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ABSTRACT: A rarely studied issue with using persistent computational models is whether the underlying 

computational mechanisms scale as knowledge is accumulated through learning. In this paper we evaluate the 

declarative memories of Soar: working memory, semantic memory, and episodic memory, using a detailed simulation of 

a mobile robot running for one hour of real-time. Our results indicate that our implementation is sufficient for tasks of 

this length. Moreover our system executes orders of magnitudes faster than real-time, with relatively modest storage 

requirements. We also project the computational resources required for extended operations.   

1. Introduction 

There are few computational challenges to model 

behavior over short time spans when there is minimal 

prior knowledge or when there is little to no accumulation 

of knowledge or experience. The challenges arise when 

we attempt to model behavior over long time spans where 

an agent builds up internal structures based on its 

experience. As these structures accumulate, the cost of 

adding and accessing that knowledge can grow beyond 

available computational resources (Derbinsky, Laird, & 

Smith, 2010; Douglass, Ball, & Rogers, 2009). With 

efficient models, we can test and evaluate them faster, 

using cheaper systems, and use them in real-time tasks.  

 

The emphasis of our research is on tasks that require 

human-level reasoning, memory, and learning. We are 

less concerned with the detailed modeling of human 

behavior, where the goal is to match human reaction times 

and error rates. Instead, we are interested in creating 

models that perform complex tasks, using and acquiring 

large stores of knowledge across extended time spans, 

often requiring significant internal processing and 

planning. TacAir-Soar (Jones et al., 1999) and RWA-Soar 

(Hill et al., 1997), two systems that modeled U.S. pilot 

tactical behavior in fixed wing and rotary wing vehicles, 

have many of these qualities, although they did only 

limited planning and did not learn from experience. 

 

Over the last five years, we have extended the Soar 

cognitive architecture with semantic and episodic memory 

(Laird, 2008). In previous work, we evaluated the 

performance of those memories, but our evaluations had 

short comings: either they used artificial tasks (Nuxoll & 

Laird, 2007), or they focused on using pre-loaded 

knowledge and not on knowledge that accumulates 

through experience (Derbinsky & Laird, 2009; Derbinsky 

et al., 2010). Evaluations of other declarative memories in 

cognitive architectures have also focused on preloaded 

structures (Douglass et al., 2009; Douglass & Myers, 

2010), whereas evaluations of episodic memory have 

been restricted to small numbers of preloaded episodes (as 

in research on case-based reasoning) or small numbers 

(~250) of episodes (Tecuci & Porter, 2007). 

 

To fill this void, in this paper we evaluate performance 

within a simulation of a real-world task: a mobile robot 

exploring, navigating, and moving objects in a small 

building. In this task, the agent’s declarative memories 

build up incrementally over an hour of real-time 

execution, and the agent’s perception of the environment 

is based on detailed models of real-world sensory data. 

One goal is to discover the requirements for semantic and 

episodic memory in such a task and whether our 

implementations are sufficient to support real-time 

behavior over long time scales. A second goal is to 

discover the relative costs and benefits of the different 

memory systems for real-world tasks. One justification 

for adding semantic memory to Soar was the concern that 

maintaining large number of elements in working 

memory would significantly degrade performance, 

independent of its cognitive implausibility (Derbinsky & 

Laird, 2010). A third goal is to discover interactions 

between semantic and episodic memory. Soar provides a 

unique opportunity to pursue these goals. 

2. The Soar Cognitive Architecture 

Figure 1 shows the structure of Soar. Perception delivers 

symbolic structures to working memory, which is a 

symbolic graph. All the long-term memories retrieve 

information based on the contents of working memory 

and add, delete, or modify working memory structures. 



The knowledge in procedural memory is encoded as rules, 

which match and fire in parallel to create working 

memory structures as well as preferences for selecting 

operators. Operators are the locus of decision making and 

include both primitive actions, such as moving or turning 

a robot, and abstract actions such as find-a-block, go-to-

the-next-room, or go-to-the-storage-room. The decision 

procedure analyzes the preferences and selects the current 

operator by adding a structure to working memory.  

Abstract operators are dynamically decomposed into 

simpler operators until a primitive operator is selected. 

