
Performance Evaluation of Declarative Memory Systems in Soar

John E. Laird, Nate Derbinsky, Jonathan Voigt

University of Michigan

2260 Hayward Street

Ann Arbor, MI 48109-2121

laird@umich.edu, nlderbin@umich.edu, voigtjr@umich.edu

Keywords:

performance evaluation, memory and learning, cognitive architecture

ABSTRACT: A rarely studied issue with using persistent computational models is whether the underlying

computational mechanisms scale as knowledge is accumulated through learning. In this paper we evaluate the

declarative memories of Soar: working memory, semantic memory, and episodic memory, using a detailed simulation of

a mobile robot running for one hour of real-time. Our results indicate that our implementation is sufficient for tasks of

this length. Moreover our system executes orders of magnitudes faster than real-time, with relatively modest storage

requirements. We also project the computational resources required for extended operations.

1. Introduction

There are few computational challenges to model

behavior over short time spans when there is minimal

prior knowledge or when there is little to no accumulation

of knowledge or experience. The challenges arise when

we attempt to model behavior over long time spans where

an agent builds up internal structures based on its

experience. As these structures accumulate, the cost of

adding and accessing that knowledge can grow beyond

available computational resources (Derbinsky, Laird, &

Smith, 2010; Douglass, Ball, & Rogers, 2009). With

efficient models, we can test and evaluate them faster,

using cheaper systems, and use them in real-time tasks.

The emphasis of our research is on tasks that require

human-level reasoning, memory, and learning. We are

less concerned with the detailed modeling of human

behavior, where the goal is to match human reaction times

and error rates. Instead, we are interested in creating

models that perform complex tasks, using and acquiring

large stores of knowledge across extended time spans,

often requiring significant internal processing and

planning. TacAir-Soar (Jones et al., 1999) and RWA-Soar

(Hill et al., 1997), two systems that modeled U.S. pilot

tactical behavior in fixed wing and rotary wing vehicles,

have many of these qualities, although they did only

limited planning and did not learn from experience.

Over the last five years, we have extended the Soar

cognitive architecture with semantic and episodic memory

(Laird, 2008). In previous work, we evaluated the

performance of those memories, but our evaluations had

short comings: either they used artificial tasks (Nuxoll &

Laird, 2007), or they focused on using pre-loaded

knowledge and not on knowledge that accumulates

through experience (Derbinsky & Laird, 2009; Derbinsky

et al., 2010). Evaluations of other declarative memories in

cognitive architectures have also focused on preloaded

structures (Douglass et al., 2009; Douglass & Myers,

2010), whereas evaluations of episodic memory have

been restricted to small numbers of preloaded episodes (as

in research on case-based reasoning) or small numbers

(~250) of episodes (Tecuci & Porter, 2007).

To fill this void, in this paper we evaluate performance

within a simulation of a real-world task: a mobile robot

exploring, navigating, and moving objects in a small

building. In this task, the agent’s declarative memories

build up incrementally over an hour of real-time

execution, and the agent’s perception of the environment

is based on detailed models of real-world sensory data.

One goal is to discover the requirements for semantic and

episodic memory in such a task and whether our

implementations are sufficient to support real-time

behavior over long time scales. A second goal is to

discover the relative costs and benefits of the different

memory systems for real-world tasks. One justification

for adding semantic memory to Soar was the concern that

maintaining large number of elements in working

memory would significantly degrade performance,

independent of its cognitive implausibility (Derbinsky &

Laird, 2010). A third goal is to discover interactions

between semantic and episodic memory. Soar provides a

unique opportunity to pursue these goals.

2. The Soar Cognitive Architecture

Figure 1 shows the structure of Soar. Perception delivers

symbolic structures to working memory, which is a

symbolic graph. All the long-term memories retrieve

information based on the contents of working memory

and add, delete, or modify working memory structures.

The knowledge in procedural memory is encoded as rules,

which match and fire in parallel to create working

memory structures as well as preferences for selecting

operators. Operators are the locus of decision making and

include both primitive actions, such as moving or turning

a robot, and abstract actions such as find-a-block, go-to-

the-next-room, or go-to-the-storage-room. The decision

procedure analyzes the preferences and selects the current

operator by adding a structure to working memory.

