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Abstract 

Learning novel tasks is a complex cognitive activity requiring 
the learner to acquire diverse declarative and procedural 
knowledge. Prior ACT-R models of acquiring task knowledge 
from instruction focused on learning procedural knowledge 
from declarative instructions encoded in semantic memory. In 
this paper, we identify the requirements for designing compu-
tational models that learn task knowledge from situated task-
oriented interactions with an expert and then describe and 
evaluate a model of learning from situated interactive instruc-
tion that is implemented in the Soar cognitive architecture. 

Keywords: task learning, instruction, cognitive architecture. 

Introduction 
Over the last 30 years, the field has made great progress in 
modeling human behavior, not only in developing computa-
tional models of specific tasks, but also in developing the 
underlying cognitive architecture that is a theory of the fixed 
memories, representations, and processing units shared 
across those tasks. However, we have only limited under-
standing as to how people acquire the knowledge required to 
perform those tasks, and invariably we rely on humans to 
encode the necessary procedural knowledge. This leaves 
unanswered why a human would have the specific proce-
dural knowledge that was encoded in the model. Additional 
sources of information, such as brain activity data and as-
sumptions about rationality and optimality provide con-
straints, but they leave unanswered what knowledge and 
computational processes humans use for interactively ac-
quiring, assimilating, and using knowledge for novel tasks. 
   There has been only limited research on using recipe-style 
task instructions, written in constrained forms of English 
(Anderson, 2007). In these approaches, the model stores the 
instructions in long-term declarative memory, and then dur-
ing task performance, the model interprets the instructions, 
and through execution, converts them to procedural 
knowledge that is available for future task performance. 
These models support only one-time and one-way interac-
tions from instructor to student using fixed vocabularies and 
are limited to internal reasoning tasks.  
      In our approach, situated interactive instruction, the 
learner model (embodied in a table-top robot) and the expert 
human are simultaneously embedded in a shared, real-world 
domain. Through mixed-initiative, natural language instruc-
tions the learner acquires various concepts and behaviors 
useful in the domain. In our previous work (Mohan et al. 
2012), we studied interactive acquisition of basic concepts 
such as attributes of objects (color: red, size: large), spatial 
relationships (right-of), and simple actions (move). The 

learner also acquires new vocabulary of adjectives, nouns, 
prepositions, and verbs that are grounded in basic concepts 
and can be used in interactions. It is implemented in Soar 
(Laird, 2012) and is pre-encoded with only limited initial 
knowledge of the domain. Thus, it must learn not only pro-
cedural knowledge (actions and control knowledge), but 
also object descriptions and spatial relations. 
  In this paper, we demonstrate that our learning mecha-
nisms are sufficient for learning complex concepts such as 
hierarchical task knowledge that are novel compositions of 
the basic concepts it has already learned. The procedural 
and declarative knowledge acquired for novel tasks can be 
extended for solving simple puzzles and playing games. 
Although our research is not yet at the point where we can 
quantitatively compare our model with human task learning, 
this paper makes the following contributions to the cogni-
tive modeling community: 
1. It identifies the computational and behavioral require-

ments for learning from situated interactive instruction. 
2. It describes an implemented model of learning from situ-

ated interactive instruction, realized within the con-
straints of a cognitive architecture. Our model presents a 
theory of how linguistic, declarative, and procedural task 
knowledge are represented in semantic, episodic, and 
procedural memories, and how these types of knowledge 
are learned.  

Situated Interactive Instruction 

Mixed-initiative, task-oriented, natural language, interac-
tions arise naturally in situations where an expert guides a 
novice to perform a novel task. The facilitator expert and the 
primary learner form a system of joint learning, which dis-
tributes the onus of learning between both participants. The 
expert takes initiative in identifying the relevant objects and 
relationships in the shared environment and structuring and 
decomposing tasks. The learner takes initiative in actively 
interpreting the instructions, applying them to the current 
situation, analyzing successes and failures, and posing rele-
vant queries that elicit useful information from the expert. 
To model a learner that interactively acquires knowledge, 
several complex aspects of cognition (described below) 
have to be addressed. 