Once a primitive operator is selected, rules match and 

apply the operator’s actions. For internal operators, such 

as building up an internal map, changes are made to 

working memory. For external operators, such as moving 

the robot, commands are added to the output buffer in 

working memory, and are sent to the motor system. 

Retrievals from other long-term memories are initiated by 

creating cues in those memories’ buffers.  

 

The basic cycle is to process input, fire rules that match, 

select an operator, fire rules to apply the operator, and 

then process output commands and retrievals from long-

term memory. The time to execute this processing cycle 

determines reactivity. Based on our experience with 

cognitive modeling, human behavior models, and robotic 

systems, 50 msec. is sufficient for real-time reactivity. As 

evident in Figure 1, Soar has additional memories and 

processing modules; however, they are not evaluated in 

this paper, and are not discussed further.  

3. Mobile Robot Domain 

Soar has been used to control both real (Laird & 

Rosenbloom, 1990; Laird et al., 1991) and simulated 

vehicles (Hill et al., 1997; Jones et al., 1999). For this 

evaluation, we use a system where Soar
1
 controls a small 

                                                           
1 Experiments used Soar 9.3.1, which is available with the 

simulation environment through sitemaker.umich.edu/soar. 

mobile robot (Figure 2; Laird, 2009). Our evaluation uses 

a simulation instead of the real robot because of the 

difficulties in running experiments in the large physical 

spaces required. Moreover, the simulated robot can run 

unattended on multiple computers at once. When Soar 

controls the real robot, it runs on a laptop perched on the 

robot as shown in Figure 2. The simulation is quite 

accurate and the Soar rules (and architecture) used in the 

simulation are exactly the same as the rules used to 

control the real robot. 

The robot can move forward and backward, and turn in 

place. It has a laser-range finder mounted in the front that 

gives distances to 180 points throughout 180 degrees. Our 

software condenses those points to 5 regions that are 

sufficient for it to navigate and avoid obstacles. The robot 

can sense its own location based on odometry, and it can 

also sense the room it is in, the location of doors and 

walls, and different types of objects. These additional 

sensors are simulated, and when controlling the real robot, 

it uses a synthesis of real and simulated sensor data. 

During a run (both real and simulated), there are 

approximately 150 sensory data elements, with 

approximately 20 values changing each cycle. The 

changes can peak at 260 per cycle when the agent moves 

from room to room because all the data about the current 

room, walls, and doorways change at once. 

 

Throughout the paper, we refer to the robot, Soar, and 

rules as an agent. We evaluate two agents that differ in 

their rules. The first is the “simple agent,” which serves as 

a knowledge-lean baseline for comparison. This agent 

explores randomly, moving from room to room, without 

maintaining any persistent. It consists of 22 rules.  

 

The second, “complex agent” can perform multiple tasks, 

including cleaning rooms and patrolling. We focus on 

room cleaning where it picks up and moves specific types 

of blocks (such as square green blocks) to a storage room. 

The complex agent dynamically constructs a map of the 

rooms, doorways, and their spatial and topological layout, 

as well as the locations of all blocks as it encounters them 
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Figure 1: Structure of Soar 
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Figure 2: Splinterbot mobile robot. 



during its explorations. Each room, block, wall, and 

doorway is represented by 6-9 data elements in the 

agent’s memories. The agent initially has no map 

information except for the identity of the storage room 

(but not its location).   

 

When attempting to travel to a distant room, such as when 

dropping off a block at the storage room, the agent 

internally simulates moving to neighboring rooms in its 

map, searching for a path to the storage room. This 

“simulation” does not use the external simulator, but the 

agent’s map knowledge. The search is a combination of 

progressive deepening (Newell & Simon, 1972) and A* 

search (Hart, Nilsson, & Raphael, 1968). The agent also 

plans when it needs to return to a previously seen block, 

or when it attempts to move to a room it has detected but 

not visited. The internal search is performed within the 

agent, using rules, spread across multiple cycles, made 

possible by Soar’s support for a Universal Weak Method 

(Laird & Newell, 1983).  

 

The complex agent has 562 rules and is parameterized so 

that by modifying data elements in working memory, it 

performs all the variations in behavior described in this 

paper, including using either working memory or 

semantic memory to store map information, and using 

either working memory, semantic memory, or episodic 

memory to store block location information.  

