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Abstract. We describe a framework for generating agent programs that model 
expert task performance in complex dynamic domains, using expert behavior 
observations and goal annotations as the primary source. We map the problem 
of learning an agent program on to multiple learning problems that can be 
represented in a “supervised concept learning” setting. The acquired procedural 
knowledge is partitioned into a hierarchy of goals and it is represented with first 
order rules. Using an inductive logic programming (ILP) learning component 
allows us to use structured goal annotations, structured background knowledge 
and structured behavior observations. We have developed an efficient 
mechanism for storing and retrieving structured behavior data. We have tested 
our system using artificially created examples and behavior observation traces 
generated by AI agents. We evaluate the learned rules by comparing them to 
hand-coded rules.  

1 Introduction 

Developing autonomous agents that behave “intelligently” in complex environments 
(i.e. large, dynamic, nondeterministic, and with unobservable states) usually presumes 
costly agent-programmer effort of acquiring knowledge from experts and encoding it 
into an executable representation. Machine learning can help automate this process. In 
this paper, we present a framework for automatically creating an agent program using 
the data obtained by observing experts performing tasks as the primary input. The 
ultimate goal of this line of research is to reduce the cost and expertise required to 
build artificial agents. 

Learning from expert observations to replicate behavior is often called behavioral 
cloning. Most behavioral cloning research to date has focused on learning sub-
cognitive skills in controlling a dynamic system such as pole balancing [10], 
controlling a simulated aircraft [11, 16], or operating a crane [20]. In contrast, our 
focus is capturing deliberate high-level reasoning.  

Behavioral cloning was originally formulated as a direct mapping from states to 
control actions, which produces a reactive agent. Later, using goals was proposed to 
improved robustness of the learned agents. Camacho’s system [2] induced controllers 
in terms goal parameter so that the execution system can use the same controllers 
under varying initial conditions and goal settings. It did not however learn how to set 
the goal parameters. Isaac and Sammut [5] present a two step approach where first a 
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mapping from states to goal parameters is learned, then control actions are learned in 
terms of these goals. Suc and Bratko [19] describe induction of qualitative constraints 
that model trajectories the expert is trying to follow to achieve goals. These 
constraints are used in choosing control actions. 

In the goal-directed behavioral cloning research mentioned above, goals are 
predefined parameters of a dynamic system. For example, the learning-to-fly domain 
has goal parameters such as target turn-rate. In contrast, we want to capture a 
hierarchy of high-level goals. For example in a building navigation domain, an expert 
may have a goal of choosing which door it should go through to get to a room 
containing a particular item. Unlike the above approaches, we don’t assume that the 
system has pre-existing definitions for the goals. Instead in our framework, the 
meaning of goals are implicitly learned by learning when the experts select them 
together with the decisions that become relevant once the goals are selected. To 
facilitate this, we require that the experts annotate the observation traces with the 
names and parameters of goals (i.e. select-door(d1) ). This requirement is feasible in 
our setting because high-level goals typically change infrequently and the experts are 
likely to be conscious of them.  

Our work is strongly influenced by van Lent’s [22] learning by observation 
framework. His system, KnoMic, also represents and learns an explicit hierarchy of 
high-level goals. KnoMic uses an attribute-value based representation that would run 
into difficulties when structured properties of the environment are relevant, for 
example if there are multiple objects of the same kind (i.e. two enemy planes in a 
tactical air combat domain), structured domain knowledge (i.e. a building map in a 
navigation domain), or inferred knowledge (i.e. shortest-path towards a target room) 
is essential in choosing and executing the right strategy. 

Our framework proposes a natural solution for the above limitations by framing the 
learning problem in the first order setting of Inductive Logic Programming (ILP) 
while maintaining most of the core features of KnoMic. Unlike KnoMic, our 
framework allows parametric and structured goal annotations, structured background 
knowledge, and structured sensors. In addition, KnoMic uses a simple single-pass 
learning algorithm that cannot deal with noise and assumes that the expert exhibits 
correct and consistent behavior at all times, while our framework uses an ILP 
algorithm that is robust in the presence of noise. To be able to use ILP algorithms in 
domains with large numbers of facts, we have developed an efficient mechanism to 
store and access structured behavior data. 

We use the general agent architecture Soar [8] as the target language for the 
acquired knowledge. Soar uses a symbolic rule based representation that simplifies 
the interaction with the ILP learning component. Although Soar influences how 
knowledge is represented in our framework, we introduce the framework independent 
of Soar to make our learning assumptions more explicit and to have results that are 
transferable to other architectures. 

The paper is organized as follows. Next, we describe our learning by observation 
framework. In section 3, we present experimental results. In section 4, we discuss 
related work. Finally, we conclude with remarks about future directions in section 5. 



