: Using Theory Completion to Learn a Robot Navigation Control Program. In:
Matwin, S., Sammut, C. (eds.): Inductive Logic Programming, 12th International
Conference, Revised Papers. Lecture Notes in Computer Science, Vol. 2583. (2003)
182-97

13. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing 13 (1995)
245-286

14. Newell, A.: Unified Theories of Cognition. Harvard Univ. Press (1990)

Learning Goal Hierarchies from Structured Observations and Expert Annotations 215

15. Otero, R. P.: Induction of the Effects of Actions by Monotonic Methods. In: Horváth, T.
(ed.): Inductive Logic Programming, 13th International Conference. Lecture Notes in
Computer Science, Vol. 2835. Springer (2003) 299-310

16. Sammut, C., Hurst, S., Kedzier, D., Michie, D.: Learning to fly. In: Sleeman, D., Edwards,
P. (eds.): Proceedings of the 9th International Conference on Machine Learning
(ICML-1992). Morgan Kaufmann (1992) 385-393

17. Srinivasan, A.: The Aleph 5 Manual. http://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/Aleph (2003)

18. Struyf, J., Ramon, J., Blockeel, H.: Compact Representation of Knowledge Bases in ILP.
In: Matwin, S., Sammut, C. (eds.): Inductive Logic Programming, 12th International
Conference, Revised Papers. Lecture Notes in Computer Science, Vol. 2583. Springer,
Germany (2003)

19. Suc, D., Bratko, I.: Problem decomposition for behavioural cloning. In: 11th European
Conference on Machine Learning. Lecture Notes in Computer Science, Vol. 1810.
Springer-Verlag, Germany (2000) 382-391

20. Urbancic, T., Bratko, I.: Reconstructing Human Skill with Machine Learning. In: Cohn, A.
G. (ed.): Proceedings of the 11th European Conference on Artificial Intelligence
(ECAI-94). John Wiley and Sons (1994) 498-502

21. van Lent, M., Laird, J.: Learning procedural knowledge through observation. In:
Proceedings of the International Conference on Knowledge Capture (KCAP-2001). ACM
Press, New York (2001) 179-186

22. van Lent, M.: Learning Task-Performance Knowledge through Observation. Ph.D. Thesis.
Univ. of Michigan (2000)

23. Wang, X.: Learning Planning Operators by Observation and Practice. Ph.D. Thesis (Tech.
Report CMU-CS-96-154). Computer Science Department, Carnegie Mellon University
(1996)

24. Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., Kerfoot, A.: Synthetic Adversaries for
Urban Combat Training. In: Proceedings of Innovative Applications of Artificial
Intelligence (IAAI-2004). AAAI Press, in press

	1 Introduction
	2 Our Learning by Observation Framework
	2.1 Target Agent Architecture and Environments
	2.2 Representation of the Environment and Task Performance Knowledge
	2.3 Behavior and Annotation Recorder
	2.4 Episodic Database
	2.5 Decision Concepts and Generating Examples
	2.6 Learning Concepts
	2.7 Agent Generation for a Particular Agent Architecture

	3 Experiments
	3.1 Learning from Artificially Created Data
	3.2 Learning from Agent Program Generated Data

	4 Related Work
	5 Conclusions and Future Work