Abstract operators are dynamically decomposed into

simpler operators until a primitive operator is selected.

Once a primitive operator is selected, rules match and

apply the operator’s actions. For internal operators, such

as building up an internal map, changes are made to

working memory. For external operators, such as moving

the robot, commands are added to the output buffer in

working memory, and are sent to the motor system.

Retrievals from other long-term memories are initiated by

creating cues in those memories’ buffers.

The basic cycle is to process input, fire rules that match,

select an operator, fire rules to apply the operator, and

then process output commands and retrievals from long-

term memory. The time to execute this processing cycle

determines reactivity. Based on our experience with

cognitive modeling, human behavior models, and robotic

systems, 50 msec. is sufficient for real-time reactivity. As

evident in Figure 1, Soar has additional memories and

processing modules; however, they are not evaluated in

this paper, and are not discussed further.

3. Mobile Robot Domain

Soar has been used to control both real (Laird &

Rosenbloom, 1990; Laird et al., 1991) and simulated

vehicles (Hill et al., 1997; Jones et al., 1999). For this

evaluation, we use a system where Soar
1
 controls a small

1 Experiments used Soar 9.3.1, which is available with the

simulation environment through sitemaker.umich.edu/soar.

mobile robot (Figure 2; Laird, 2009). Our evaluation uses

a simulation instead of the real robot because of the

difficulties in running experiments in the large physical

spaces required. Moreover, the simulated robot can run

unattended on multiple computers at once. When Soar

controls the real robot, it runs on a laptop perched on the

robot as shown in Figure 2. The simulation is quite

accurate and the Soar rules (and architecture) used in the

simulation are exactly the same as the rules used to

control the real robot.

The robot can move forward and backward, and turn in

place. It has a laser-range finder mounted in the front that

gives distances to 180 points throughout 180 degrees. Our

software condenses those points to 5 regions that are

sufficient for it to navigate and avoid obstacles. The robot

can sense its own location based on odometry, and it can

also sense the room it is in, the location of doors and

walls, and different types of objects. These additional

sensors are simulated, and when controlling the real robot,

it uses a synthesis of real and simulated sensor data.

During a run (both real and simulated), there are

approximately 150 sensory data elements, with

approximately 20 values changing each cycle. The

changes can peak at 260 per cycle when the agent moves

from room to room because all the data about the current

room, walls, and doorways change at once.

Throughout the paper, we refer to the robot, Soar, and

rules as an agent. We evaluate two agents that differ in

their rules. The first is the “simple agent,” which serves as

a knowledge-lean baseline for comparison. This agent

explores randomly, moving from room to room, without

maintaining any persistent. It consists of 22 rules.

The second, “complex agent” can perform multiple tasks,

including cleaning rooms and patrolling. We focus on

room cleaning where it picks up and moves specific types

of blocks (such as square green blocks) to a storage room.

The complex agent dynamically constructs a map of the

rooms, doorways, and their spatial and topological layout,

as well as the locations of all blocks as it encounters them

+
Activati

on

Figure 1: Structure of Soar

Semantic

Visual LT Memory

Body

Symbolic Long-Term Memories

Procedural

Symbolic Working Memory D
ecisio

n

P
ro

ced
u
re

Chunking

Episodic

A
p

p
ra

is
al

D
et

ec
to

r

Reinforcement
Learning

Perception Action Mental Imagery

Perceptual STM

Semantic

Learning

Episodic

Learning

Figure 2: Splinterbot mobile robot.

during its explorations. Each room, block, wall, and

doorway is represented by 6-9 data elements in the

agent’s memories. The agent initially has no map

information except for the identity of the storage room

(but not its location).

When attempting to travel to a distant room, such as when

dropping off a block at the storage room, the agent

internally simulates moving to neighboring rooms in its

map, searching for a path to the storage room. This

“simulation” does not use the external simulator, but the

agent’s map knowledge. The search is a combination of

progressive deepening (Newell & Simon, 1972) and A*

search (Hart, Nilsson, & Raphael, 1968). The agent also

plans when it needs to return to a previously seen block,

or when it attempts to move to a room it has detected but

not visited. The internal search is performed within the

agent, using rules, spread across multiple cycles, made

possible by Soar’s support for a Universal Weak Method

(Laird & Newell, 1983).