200         T. Könik and J. Laird 

 
 

Agent Architecture

Episodic 
Database 

Behavior trace

Decision 
concept rules  

R
ep

la
ce

 A
ge

nt
 P

ro
gr

am

Annotations

Agent 
Program 

Mode 1

Mode 2 

Hand-coded
Knowledge

examples 

Expert 

Annotated 
Behavior traces

Behavior and 
Annotation 
Recorder 

Environmental 
Interface 

Training Set 
Generator 

Concept Learner
(ILP Component)

Agent 
Generator 

 
Environment 

annotation 
predicates 

External  
components 

Internal 
components 

 

Fig. 1. General overview of our learning by observation framework. In mode 1, the expert 
generates annotated behavior. In mode 2, an agent program executes behavior and the expert 
accepts or rejects its annotations 

2 Our Learning by Observation Framework 

The execution cycle of our framework has two operation modes (Fig. 1). In the first 
mode, the expert interacts with the environment. In the second mode, the 
approximately correct agent created during previous learning interacts with the 
environment. Both of these interactions are recorded to a behavior trace structure. In 
the first mode, the expert annotates the behavior trace with the goals he/she has been 
pursuing. In the second mode, the agent proposes similar annotations and the expert 
accepts or rejects them. In both modes, the annotated behavior traces are inserted into 
an episodic database that efficiently stores and retrieves the observed situations and 
the expert annotations. The training set generator component maps the problem of 
“obtaining an agent program” to multiple problems that can be represented in a 
“supervised concept-learning” setting. These decision concepts are used in the 
generated agent program. For each decision concept, the training set generator returns 
positive and negative examples, using the information stored in the episodic database. 
The concept learner component uses an ILP algorithm that learns rules representing 
the decision concepts, using the examples in the training set and background 
knowledge obtained by accessing the episodic database and hand-coded domain 
theory. The agent generator component converts the decision concept rules to an 
executable agent program. At each cycle, a new agent program is learned from scratch 
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but since more behavior traces are accumulated, a more accurate agent program is 
expected to be learned, which can in turn generate new traces when the learned agent 
program interacts with the environment in the second execution mode. At any time 
during the agent performance (mode 2), the expert can intervene and take control 
(mode 1) to generate traces, for example if the agent is doing very poorly at a goal. 
This may help the learning focus on parts of the task where the agent program is 
lacking knowledge most.  

We have partially implemented this framework to conduct the experiments 
reported in section 3.2. Our program works in the first mode of the execution cycle, 
and instead of human expert generated behavior, we use behavior of hand-coded Soar 
agents. At this stage of the research, cloning artificial agents is a cost-effective way to 
evaluate our framework - it greatly simplifies data collection and it does not require 
us to build domain specific components to track expert behavior and annotations. 
Instead, we built a general interface that can extract annotations and behavior from 
Soar agents on any environment Soar has been connected to. 

2.1 Target Agent Architecture and Environments 

We use Soar [8] as our target architecture. A long-term motivation is that Soar is one 
of the few candidates of unified cognitive architectures [14] and has been successful 
as the basis for developing knowledge-rich agents for complex environments [6, 9, 
24] One practical reason for this choice is that there exist interfaces between Soar and 
these environments that can be reused in our system. Moreover, the hand-coded 
agents required significant human effort and they can form a basis of comparison for 
the agents we create automatically. 

In this paper we will use examples from “Haunt 2 game” [9], which is a 3-D first 
person perspective adventure game built using the Unreal game engine. This 
environment has a large, structured state space, real time decisions, continues space, 
external agents and events.  

2.2 Representation of the Environment and Task Performance Knowledge 

In complex domains, an agent (expert/agent program) may receive vast amounts of 
raw sensory data and the low level motor interaction the agent has to control may be 
extremely complicated. Since we focus more on higher level reasoning of a cognitive 
agent than low-level control, we assume that the agents interact with the environment 
using an interface that converts the raw data to a symbolic environmental 
representation (SER). While the expert makes his decisions using a visualization of 
the raw data, the agent program will make decisions with corresponding symbolic 
data. Moreover, both the expert and the agent program execute only symbolic actions 
provided by SER, which is responsible for implementing these actions in the 
environment at the control level.  

At any given moment, SER maintains a set of facts that symbolically represent the 
state of the environment as perceived from the expert’s perspective. Soar agents 
represent their beliefs about the external world and internal state using a directed 
graph of binary predicates. Adapting that style, we will assume that the environment 
representation maintained by SER contains predicates of the form p(a, b) where p is a 
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relation between the objects in the environment denoted by a and b in SER. In the 
Haunt domain, a “snapshot” of this time varying representation may be as depicted in 
Fig. 2. The sensors are represented with a binary predicate where the first argument is 
a special symbol (i.e. agent) and the second argument is the sensed value. The sensors 
can be constant-valued such as the x-coordinate(agent, 35) or energy-
level(agent, high) as well as object-valued such as current-room(agent, r1). The object 
valued sensors can be used to represent structured relations among perceived objects. 
For example, when a book on top of a desk enters the visual display of the expert, it is 
SER’s responsibility to build corresponding relations and to bind the sensors to these 
relations. SER also has the responsibility of associating the directly sensed features of 
the environment with the hand-coded factual knowledge. For example in Fig. 2, we 
not only see that the expert is in the room r1, but we also know that he/she can go 
towards a room r3 by following a path that goes through door d1. During the learning 
phase both the observed dynamical features and the hand-coded factual knowledge 
are used in a uniform way. 
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Fig. 2. A snapshot of the data maintained in the symbolic environmental representation (SER) 
in Haunt domain. SER dynamically updates directly sensed relations and associates factual 
background knowledge with the sensed objects 