 

The experiments are performed using a map with 25 

rooms connected via 24 doorways in a straight line from 

north to south. This map eliminates most variations in the 

agent’s behavior that would arise from random decisions 

in a less structured map. There are a total of 44 blocks 

spread across the 25 rooms, 23 of which satisfy the 

agent’s criteria for blocks it wants to move to the storage 

room. These blocks are spread across the rooms so that 

there is at most one block per room. The agent starts at 

the north end and the storage room is in the southern-most 

room. Although the rooms are in a straight line, the agent 

must plan after it picks up a block to determine whether to 

go north or south to get to the storage room.  

 

All experiments are run for one hour of elapsed real-time, 

during which the agent completes approximately 1/3 of 

the task. During 1 hour, our agents execute ~25,000,000 

processing cycles. The data is aggregated every 10 

seconds, which is ~70,000 processing cycles. We focus on 

the following performance metrics. 

 Average working memory size. Although Soar’s rule 

matcher is relatively immune to growth effects from 

the number of rules, it is not immune to growth in the 

number of working memory elements tested by rules. 

 Average msec./processing cycle. This indicates how 

much time is required for a processing cycle. For 

these tasks, we expect the average to be low because 

usually the agent is doing minimal processing as it 

moves in a straight line toward its next destination 

(such as a doorway or a block).  

 Maximum msec./processing cycle. This indicates the 

“surge” in computational requirements, which can be 

orders of magnitude higher than the average. The 

value of this metric determines real-time reactivity. 

Our goal is to be below 50 msec.  

 Total long-term memory size. This measures how 

much computer memory is required to hold the 

structures in semantic and episodic memory. To 

maintain efficient access, Soar’s memories are 

maintained in the computer’s main memory (RAM). 

96 GB is a reasonable limit for current workstations. 

The data are averaged over 5 runs, except for the 

maximum msec./processing cycle. For those data, we use 

a representative run. Because Soar waits for the 

simulation environment at the end of each cycle, Soar 

uses only a fraction of the available processing time 

(~7.5%). All experiments were run on an Intel i7 

860@2.8Ghz, with 8 GB of memory. In the following 

sections, we evaluate working memory, semantic 

memory, and then episodic memory.  

4. Working Memory 

As mentioned earlier, working memory in Soar is a graph, 

with each edge of the graph being a working memory 

element that consists of an identifier, an attribute, and a 

value. Each element can be added or removed 

independent of other elements. This is in contrast to ACT-

R (Anderson, 2007), which bundles structures together as 

chunks, which are added, modified, or removed as a 

single unit. However, we will often refer to all of the 

working memory elements that share a common identifier 

as an object, which thus corresponds roughly to a chunk, 

with the object identifier corresponding to a chunk id. 

Objects in Soar refer to entities in the world (rooms, doors 

blocks), internal concepts, words, and so on. There is no 

bound on the number of elements in working memory, 

and working memory grows and shrinks over the lifetime 

of an agent as elements are added and removed.  

 

Figure 3 shows the maximum number of working 

memory elements (WMEs) for the simple and complex 

agents. As expected, working memory in the simple agent 

does not grow. The complex agent builds up working 

memory as it explores, but once it visits all rooms (at 

~770 seconds) memory levels off. As evident in the 

figure, ~ 3,000 elements are needed to represent the map 

and blocks.  



Given the large working memory in the complex agent, 

our expectation is that we will see a significant 

degradation in performance in the cycle time of the agent 

as the memory grows. This is because the underlying 

algorithm for matching rules in Soar, called Rete (Forgy, 

1982), is designed to scale well with the number of rules, 

but not with the size of working memory. As more 

working memory elements are added, it is often the case 

that there are more ways a rule can match, and in some 

cases, that can lead to more than linear growth in the 

computational processing required to determine which 

rules match. In the specific task performed by our agents, 

the number of blocks to be picked up leads to such an 

increase when the agent must decide which block to pick 

up next after depositing a block in the storage room.  