The complex agent has 562 rules and is parameterized so

that by modifying data elements in working memory, it

performs all the variations in behavior described in this

paper, including using either working memory or

semantic memory to store map information, and using

either working memory, semantic memory, or episodic

memory to store block location information.

The experiments are performed using a map with 25

rooms connected via 24 doorways in a straight line from

north to south. This map eliminates most variations in the

agent’s behavior that would arise from random decisions

in a less structured map. There are a total of 44 blocks

spread across the 25 rooms, 23 of which satisfy the

agent’s criteria for blocks it wants to move to the storage

room. These blocks are spread across the rooms so that

there is at most one block per room. The agent starts at

the north end and the storage room is in the southern-most

room. Although the rooms are in a straight line, the agent

must plan after it picks up a block to determine whether to

go north or south to get to the storage room.

All experiments are run for one hour of elapsed real-time,

during which the agent completes approximately 1/3 of

the task. During 1 hour, our agents execute ~25,000,000

processing cycles. The data is aggregated every 10

seconds, which is ~70,000 processing cycles. We focus on

the following performance metrics.

 Average working memory size. Although Soar’s rule

matcher is relatively immune to growth effects from

the number of rules, it is not immune to growth in the

number of working memory elements tested by rules.

 Average msec./processing cycle. This indicates how

much time is required for a processing cycle. For

these tasks, we expect the average to be low because

usually the agent is doing minimal processing as it

moves in a straight line toward its next destination

(such as a doorway or a block).

 Maximum msec./processing cycle. This indicates the

“surge” in computational requirements, which can be

orders of magnitude higher than the average. The

value of this metric determines real-time reactivity.

Our goal is to be below 50 msec.

 Total long-term memory size. This measures how

much computer memory is required to hold the

structures in semantic and episodic memory. To

maintain efficient access, Soar’s memories are

maintained in the computer’s main memory (RAM).

96 GB is a reasonable limit for current workstations.

The data are averaged over 5 runs, except for the

maximum msec./processing cycle. For those data, we use

a representative run. Because Soar waits for the

simulation environment at the end of each cycle, Soar

uses only a fraction of the available processing time

(~7.5%). All experiments were run on an Intel i7

860@2.8Ghz, with 8 GB of memory. In the following

sections, we evaluate working memory, semantic

memory, and then episodic memory.

4. Working Memory

As mentioned earlier, working memory in Soar is a graph,

with each edge of the graph being a working memory

element that consists of an identifier, an attribute, and a

value. Each element can be added or removed

independent of other elements. This is in contrast to ACT-

R (Anderson, 2007), which bundles structures together as

chunks, which are added, modified, or removed as a

single unit. However, we will often refer to all of the

working memory elements that share a common identifier

as an object, which thus corresponds roughly to a chunk,

with the object identifier corresponding to a chunk id.

Objects in Soar refer to entities in the world (rooms, doors

blocks), internal concepts, words, and so on. There is no

bound on the number of elements in working memory,

and working memory grows and shrinks over the lifetime

of an agent as elements are added and removed.

Figure 3 shows the maximum number of working

memory elements (WMEs) for the simple and complex

agents. As expected, working memory in the simple agent

does not grow. The complex agent builds up working

memory as it explores, but once it visits all rooms (at

~770 seconds) memory levels off. As evident in the

figure, ~ 3,000 elements are needed to represent the map

and blocks.

Given the large working memory in the complex agent,

our expectation is that we will see a significant

degradation in performance in the cycle time of the agent

as the memory grows. This is because the underlying

algorithm for matching rules in Soar, called Rete (Forgy,

1982), is designed to scale well with the number of rules,

but not with the size of working memory. As more

working memory elements are added, it is often the case

that there are more ways a rule can match, and in some

cases, that can lead to more than linear growth in the

computational processing required to determine which

rules match. In the specific task performed by our agents,

the number of blocks to be picked up leads to such an

increase when the agent must decide which block to pick

up next after depositing a block in the storage room.

Figure 4 shows the average CPU time in msec. per

processing cycle. Both agents maintain consistent

performance throughout the task, showing little, to no

degradation over time, with the complex agent being

slower on average. Moreover, the average time (<.015

msec./cycle) is orders of magnitude faster than required

for real-time performance (50 msec.).