We assume that the performance knowledge of the target agent program is 
decomposed into a hierarchy of operators that represent the goals that the agents 
pursue and the actions that they take to achieve their goals (Fig. 3). With this 
assumption, we decompose the “learning an agent program” problem to multiple 
“learning to maintain an operator” problems. The suboperators correspond to 
strategies that the agent can use as part of achieving the goal of the parent operator. 
The agent has to continuously maintain the activity of these operators based on 
current sensors and internal knowledge. When the agent selects an operator, it must 
also instantiate the parameters. It then executes the operator by selecting and 
executing suboperators. The real execution on the environment occurs when actions, 
the lowest level operators, are selected. The names of the selected actions and their 
parameters are sent to the SER, which applies them in the environment. The actions 
are continuously applied on the environment as long as the agent keeps them active. 
We assume that there may be at most one operator active at each level of the 
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hierarchy. This simplifies the learning task because the learner associates the 
observed behavior only with the active operators and each operator is learned in the 
context of a single parent operator. 

 get-item(Item) 

get-item-in-room(Item) get-item-different-room(Item) 

go-towards-door(Door) go-through-door(Door) 

 

Fig. 3. An Operator Hierarchy in a Building Navigation Domain 

For example, if an agent decides to get an item i1 in a different room by selecting 
the operator get-item-different-room(Item) with the instantiation Item=i1, to achieve the 
task, it could select the suboperator go-towards-door(Door), where Door should be 
instantiated with the door object on the shortest path from current room to the room 
where i1 is in. The real execution occurs with primitive SER actions such as 
go(forward) or turn(left). 

In this representation, information about how the operators are selected implies 
information about how the operators are executed because execution of an operator at 
one level is realized by selection of the suboperators at the lower level. Among other 
more complex possibilities, suboperators may represent alternative or sequential ways 
of reaching a goal, depending on the learned knowledge of how to maintain the 
activity of the operators. For example in Fig. 3, get-item-different-room and 
get-item-in-room are two alternative strategies that may be used to reach the parent 
goal get-item. Which one of them is preferred depends upon whether the target item is 
in the current room or not. On the other hand, the operators go-towards-door and 
go-through-door should be executed sequentially in a loop to achieve their high-level 
goal. Each time the agent enters a room that does not contain the target item, the agent 
selects a door and moves towards it (go-towards-door), until the agent is close enough 
to go through the door to enter a new room (go-through-door). If the item is not in the 
new room, the agent reselects a door and goes towards it (go-towards-door). If the 
agent enters a room containing the item, the operator get-item-different-room is 
immediately retracted with all of its suboperators and get-item-in-room is selected.  

The initial knowledge that the system has about the operators consists of their 
names, the hierarchical relation among them and the scope of their parameters. The 
final agent obtained as the result of learning should have the capability of maintaining 
the activity of the operators (i.e. selecting them with correct parameters, stopping 
them when they achieve their goal, abandoning them in preference of other operators, 
etc.) and executing them (managing the suboperators). 

2.3 Behavior and Annotation Recorder 

While the expert or the agent program is performing a task, symbolic state of the 
environment is recorded into a structure called a behavior trace. The symbolic 
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representation that the SER maintains is sampled in small intervals, at consecutively 
enumerated time points si called situations. We assume that the domain dependent 
sampling frequency is sufficiently high so that no significant changes occur between 
two consecutive situations. We say that the observed situation predicate p(si, a, b) 
holds if and only if p(a, b) was in SER at the situation si.  

If the environment contains static facts (i.e. rooms, doors, etc...) that do not change 
over different situations, that information can be added to the beginning of the 
behavior trace manually, even if the expert does not perceive them directly. This 
corresponds to the assumption that the expert already knows about these features and 
the learning system will use this information as background knowledge as it creates 
the model of the expert. If p(x, y) is such a static fact, we say that the assumed 
situation predicate p(si, x, y) is true for any si.  

In the first execution mode, the expert annotates the situations in his/her behavior 
with the names of the operators and parameters that he/she selects from the operator 
hierarchy (i.e. Fig. 3). A valid selection that satisfies the semantics of the operator 
hierarchy must form a connected path of operators starting from the root of the 
operator hierarchy. Since the actions are executed using SER directly, action 
annotations can be recorded automatically without any expert effort. In the second 
execution mode, the expert inspects the annotated behavior traces proposed by the 
agent program and verifies or rejects the annotations.  