 

Figure 4 shows the average CPU time in msec. per 

processing cycle. Both agents maintain consistent 

performance throughout the task, showing little, to no 

degradation over time, with the complex agent being 

slower on average. Moreover, the average time (<.015 

msec./cycle) is orders of magnitude faster than required 

for real-time performance (50 msec.).  

To explore the performance of the complex agent in more 

detail, in Figure 5 we examine the maximum time spent in 

a processing cycle. The simple agent has a low, stable 

maximum msec./processing cycle, while the complex 

agent has significantly more variation. That variation 

initially increases as the map is built up (0-770 seconds). 

From that point on, the highest points arise when the 

agent is choosing which block to pick up next.  

The high values are the exception, and even with them, 

the average cycle time is hundreds of times less at ~.02 

msec. Moreover, the variation is minimal when taken 

within the context of achieving a cycle time of less than 

50 msec. Thus, an important result is that maintaining all 

structures in working memory is adequate for this task.  

5. Semantic Memory 

In Soar, semantic memory holds long-term, persistent 

declarative structures that generally correspond to facts 

about objects or concepts. For this task, that includes the 

map and the location of the blocks. In Soar, structures in 

semantic memory are deliberately stored from working 

memory. Semantic memory can also be pre-loaded with 

structures from external knowledge bases such as 

WordNet (Derbinsky et al., 2010). To speed retrievals, 

our implementation uses an inverted index (similar to 

what is done in search engines), combined with statistical 

query optimizations, using SQLite as a backend.  

 

To retrieve structures from semantic memory, a Soar 

agent creates one of two types of cues in a working 

memory. In cue-based retrievals, the cue consists of 

multiple working memory elements that provide a partial 

description of an object. The semantic memory system 

finds the object in semantic memory that best matches the 

cue. The search is biased by recency, and there is no 

“spreading” of activation as is sometimes used in ACT-R. 

In identifier retrievals, the object identifier is already in 

working memory, but its entire substructure is not. For 

example, when room structures are retrieved, they include 

Figure 3: Average size of working memory in the 

simple vs. complex agents. 

Figure 4: Average processing time per cycle in msec. in 

the simple vs. complex agents. 

Figure 5: Maximum time per cycle in msec. in the 

simple vs. complex agents. 
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the identifier of each doorway. Using this type of 

retrieval, the complete representation of doorway objects 

can be brought into working memory.   

 

For these experiments, the map of the rooms is 

incrementally added to semantic memory as the agent 

encounters a new room or block. To minimize working 

memory, the agent removes representations of distant 

rooms from working memory. One complexity is that 

when the agent is performing an internal look-ahead 

search, it must retrieve room structures from semantic 

memory as it “imagines” moving through those rooms. 

 

The use of semantic memory to hold rooms and objects 

can change some aspects of agent behavior. One example 

is when the agent has just dropped off a block in the 

storage room and needs to decide which block it should 

pick up next. When the blocks are all in working memory, 

a rule can match all blocks and create a pickup operator 

for each one, and the agent can compute the distance to 

each block and use that information in choosing an 

operator. When using semantic memory, the agent cues a 

retrieval using the characteristics of the object, such as its 

color and shape, but cannot use distances to the agent, 

which are not maintained in semantic memory because 

they are constantly changing. Instead, the agent retrieves 

the most recent object it has seen.  

 

Figures 6-8 compare an agent that stores the map in 

working memory (this is the same agent as the complex 

agent in Figures 3-5) with an agent that stores the map in 

semantic memory. The total number of objects stored in a 

run is ~1000, with ~700 cue-based retrievals and ~700 

identifier retrievals. The structures in semantic memory 

take ~.6 MB.  

 

When the map structure is maintained in semantic 

memory, the average size of working memory is 

significantly less than when the map structure is 

maintained exclusively in working memory (Figure 6). 

However, during internal searches, room structures are 

retrieved, temporarily boosting the number of elements in 

working memory. 

 

Figure 7 shows that the average cycle time is higher when 

using semantic memory, which includes additional costs 

for storing and retrieving items from semantic memory, as 

well as removing structures from working memory. 

However, Figure 8 shows that the maximum 

msec./processing cycle when structures are stored in 

semantic memory is less than that of working memory. 