To explore the performance of the complex agent in more

detail, in Figure 5 we examine the maximum time spent in

a processing cycle. The simple agent has a low, stable

maximum msec./processing cycle, while the complex

agent has significantly more variation. That variation

initially increases as the map is built up (0-770 seconds).

From that point on, the highest points arise when the

agent is choosing which block to pick up next.

The high values are the exception, and even with them,

the average cycle time is hundreds of times less at ~.02

msec. Moreover, the variation is minimal when taken

within the context of achieving a cycle time of less than

50 msec. Thus, an important result is that maintaining all

structures in working memory is adequate for this task.

5. Semantic Memory

In Soar, semantic memory holds long-term, persistent

declarative structures that generally correspond to facts

about objects or concepts. For this task, that includes the

map and the location of the blocks. In Soar, structures in

semantic memory are deliberately stored from working

memory. Semantic memory can also be pre-loaded with

structures from external knowledge bases such as

WordNet (Derbinsky et al., 2010). To speed retrievals,

our implementation uses an inverted index (similar to

what is done in search engines), combined with statistical

query optimizations, using SQLite as a backend.

To retrieve structures from semantic memory, a Soar

agent creates one of two types of cues in a working

memory. In cue-based retrievals, the cue consists of

multiple working memory elements that provide a partial

description of an object. The semantic memory system

finds the object in semantic memory that best matches the

cue. The search is biased by recency, and there is no

“spreading” of activation as is sometimes used in ACT-R.

In identifier retrievals, the object identifier is already in

working memory, but its entire substructure is not. For

example, when room structures are retrieved, they include

Figure 3: Average size of working memory in the

simple vs. complex agents.

Figure 4: Average processing time per cycle in msec. in

the simple vs. complex agents.

Figure 5: Maximum time per cycle in msec. in the

simple vs. complex agents.

0

0.02

0.04

0.06

0.08

0.1

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 C
yc

le
 T

im
e

 in
 M

se
c.

Elapsed Time in Seconds

complex agent

simple agent

0

500

1000

1500

2000

2500

3000

3500

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 N
u

m
b

e
r

o
f

W
M

Es

Elapsed Time in Seconds

complex agent

simple agent

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600M
ax

im
u

m
 C

yc
le

 T
im

e
 in

 M
se

c.

Elapsed Time in Seconds

complex agent

simplex agent

the identifier of each doorway. Using this type of

retrieval, the complete representation of doorway objects

can be brought into working memory.

For these experiments, the map of the rooms is

incrementally added to semantic memory as the agent

encounters a new room or block. To minimize working

memory, the agent removes representations of distant

rooms from working memory. One complexity is that

when the agent is performing an internal look-ahead

search, it must retrieve room structures from semantic

memory as it “imagines” moving through those rooms.

The use of semantic memory to hold rooms and objects

can change some aspects of agent behavior. One example

is when the agent has just dropped off a block in the

storage room and needs to decide which block it should

pick up next. When the blocks are all in working memory,

a rule can match all blocks and create a pickup operator

for each one, and the agent can compute the distance to

each block and use that information in choosing an

operator. When using semantic memory, the agent cues a

retrieval using the characteristics of the object, such as its

color and shape, but cannot use distances to the agent,

which are not maintained in semantic memory because

they are constantly changing. Instead, the agent retrieves

the most recent object it has seen.

Figures 6-8 compare an agent that stores the map in

working memory (this is the same agent as the complex

agent in Figures 3-5) with an agent that stores the map in

semantic memory. The total number of objects stored in a

run is ~1000, with ~700 cue-based retrievals and ~700

identifier retrievals. The structures in semantic memory

take ~.6 MB.

When the map structure is maintained in semantic

memory, the average size of working memory is

significantly less than when the map structure is

maintained exclusively in working memory (Figure 6).

However, during internal searches, room structures are

retrieved, temporarily boosting the number of elements in

working memory.

Figure 7 shows that the average cycle time is higher when

using semantic memory, which includes additional costs

for storing and retrieving items from semantic memory, as

well as removing structures from working memory.

However, Figure 8 shows that the maximum

msec./processing cycle when structures are stored in

semantic memory is less than that of working memory.