We assume that the expert annotates a set of consecutive situations at a time. For a 
set of consecutive situations R and an operator op(x) where x is an instantiated 
operator parameter vector, if the expert annotates the situations in R with op(x), we 
say accepted-annotation(R, op(x)) where R is called the annotation region. Similarly, 
we say rejected-annotation(R, op(x)), if the expert has rejected the agent program’s 
annotation of R with op(x).  

2.4 Episodic Database 

In practice, it is inefficient to store the list of all predicates that hold at each situation 
explicitly, especially in domains where sampling frequencies are high and there is 
much sensory input. The episodic database efficiently stores and retrieves the 
information contained in structured behavior traces and expert annotations. In each 
execution cycle, the training set generator accesses the episodic database while 
creating positive and negative examples of the decision concepts to be learned. 
Similarly, the ILP component accesses it to check whether particular situation 
predicates in the background knowledge hold in the behavior trace. Although the 
examples are generated only once for each concept, the background situation 
predicates may be accessed many times during learning. Typically, ILP systems 
consider many hypotheses before they return a final hypothesis as the result of 
learning and each time a different hypothesis is considered, the validity of background 
situation predicates that occur in the hypothesis must be tested. To make learning 
practical in large domains, it is crucial that the episodic database is an efficient 
structure.  

We assume that for each situation predicate p, the arguments are classified as input 
or output types. Many ILP systems already require a similar specification for 
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background predicates.1 The episodic database receives situation predicate queries of 
the form p(s, x, y) where s is an instantiated situation, x is an instantiated vector of 
input variables, y is a vector of not instantiated output variables. The result of the 
query is y vectors that satisfy the query.  
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Fig. 4. Search for the query contains(s23, x1, Y) in the episodic database 

In episodic database, each situation predicate is stored using multiple binary trees 
(Fig. 4). The leaves store the output values explicitly wherever they change and the 
nodes store the situations where these changes occur. More formally, for each pair 
(p, x), where p is a situation predicate and x is an input vector, the episodic database 
explicitly stores the output values Ys, the set of all y vectors satisfying p(s, x, y) for 
each situation s, where Ys has changed compared to previous situation. Moreover, for 
each (p, x), it contains a binary search tree, where the nodes are these change 
situations and the leaves are the Ys vectors. For example in Fig. 4, we have the index 
structure that represents the predicate contains(+Situation, +Room, -Item). This 
particular tree shows that room x1 does not contain any objects in the initial situation. 
At situation s15, the item y1 appears in the room x1. No changes occur, until the 
situation s20 when a new item y2 is added to the room and so on. For example, to 
answer the query contains(s23, x1, Item), first the correct index tree associated with the 
pair (contains, x1) is located using a hash table, then by a binary search, the last 
change before s23 is located. In this case, the last change occurs at s20 and Item will be 
instantiated with y1 and y2.  

In our system, hand-coded static background knowledge is an important special 
case that is handled very easily by the episodic database. These predicates are added 
to the behavior trace once and then are never changed. The episodic database stores 
them very efficiently because their index trees will be reduced to single nodes. The 
expert annotation predicates are also stored in episodic database by using the operator 
name as input variable, and the operator arguments as output variables. 

The episodic database stores the behavior traces efficiently, unless there are multi-
valued predicates (multiple output instantiations at a situation) that change frequently 

                                                           
1 Arguments that are declared constants are treated as input in episodic database 

representation. 
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or background predicates that have multiple mode definitions (input/output variable 
specifications) each requiring a separate set of index trees. In the domains we applied 
our system to, the first problem is negligible and the second problem does not occur.  

Struyf, Ramon and Blockeel [18] describe a general formalization for compactly 
representing ILP background knowledge in domains that have redundancy between 
examples, which corresponds to consecutive situations in our case. Their system 
would represent our situation predicates by storing a list of predicate changes between 
each pair of consecutive situations. In that representation, to test a particular situation 
predicate, the behavior trace would have to be traced forward from the initial node, 
completely generating all facts in all situations until the queried situation is reached. 
For an ILP system that tests each rule over multiple examples, our approach would be 
more time efficient in domains having many facts at each situation because we don’t 
need to generate complete states and we don’t have to trace all situations. Instead, the 
episodic database makes binary tree searches only for the predicates that occur in the 
rule to be tested. In our learning by observation system, the gain from the episodic 
database is even more dramatic because the examples of the learned concepts are 
sparsely distributed over situation history.  

2.5 Decision Concepts and Generating Examples 

In section 2.2, we discuss how the problem of “learning an agent program” is 
decomposed into multiple “learning to maintain the activity of an operator” problems. 
In this section, we further decompose it into multiple “decision concept learning” 
problems that can be framed in an ILP setting. 