The range for working memory is broader and higher; 

however, there is a slight upward trend with semantic 

memory. Using semantic memory eliminates some 

expensive choices made when all objects are represented 

in working memory, which leads to a lower maximum. 

However, it adds the costs for retrievals and removals 

from working memory, which leads to the higher average. 

One reason for that the working memory agent is fast on 

average is that the map is a stable structure throughout the 

task. The Rete matcher only does work when there are 

changes to working memory, which minimizes the costs 

of maintaining it in working memory.  

Figure 6: Average size of working memory using 

semantic vs. working memory in the complex agent. 

Figure 7: Average cycle time using semantic memory vs. 

working memory in the complex agent.  

Figure 8: Maximum cycle time using semantic memory 

vs. working memory in the complex agent.  
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6. Episodic Memory 

Episodic memory holds a history of the agent’s 

experiences and provides the complete context of an 

experience. In contrast, semantic memory contains 

specific facts, independent of context (unless the context 

is specifically included in the fact, such as “the Watergate 

break-in occurred on June 17, 1972”).  

 

In Soar, an episode is a “snapshot” of working memory. 

An agent can retrieve an episode by creating a cue, but in 

contrast to semantic memory, the cue can include multiple 

objects, and in the extreme can consist of all of working 

memory. The retrieval is based on finding the most recent 

episode that “best” matches the cue, and Soar uses a 

variety of techniques to minimize the time to find the best 

match (Derbinsky & Laird, 2009).  

 

Although it is possible to record episodes on every 

processing cycle, we have found that with this and other 

tasks, it is sufficient to record episodes only when the 

agent takes an external action. Especially in this task, 

where the agent is usually just moving forward, most 

situations are not distinctive nor worth remembering. By 

restricting it to record when there is an action, the agent 

records an episode about every 400 msec., which results 

in the agent storing over 9,000 episodes. In addition, 

episodes do not include cues or retrievals from semantic 

and episodic memory in episodes, nor structures created 

in the look-ahead searches. In this experiment, the 

episodes include all map and block locations that are in 

working memory, and other internally created structures, 

but not raw perceptual structures. 

 

In this task, retrievals from episodic memory provide the 

location of a previously seen block that the agent needs to 

pick up. To retrieve a block from memory, the agent 

creates a query with a description of the object, such as a 

“green square block,” and specifies that it not be one of 

the objects already in the storage room. The task is 

organized such that the agent picks up blocks in the 

reverse order from how they were originally experienced. 

Thus, we expect the cost of using episodic memory to 

increase during the task because not only do more and 

more episodes need to be searched, but more and more 

episodes must be skipped that contain blocks that have 

already been moved to the storage area. 

 

In these conditions, the size of working memory mirrors 

the results in Figure 6. We expect that by maintaining the 

map in semantic memory, which allows working memory 

to be smaller, the size of episodes should decrease, which 

in turn should speed episodic memory retrievals.  

 

Figure 9 shows the average time per processing cycle. 

The results from the earlier sections without episodic 

memory are included for comparison and they are the 

lower two data sets. The top two data sets show episodic 

memory when the map is in working memory, and above 

that, when it is semantic memory. We see that there is 

overhead to using episodic memory, and counter to our 

expectations, on average, using it with semantic memory 

is more costly than with working memory.  

Figure 10 shows the maximum cycle times and expands 

the y axis from previous figures to 50 msec. This shows 

that using episodic memory comes at a significant cost, 

with the maximum cycle time being an order of 

magnitude higher than those in Figure 8.  

 

The high maximum times occur when the agent retrieves 

an episode. Even though these costs are significant, the 

maximum cost is still lower than our target of 50 msec. 

This graph shows that the combination of episodic 

memory and semantic memory has a lower maximum 

cycle time than episodic memory and working memory, 

even though it is worse in the average case. This is 

because when the complete map is maintained in working 

memory, every episode contains the complete map, so 

reconstruction is more expensive.  

Figure 9: Average cycle time with episodic memory. 