The range for working memory is broader and higher;

however, there is a slight upward trend with semantic

memory. Using semantic memory eliminates some

expensive choices made when all objects are represented

in working memory, which leads to a lower maximum.

However, it adds the costs for retrievals and removals

from working memory, which leads to the higher average.

One reason for that the working memory agent is fast on

average is that the map is a stable structure throughout the

task. The Rete matcher only does work when there are

changes to working memory, which minimizes the costs

of maintaining it in working memory.

Figure 6: Average size of working memory using

semantic vs. working memory in the complex agent.

Figure 7: Average cycle time using semantic memory vs.

working memory in the complex agent.

Figure 8: Maximum cycle time using semantic memory

vs. working memory in the complex agent.

0

500

1000

1500

2000

2500

3000

3500

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 N
u

m
b

e
r

o
f

W
M

Es

Elapsed Time in Seconds

map in working memory

map in semantic memory

0

0.02

0.04

0.06

0.08

0.1

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 C
yc

le
 T

im
e

 in
 M

se
c.

Elapsed Time in Seconds

map in working memory

map in semantic memory

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600M
ax

im
u

m
 C

yc
le

 T
im

e
 in

 M
se

c.

Elapsed Time in Seconds

map in working memory

map in semantic memory

6. Episodic Memory

Episodic memory holds a history of the agent’s

experiences and provides the complete context of an

experience. In contrast, semantic memory contains

specific facts, independent of context (unless the context

is specifically included in the fact, such as “the Watergate

break-in occurred on June 17, 1972”).

In Soar, an episode is a “snapshot” of working memory.

An agent can retrieve an episode by creating a cue, but in

contrast to semantic memory, the cue can include multiple

objects, and in the extreme can consist of all of working

memory. The retrieval is based on finding the most recent

episode that “best” matches the cue, and Soar uses a

variety of techniques to minimize the time to find the best

match (Derbinsky & Laird, 2009).

Although it is possible to record episodes on every

processing cycle, we have found that with this and other

tasks, it is sufficient to record episodes only when the

agent takes an external action. Especially in this task,

where the agent is usually just moving forward, most

situations are not distinctive nor worth remembering. By

restricting it to record when there is an action, the agent

records an episode about every 400 msec., which results

in the agent storing over 9,000 episodes. In addition,

episodes do not include cues or retrievals from semantic

and episodic memory in episodes, nor structures created

in the look-ahead searches. In this experiment, the

episodes include all map and block locations that are in

working memory, and other internally created structures,

but not raw perceptual structures.

In this task, retrievals from episodic memory provide the

location of a previously seen block that the agent needs to

pick up. To retrieve a block from memory, the agent

creates a query with a description of the object, such as a

“green square block,” and specifies that it not be one of

the objects already in the storage room. The task is

organized such that the agent picks up blocks in the

reverse order from how they were originally experienced.

Thus, we expect the cost of using episodic memory to

increase during the task because not only do more and

more episodes need to be searched, but more and more

episodes must be skipped that contain blocks that have

already been moved to the storage area.

In these conditions, the size of working memory mirrors

the results in Figure 6. We expect that by maintaining the

map in semantic memory, which allows working memory

to be smaller, the size of episodes should decrease, which

in turn should speed episodic memory retrievals.

Figure 9 shows the average time per processing cycle.

The results from the earlier sections without episodic

memory are included for comparison and they are the

lower two data sets. The top two data sets show episodic

memory when the map is in working memory, and above

that, when it is semantic memory. We see that there is

overhead to using episodic memory, and counter to our

expectations, on average, using it with semantic memory

is more costly than with working memory.

Figure 10 shows the maximum cycle times and expands

the y axis from previous figures to 50 msec. This shows

that using episodic memory comes at a significant cost,

with the maximum cycle time being an order of

magnitude higher than those in Figure 8.

The high maximum times occur when the agent retrieves

an episode. Even though these costs are significant, the

maximum cost is still lower than our target of 50 msec.

This graph shows that the combination of episodic

memory and semantic memory has a lower maximum

cycle time than episodic memory and working memory,

even though it is worse in the average case. This is

because when the complete map is maintained in working

memory, every episode contains the complete map, so

reconstruction is more expensive.

Figure 9: Average cycle time with episodic memory.

Figure 10: Maximum cycle time with episodic memory.