A decision concept of an operator op is a mapping from the internal state and 
external observations of an agent to a “decision suggestion” about the activity of op. 
We currently define four decision concepts: selection-condition (when the operator 
should be selected if it is not currently selected), overriding-selection-condition (when 
the operator should be selected even if another operator is selected), maintenance-
condition (what must be true for the operator to be maintained during its application), 
and termination-condition (when the operator has completed and should be 
terminated). For each decision concept, we have to define how their examples should 
be constructed from the observation traces and how they are used during execution. In 
general, for a concept of kind con and an operator op(x), we get a decision concept 
con(s, op(x) ) where s is a situation and x a parameter vector of op. For example 
selection-condition(S, go-to-door(Door)) would describe under which situation S the 
selection of go-to-door(Door) is advised and with what value Door should be 
instantiated. 

The training set generator constructs the positive and negative examples of 
decision concepts, using the expert annotation information stored in episodic 
database. For a decision concept con and expert annotation op(x0), where x0 is an 
instantiated parameter vector, a positive (negative) example is a ground term 
con(s, op(x0) ), where s is an element of a set of situations called positive (negative) 
example region of op(x0). Fig. 5 depicts the positive and negative example regions of 
an operator opA, for different kind of decision concepts. The horizontal direction 
represents time (situations) in the behavior trace and the boxes represent the accepted 
annotation regions P, A, and B of three operators parent(opA), opA, and opB such that 
parent(opA) is the parent operator of opA, and opB is an arbitrary selected operator that 
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shares the same parent with opA. opB may be the same kind of operator with opA, but it 
should have a different parameter instantiation. The positive example region of the 
selection condition of opA is where the expert has started pursuing opA and its negative 
example region is where another operator is selected (Fig. 5.b). As an example, if we 
have opA = go-towards-door(d1), A=s20-s30, and B=s50-s60, we could have the positive 
example selection-condition(s20, go-towards-door(d1)) and the negative example 
selection-condition(s50, go-towards-door(d1)). 

 

 

(a) termination-condition(opA) (b) selection-condition(opA)

(c) overriding-selection-condition(opA) (d) maintenance-condition(opA) 
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Fig. 5. The positive and negative example regions of different concepts. A, B, and P are the 
annotation regions of the operators op

A
, op

B
, and their parent operator parent(op

A
) 

In general, the examples of decision concepts of an operator opA are selected only 
from situations where there is the right context to consider a decision about it. Since 
the operator hierarchy dictates that parent(opA) must be active at any situation where 
opA is active, all decision concept examples of opA are obtained only at situations 
where parent(opA) is active. Similarly during the execution, the decision concepts of 
opA are considered only at situations where parent(opA) is active.  

Different concepts will have different, possibly conflicting suggestions on how the 
operators should be selected. For example, a situation where termination-
condition(opA) holds suggests that the agent has to terminate opA, if opA is active and 
that opA should not be selected if it not active. selection-condition(opA) would be useful 
to decide whether opA should be selected, if a previous operator opB is already 
terminated (i.e. because of termination-condition(opB) ), it would not be very useful 
while opB is still active because such situations are not considered as examples for 
selection-condition(opA). On the other hand, overriding-selection-condition(A) could 
indicate terminating opB and selecting opA, even during the situations where opB is 
active. Neither selection-condition(opA) nor overriding-selection-condition(opA) makes a 
suggestion while opA is active, because their examples are not collected in such 
regions. Finally, like overriding-selection-condition(opA), maintenance-condition(opA) 
suggests that opA should start even if another operator is still active. Unlike the other 
selection conditions, absence of maintenance-condition(opA) suggests that opA should 
not be started at situations where it is not active, and that opA should be terminated, if 
it is active.  

If our goal were programming an agent manually, having only a subset of these 
concepts could be sufficient. For example, the rules in Soar version 7 are closer to 
termination/selection conditions while the rules of Soar version 8 are closer to 
maintenance conditions. Nevertheless, given a representation language, a particular 
operator may be more compactly represented using a subset of concepts, making it 
easier to learn inductively.  
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In general, different decision concepts of an operator may have conflicting 
suggestions. There are several possibilities for dealing with this problem. One can 
commit to particular priority between the decision concepts. For example KnoMic 
[21] learns only selection and termination conditions. In execution, KnoMic assumes 
that termination conditions have higher priority. Another alternative is to have a 
dynamic conflict resolution strategy. For example, a second learning step could be 
used to learn weights for each concept such that the learned weight vector best 
explains the behavior traces. In this paper, we don’t further explore conflict resolution 
strategies but we concentrate on learning individual decision concepts. 

2.6 Learning Concepts 

The learning component uses an ILP algorithm, currently inverse entailment [13], to 
learn a theory that represents decision concepts using the examples received from the 
training set generator, the situation predicates stored in the episodic database, and 
hand-coded domain knowledge.  

 
selection-condition(S, go-to-door(Door) )   ← 
 active-operator(S, get-item(Item) ), 
 current-room(S, agent, Room1 ), 
 has-door(S, Room1, Door ), 
 path(S, Room1, Path), 
 pathdoor(S, Path, Door), 
 destination(S, Path, Room2), 
 contains(S, Room2, Item). 