Figure 10: Maximum cycle time with episodic memory.  
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Finally Figure 11 shows the amount of memory required 

for the two conditions with episodic memory, which is 

surprisingly small. Our original expectation was that 

using semantic memory would decrease the amount of 

storage required because its episodes are smaller; 

however, episodic memory is optimized so that new 

structures are only stored when there are changes to 

working memory. When the map is held in working 

memory, no additional storage is required for the existing 

structures of the map in new episodes, only for the 

changes. In contrast, when the map is stored in semantic 

memory, subsets of the map are removed from working 

memory and then later retrieved, which requires 

additional storage to record those changes.  

7. Discussion 

One purpose of this research was to examine the tradeoffs 

between the different memory systems, especially in 

terms of the computational cost of using in a task with 

real-time constraints. For the experiments we have run, 

keeping all of structures in working memory works 

surprisingly well. We expected that as the size of working 

memory grew, the cost of matching rules would become 

prohibitively expensive.  

 

We also discovered that semantic memory is efficient for 

storing the number of structures we need in this task, and 

scales well. There is a performance cost to using it, in 

terms of average processing time per cycle, but it 

performs well in terms of maximum processing cost. This 

bodes well for using semantic memory in the future.  

 

There are additional costs associated with using episodic 

memory, but in this experiment they do not exceed our 

threshold of 50 msec. The results of episodic memory also 

show that in our implementation there are significant 

costs for large working memories during reconstruction of 

episodes. Ironically, maintaining a smaller working 

memory requires more storage for episodic memory 

because of the increase in the changes to working 

memory.  

 

Another of the purposes of this research is to evaluate the 

memory systems in a cognitive architecture on a more 

realistic task than has been done in the past. One 

conclusion of this work is that the memory systems we 

have developed in Soar are sufficient to support real-time 

behavior for this length of task. On average, Soar is 

thousands of times faster than it needs to be to achieve 

real-time performance, and even in the worst cases, it is 

fast enough. However, this task lasted for one hour, over a 

relatively limited map, so the question remains as to how 

these memory systems scale to longer times and larger 

memory structures.  

 

In previous research (Laird & Derbinsky, 2009), we had 

attempted to predict what would be the requirements for 

an agent that learned using episodic memory for a year. 

Here we build on that analysis, but use our experience 

with this task to refine our estimates. We observe that for 

this task the number of episodes that need to be stored is 

modest (9,000 over one hour), and the size of each 

episode is relatively small (as evidence by the total 

memory requirements in Figure 11). Both of these 

quantities are much smaller than our original estimates. 

 

Extrapolating from Figure 11, where in the worst case 

2Mbytes are required per hour, we predict needing 

48Mbytes/day so that we can expect to run for ~2,000 

days before exceeding 96 Gbytes. These estimates are 

dependent on the details of our task, and assume linear 

growth, but provide a ballpark as to what is practical with 

current algorithms and computer systems.  

 

The time to use semantic and episodic memory is more 

difficult to evaluate. The time to access semantic memory 

appears stable; however, this task does not stress semantic 

memory compared to previous research with WordNet. In 

this task there was a maximum of 1,000 objects stored in 

semantic memory compared with 800,000 in WordNet, 

and in this task, the structures are built up by experience 

as opposed to loaded from a database, so that the 

incremental additions to semantic memory in a typical 

task might also be small. An open question is whether this 

is the normal use of semantic memory or whether other 

applications require storing significantly more data. 

 

Our results for episodic memory suggest that the time to 

retrieve items from episodic memory will exceed 50 

msec. after a few hours, although the exact trends are hard 

to predict, and this task is designed to stress episodic 

memory retrievals by forcing the agent continually 

retrieve earlier and earlier episodes from memory. 

Figure 11: Memory requirements with episodic memory.  
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There are two approaches to deal with the cost of 

searching episodic memory. The first is to examine 

alternative algorithms and data structures for episodic 

memory. That is part of our ongoing research. A second 

approach is to decouple the processing of semantic and 

episodic memories from the main processing cycle so that 

they run asynchronously in separate processing threads 

and cores. This gives two advantages. First, it increases 

parallelism, but second, the processing for accessing the 

memory no longer directly impacts the reactivity of the 

system. If we look at humans, access to both semantic and 

episodic memory occurs in parallel with procedural 

reasoning and at time scales on the order of 500 msec. 

This change would possibly extend the practicality of 

using episodic memory to a day for this task.  
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