0

10

20

30

40

50

0 600 1200 1800 2400 3000 3600M
ax

im
u

m
 C

yc
le

 T
im

e
 in

 M
se

c.

Elapsed Time in Seconds

epmem with working memory
epmem with semantic memory

0

0.02

0.04

0.06

0.08

0.1

0 600 1200 1800 2400 3000 3600

A
ve

ra
ge

 C
yc

le
 T

im
e

 in
 M

se
c.

Elapsed Time in Seconds

epmem with semantic memory
epmem with working memory
map in semantic memory
map in working memory

Finally Figure 11 shows the amount of memory required

for the two conditions with episodic memory, which is

surprisingly small. Our original expectation was that

using semantic memory would decrease the amount of

storage required because its episodes are smaller;

however, episodic memory is optimized so that new

structures are only stored when there are changes to

working memory. When the map is held in working

memory, no additional storage is required for the existing

structures of the map in new episodes, only for the

changes. In contrast, when the map is stored in semantic

memory, subsets of the map are removed from working

memory and then later retrieved, which requires

additional storage to record those changes.

7. Discussion

One purpose of this research was to examine the tradeoffs

between the different memory systems, especially in

terms of the computational cost of using in a task with

real-time constraints. For the experiments we have run,

keeping all of structures in working memory works

surprisingly well. We expected that as the size of working

memory grew, the cost of matching rules would become

prohibitively expensive.

We also discovered that semantic memory is efficient for

storing the number of structures we need in this task, and

scales well. There is a performance cost to using it, in

terms of average processing time per cycle, but it

performs well in terms of maximum processing cost. This

bodes well for using semantic memory in the future.

There are additional costs associated with using episodic

memory, but in this experiment they do not exceed our

threshold of 50 msec. The results of episodic memory also

show that in our implementation there are significant

costs for large working memories during reconstruction of

episodes. Ironically, maintaining a smaller working

memory requires more storage for episodic memory

because of the increase in the changes to working

memory.

Another of the purposes of this research is to evaluate the

memory systems in a cognitive architecture on a more

realistic task than has been done in the past. One

conclusion of this work is that the memory systems we

have developed in Soar are sufficient to support real-time

behavior for this length of task. On average, Soar is

thousands of times faster than it needs to be to achieve

real-time performance, and even in the worst cases, it is

fast enough. However, this task lasted for one hour, over a

relatively limited map, so the question remains as to how

these memory systems scale to longer times and larger

memory structures.

In previous research (Laird & Derbinsky, 2009), we had

attempted to predict what would be the requirements for

an agent that learned using episodic memory for a year.

Here we build on that analysis, but use our experience

with this task to refine our estimates. We observe that for

this task the number of episodes that need to be stored is

modest (9,000 over one hour), and the size of each

episode is relatively small (as evidence by the total

memory requirements in Figure 11). Both of these

quantities are much smaller than our original estimates.

Extrapolating from Figure 11, where in the worst case

2Mbytes are required per hour, we predict needing

48Mbytes/day so that we can expect to run for ~2,000

days before exceeding 96 Gbytes. These estimates are

dependent on the details of our task, and assume linear

growth, but provide a ballpark as to what is practical with

current algorithms and computer systems.

The time to use semantic and episodic memory is more

difficult to evaluate. The time to access semantic memory

appears stable; however, this task does not stress semantic

memory compared to previous research with WordNet. In

this task there was a maximum of 1,000 objects stored in

semantic memory compared with 800,000 in WordNet,

and in this task, the structures are built up by experience

as opposed to loaded from a database, so that the

incremental additions to semantic memory in a typical

task might also be small. An open question is whether this

is the normal use of semantic memory or whether other

applications require storing significantly more data.

Our results for episodic memory suggest that the time to

retrieve items from episodic memory will exceed 50

msec. after a few hours, although the exact trends are hard

to predict, and this task is designed to stress episodic

memory retrievals by forcing the agent continually

retrieve earlier and earlier episodes from memory.

Figure 11: Memory requirements with episodic memory.