Fig. 6. A desired hypothesis for the selection condition of go-to-door operator 

Soar stores its binary predicates as a directed graph (Fig. 2), and regular Soar 
programs take advantage of this property by using only rules that instantiate the first 
arguments of these predicates before testing them. Fortunately, this structural 
constraint can be very naturally represented in inverse entailment (and many other 
ILP algorithms) using mode definitions and it significantly reduces the search space. 
Fig. 6 depicts a correct rule that is learned during the experiment reported in section 
3.1. It reads as: “At any situation S with an active high-level operator get-item(Item), 
the operator go-to-door(Door) should be selected if Door can be instantiated with the 
door on the shortest path from the current room to the room where Item is in.” 

The learning system models the selection decision of go-to-door by checking the 
high-level goals and retrieving relevant information (active-operator retrieves 
information about the desired item), by using structured sensors (i.e. current-room), 
and domain knowledge (i.e. has-door, path) 

During evaluation of a hypothesis, the situation predicates, such as current-room or 
contains, call background predicates that query the episodic database structure. active-
operator is a special hand-coded background predicate that generates the parameters 
of the active parent operator2 by calling the accepted-annotation predicates stored in 
the episodic database. 

                                                           
2 The actual syntax of this predicate is slightly more complex to comply with the restrictions of 

the ILP algorithm used. 
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The operator hierarchy simplifies the search for a hypothesis in two ways. First, the 
decisions about an operator are learned in the context of the parent operator. The 
conditions for maintaining a parent operator are implicit conditions of the child 
operator; they don’t need to be learned and as a result the conditions get simpler and 
easier to learn. At a level of the hierarchy, learning only the distinctions of selecting 
between sibling operators may be sufficient. Second, object-valued parameters of a 
parent operator can provide access to the more relevant parts of the background 
knowledge (i.e. active-operator), in effect simplifying the learning task. For example 
in Fig. 6, the conditions for selecting the correct door could be very complex and 
indirect if the parent operator did not have the Item parameter that guides the search 
(i.e. the towards the room that contains the item).  

We have two mechanisms for encoding domain knowledge to be used in learning. 
In section 2.2, we described the assumed situation predicates that are added to the 
behavior trace as factual information the expert may be using. An alternative is to use 
a hand-coded theory written in Prolog. In our example in Fig. 6, the rule uses assumed 
knowledge about path structures between each pair of rooms (i.e. path, pathdoor, 
destination). An alternative would be that the agent infers that information 
dynamically during learning, for example using knowledge about the connectivity of 
neighbor rooms. For example we could have a shortest-path(+Situation, +Room1, 
+Room2, -Door) predicate which infers that Door in Room1 is on the shortest path 
from Room1 to Room2.  

2.7 Agent Generation for a Particular Agent Architecture 

At the end of each learning phase, the learned concepts should be compiled to an 
executable program in an agent architecture, in our case Soar. In general, the 
conditions at the if-part of the decision concepts should be “testable” by the agent 
program. The translation of observed situation predicates is trivial. On the other hand, 
for each hand-coded background predicate, we should have corresponding hand-
coded implementations in the agent program. For example, while the active-operator 
is a prolog program that checks accepted-annotation predicate during learning, it 
should have an agent architecture specific implementation to be used in execution that 
checks and returns information about the active high-level operators.  

3 Experiments 

We have conducted two set of experiments to evaluate our approach. In the first 
experiment, we generated artificial examples for a selection condition concept in a 
building navigation problem. We used the inverse entailment implementation Progol 
[13] for that experiment. For the second experiment, we used behavior data generated 
by Soar agents with our learning by observation framework (Fig. 1), partially 
implemented in SWI-Prolog. Our program intercepts the symbolic interaction of Soar 
agents with the environment, stores the interactions in an episodic database, creates 
decision concept examples, and declarative bias (such as mode definitions), and calls 
the ILP engine Aleph [17] that we have embedded in our system. In these more recent 
experiments, we have used Aleph instead of Prolog because Aleph is more 
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customizable. It was easier to embed Aleph into our system because it also runs on 
SWI-Prolog. Using behavior of hand-coded Soar agents to create new “clone” agents 
allows us to easily experiment with and evaluate our framework. Since Soar agents 
already use hierarchical operators, it is easy to extract the required goal annotations 
from them. While the intercepted environmental interaction is used to create the 
behavior trace, the internal reasoning of the agents is only used to extract the goal 
annotations. 

3.1 Learning from Artificially Created Data 

In our first experiment the selection condition of go-to-door is learned in the context 
of get-item using artificially created examples. One possible correct hypothesis in this 
problem is depicted in Fig. 6. The goal is to learn to select a door such that it is on a 
path towards an item that the agent wants to get. 

In this experiment, we have artificially created situations where go-to-door(Door) 
operator is selected. First, we generated random map structures consisting of rooms, 
doors, items, paths, and shortest path distances between rooms. Then, we have 
generated random situations by choosing different rooms for the current-room sensor, 
and different items as the parameter of the high-level get-item goal. Finally, we have 
generated positive examples of our target concept by choosing a situation and the 
parameter of the go-to-door operator, namely, the correct door objects that leads 
toward the target item. 

Instead of using negative examples, we marked a varying number of positive 
examples with a “complete selection” tag, indicating that the expert returns all of the 
best parameter selections for that situation (i.e. there maybe multiple doors that are on 
a shortest path). We used declarative bias to eliminate hypotheses that satisfy Door 
variables that are not among the expert selection for these marked examples.  

To cover qualitatively different cases, we have generated 6 maps using 2 
possibilities for the number of items on the map (1 or 3 items) and 3 possibilities for 
connectivity of the rooms (0, 3, or 6 extra connections where 0 means a unique path 
between each pair of rooms.). In these examples, a varying number of examples are 
marked with the “complete selection” tag (0-5 positive examples are marked). For 
these 36 combinations, we have conducted 5 experiments each with 5 positive 
examples. We ran Progol with noise setting turned off, searching for the best 
hypothesis that cover all positives while satisfying declarative bias.  

We measured the learned hypothesis in terms of over-generality, over-specifity and 
accuracy. For example if for a situation s the doors that satisfy the correct hypothesis 
are {d1,d2,d3} and the doors that satisfy learned hypothesis h are {d1,d2,d4,d5,d6}, then 
we get: accuracy(h, s) = 2/6, overgenerality(h, s) = 3/6, and overspecifity(h, s) = 1/6. 

To evaluate the learned hypothesis, we have created test sets consisting of 6 
random maps each with 10 fully connected rooms, choosing from 3 possibilities for 
connectivity (0, 5, or 10 extra connections) and 2 possibilities for the number of items 
(1 or 3 items). We have intentionally used test maps larger than training maps to 
ensure that hypotheses that may be specific to the training map size are not measured 
as accurate during testing. 
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Fig. 7. Average accuracy, overspecifity and overgenerality of learned hypotheses on test data. 
Each data point is the average of 30 learned hypotheses 

For each map, we have tested both the learned hypothesis and the correct 
hypothesis over all possible situations on these maps. (All possible combinations of 
current room and target item values.) For each of them, we have compared the output 
variables the hypotheses generate, namely the instantiations of the door variables. Fig. 
7 shows the average accuracy is steadily increasing with the number of tagged 
examples. 

3.2 Learning from Agent Program Generated Data 

In this experiment, we have used the annotated behavior traces generated by a Soar 
agent in Haunt domain. All behavior data is created using a single level map 
consisting of 13 fully connected rooms that are marked with symbolic nodes to help 
the navigation of the agent. For each door, there are nodes on each side of the door. 

The Soar agent controls a virtual character that has previously explored the level 
and built up an internal map of the rooms and the location of items in the level. In our 
experiment, we concentrated on the behavior it generates to retrieve items. The Soar 
agent randomly chooses an item, and selects the goal goto-room(Room) by 
instantiating Room with the room where the item is in. It then uses 
goto-node-in-room(Node) and goto-node-next-room(Node) operators to go towards 
Room. The agent selects goto-node-in-room operator to move to a node in front a door 
that leads towards Room. To go through the door, the agent chooses 
goto-node-next-room with a node on the other side of the door and moves towards it. 
These two operators are used in a loop until the agent is in the target room and the 
parent operator goto-room is retracted.  

In this experiment, our goal is to learn the selection and termination concepts (Fig. 
5 a, b) of goto-node-in-room in the context of a given goto-room operator. We have 
collected 3 minutes of behavior trace of the Soar agent (~30000 situations). 

We have recorded several numerical sensors such as x-coordinate, distance to 
visible objects, and object valued sensors that monitor the last visited node, the nodes 
the agent can see, the nodes in front of the agent, the nearest visible node, the current 
room, and the previous room among others. The learning system used background 
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knowledge about the locations of nodes, rooms, doors, and their relation to each other. 
A typical situation contained over 2000 situation predicates and a typical bottom 
clause (generated to variable depth 4) has over 500 literals. 600 positive and 200 
negatives examples are generated for each concept. We ran Aleph with its default 
inverse entailment strategy. The numerical sensors are only used in a limited way; 
only within conditions that test whether sensors are close to constant values.  

Although this experiment returned the correct termination condition, we got an 
overgeneral theory for the selection condition that may select a random node in the 
current room. Probably this stems from the fact that the negative examples are 
generated at situations where the learned operator is not selected (Fig. 5.b). These 
situations do not provide sufficient information about which parameter selections 
would be incorrect at a situation where the learned operator is selected. 