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600

 M
e

m
o

ry
 in

 M
b

yt
e

s

Elapsed Time in Seconds

epmem with semantic memory

epmem with working memory

There are two approaches to deal with the cost of

searching episodic memory. The first is to examine

alternative algorithms and data structures for episodic

memory. That is part of our ongoing research. A second

approach is to decouple the processing of semantic and

episodic memories from the main processing cycle so that

they run asynchronously in separate processing threads

and cores. This gives two advantages. First, it increases

parallelism, but second, the processing for accessing the

memory no longer directly impacts the reactivity of the

system. If we look at humans, access to both semantic and

episodic memory occurs in parallel with procedural

reasoning and at time scales on the order of 500 msec.

This change would possibly extend the practicality of

using episodic memory to a day for this task.

8. Acknowledgments

This research was supported in part by the Ground

Robotics Reliability Center (GRRC) at the University of

Michigan, with funding from government contract DoD-

DoA W56H2V-04-2-0001 through the US Army Tank

Automotive Research, Development, and Engineering

Center and the Office of Naval Research under grant

number N00014-08-1-0099.
UNCLASSIFIED: Dist. A. Approved for public release.

9. References

Anderson, J. R. (2007). How Can the Human Mind Occur

in the Physical Universe? Oxford University Press.

Derbinsky, N., and Laird, J. E. (2009). Efficiently

Implementing Episodic Memory, Proceedings of the

International Conference on Case-based Reasoning.

Derbinsky, N., and Laird, J. E. (2010). Extending Soar

with Dissociated Symbolic Memories. Proceedings of

the Symposium on Human Memory for Artificial

Agents, 36
th

 AISB.

Derbinsky, N., Laird, J. E., and Smith, B. (2010).

Towards Efficiently Supporting Large Symbolic

Declarative Memories, Proceedings of the 10
th

International Conference on Cognitive Modeling.

Douglass, S. A., Ball, J., and Rodgers, S. (2009). Large

Declarative Memories in ACT-R. Proceedings of the

9th International Conference on Cognitive Modeling.

Douglass, S. A., Myers, C. W. (2010). Concurrent

Knowledge Activation Calculation in Large Declarative

Memories. Proceedings of the 10
th

 International

Conference on Cognitive Modeling.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many

Pattern/Many Object Pattern Match Problem. Artificial

Intelligence 19 (1) 17-37.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A

Formal Basis for the Heuristic Determination of

Minimum Cost Paths, IEEE Transactions on Systems

Science and Cybernetics SSC4 4 (2): 100–107.

Hill, R. W., Chen, J., Gratch, J., Rosenbloom, P., and

Tambe, M. (1997). Intelligent Agents for the Synthetic

Battlefield: A Company of Rotary Wing Aircraft.

Proceedings of AAAI 1997, 1006-1012.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,

Kenny, P., and Koss, F. V. (1999). Automated

Intelligent Agents for Combat Flight Simulation. AI

Magazine, 20(1), 27-42.

Laird, J. E. (2008). Extending the Soar Cognitive

Architecture. Proceedings of the First Conference on

Artificial General Intelligence.

Laird, J. E., Derbinsky, N. (2009). A Year of Episodic

Memory. Workshop on Grand Challenges for

Reasoning from Experiences, IJCAI-2009.

Laird, J. E., and Newell, A. (1983). A Universal Weak

Method: Summary of Results. Proceedings of IJCAI.

Laird, J. E., and Rosenbloom, P. S. (1990). Integrating

Execution, Planning, and Learning in Soar for External

Environments. Proceedings of AAAI 1990. 1022-1029.

Nuxoll, A. M., and Laird, J. E. (2007). Extending

Cognitive Architecture with Episodic Memory.

Proceedings of AAAI 2007.

Tecuci, D., Porter, B. (2007). A Generic Memory Module

for Events. Proceedings of the 20
th
 Florida Artificial

Intelligence Research Society Conference.

Author Biographies

JOHN LAIRD is the John L. Tishman Professor of

Engineering at the University of Michigan. His research

focuses on cognitive architecture, with emphasis on the

Soar architecture. He is a Fellow of AAAI, ACM, and the

Cognitive Science Society.

NATE DERBINSKY is a Ph.D. candidate in Computer

Science and Engineering at the University of Michigan.

His research focuses on functionality and efficiency for

long-term declarative memories in cognitive architectures.

JONATHAN VOIGT is a research programmer at the

University of Michigan. He supports the development of

the Soar architecture and associated tools and

environments, including robot simulators and interfaces.