Based on this observation, we have conducted another experiment where the 
selection condition of goto-node-in-room is learned correctly using a slightly different 
approach. For each positive example cond(s, op(x1)), we generated negative examples 
of the form cond(s, op(x2)) using the same situation s but different operator 
parameters. In our case, x2 would be a node that the expert has not selected in situation 
s. This approach resembles the positive-only learning strategy described by 
Muggleton [13] except that in our case, the negative examples are generated by 
choosing only the operator parameters randomly not the situations. We have selected 
these parameters randomly from the set of parameters observed in expert annotations. 
Using the positive examples in previous experiment and generating 20 random 
negatives for each, we get the correct rule in Fig. 8.  

 
selection-cond( S, goto-node-in-room( TargetNode) ) ← 
 active-operator(S, goto-room(TargetRoom) ), 
 current-room(S, agent, CurrentRoom), 
 path(S, CurrentRoom, Path), 
 pathnode(S, Path, TargetNode), 
 destination(S, Path, TargetRoom). 
 

Fig. 8. Selection condition of goto-node-in-room operator induced using only positive examples 

In this experiment, we have demonstrated that general correct concepts for 
selecting and terminating operators can be learned in structured domains using only 
correct expert behavior. Our experiment indicates that negative examples obtained at 
situations where an operator is not selected may not be sufficient in learning operators 
with parameters. Generating negative examples with random parameters may solve 
this problem.  

4 Related Work 

Khardon [7] studied learnability of action selection policies from observed behavior 
of a planning system and demonstrated results on small planning problems. His 
framework requires that goals are given to the learner in an explicit representation, 
while we try to inductively learn the goals.  
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To learn procedural agent knowledge, there are at least two alternatives to learning 
by observation. One approach is to learn how the agent actions change the perceived 
environment and then use that knowledge in a planning algorithm to execute 
behavior. TRAIL [1] combines expert observations and experimentations to learn 
STRIPS like teleoperators using ILP. OBSERVER [23] uses expert observations to 
learn planning operators in a rich representation (not framed in an ILP setting). Moyle 
[12] describes an ILP system that learns theories in event calculus, while Otero 
describes an ILP system that learn effects in situation calculus [15]. These systems 
could have difficulty if changes caused by the actions are difficult to observe, 
possibly because the actions cause delayed effects that are difficult to attribute to 
particular actions. In these cases, our approach of trying to replicate expert decisions, 
without necessarily understanding what changes they will cause, may be easier to 
learn. 

Another alternative to learning by observation is to use reinforcement learning. 
Relational reinforcement learning [4] uses environmental feedback to first learn utility 
of actions in a particular state and then compiles them to an action selection policy. 
Recently, expert behavior traces have been combined with the traces obtained from 
experimentation on the environment [3]. Expert guidance helps their system to more 
quickly reach states that return feedback. In this system, the selections of the experts 
are not treated as positive examples and learning still uses only environmental 
feedback. In complex domains, our strategy of capturing the expert behavior may be 
easier than trying to justify actions in terms of future gains, especially when the 
reward is sparse. Moreover, replicating the problem solving style of an expert, even if 
he/she makes sub-optimum decisions, is an important requirement for some 
applications such as creating “believably human-like” artificial characters. Unlike 
learning by observation, none of the two approaches above are very suitable for that 
purpose because their decision evaluation criteria is not based on similarity to expert 
but success in the environment. 

5 Conclusions and Future Work 

We have described a framework to learn procedural knowledge from structured 
behavior traces, structured goal annotations and complex background knowledge. We 
decomposed the learning an agent program problem to the problem of learning 
individual goals and actions by assuming that they are represented with operators that 
are arranged hierarchically. We operationalized learning to use these operators by 
defining decision concepts that can be learned in a supervised learning setting. We 
have described an episodic database formalism to compactly store structured behavior 
data. Episodic database was crucial in testing our system in a large domain. We have 
partially implemented the first cycle of our framework, where the learning system 
uses only correct behavior data. We have conducted two experiments to evaluate our 
approach. In the first experiment, we used a small data set of artificially created 
situations. Here, the target concept is successfully learned, but we required additional 
expert input in addition to the correct decisions. In the second experiment, we used a 
large data set generated from the behavior of a hand-coded agent in a complex 
domain. Learning selection conditions as defined in Fig. 5 generated overgeneral 
results, because the learning system did not have sufficient information to eliminate 
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incorrect parameter selections. When selection conditions are learned with a “positive 
examples only” strategy, this problem is overcome and a correct concept is learned.  

    Our first goal for future work is to implement the second execution cycle of our 
framework. We predict that the behavior data obtained this way will provide valuable 
examples and improve learning results. A formal evaluation of our episodic 
database formalism is also left for future work. We are currently extending this 
formalism so that it not only compactly represents behavior data, but also test rules 
more efficiently by testing the rules on a range of situations at once. 
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