Requirements 
The learner is embedded in an environment and must main-
tain an ongoing interaction with the expert. Along with the 
basic perceive-decide-act cycle, in which the learner per-
ceives objects and their relevant properties and relation-



ships, decides its next goal, and manipulates the environ-
ment in accordance with the goal, it must also encode the 
following computational mechanisms. 
 R1. Integrative Interaction. Tutorial interactions are 
highly contextual. A complex interaction unfolds as partici-
pants negotiate the meaning of utterances, accumulate 
common ground, and act in the environment. To maintain 
the state of the ongoing interaction, the learner must employ 
a task-oriented interaction model. It should allow both par-
ticipants to change the focus of interaction to different as-
pects of the task based on their goals. 
 R2. Referential Comprehension. To comprehend utter-
ances, the learner must transform linguistic symbols in the 
expert’s utterances to its internal representation of the envi-
ronmental state and knowledge of the domain. Designing 
computational models for such comprehension poses a sig-
nificant challenge because utterances can be linguistically 
ambiguous, requiring the learner to exploit extra-linguistic 
context for comprehension. Our previous work on learning 
how to associate linguistic symbols in novel concepts ac-
quired through instruction (Mohan et al. 2012) and generat-
ing grounded interpretations of utterances using word-
concept associations (Mohan and Laird 2012) addresses 
some issues related to referential comprehension.  
 R3. Situated Learning. The experience of interactive 
execution of novel tasks is rich in information about the 
relevant aspects of the task. The learner should extract di-
verse task knowledge – linguistic, perceptual, spatial, se-
mantic, and procedural by analyzing the experience of task 
execution and interactions.  
 R4. Active, incremental learning. Interactive learning 
affords an important advantage. An intelligent learner con-
tributes to its own learning by asking questions that aid its 
understanding of the task. Replies from the expert are inte-
grated with the learner’s prior knowledge of the task. To 
design a learner that demonstrates such behavior, three 
questions have to be answered: when should a question be 
asked?; what question should be asked?; and how is the 
reply integrated with prior knowledge? We show that meta-
cognitive analysis performed during impasse resolution in 
Soar can inform all of these questions.  

Desirable Behaviors 
Learning from interactive instruction is a complex cognitive 
activity. There is a wide range of behaviors that are ex-
pected from a competent learner. In this paper, we focus on 
the following desirable behaviors.  

B1. General knowledge from specific experience In-
formation in tutorial instructions usually pertains to the cur-
rent situation. The participants communicate about the cur-
rent state of the task within the context of currently percep-
tible objects and their state and relationships and the actions 
that can be taken in the current state of the environment. 
The learner should be able to learn general domain 
knowledge from few highly specific examples in tutorial 
interactions. Analytical learning methods such as explana-
tion-based learning (EBL; Mitchell et al. 1986) are useful 

for deriving general procedural knowledge for task execu-
tion from few specific examples of behavior. 
 B2. Flexible instruction. The learning mechanisms we 
describe do not impose a strict order on how the learner is 
taught new concepts. This gives flexibility to the expert to 
structure the nature of instruction. An expert can teach basic 
concepts before teaching complex concepts that require 
knowledge of the basic concepts. However, the expert may 
not know or remember the state of the learner’s knowledge. 
In situations when the learner is learning complex concepts 
but lacks required knowledge of basic concepts, it will take 
the initiative and guide the interaction to acquire the rele-
vant basic concepts first. We show that our mechanisms are 
sufficient for learning task knowledge starting from varying 
prior knowledge states.  
 B3. Extendible behavior. The task knowledge acquired 
by the learner can be extended to new tasks by providing 
instructions about the additional constraints. After acquiring 
general procedural knowledge of move, the learner can be 
taught to solve puzzles like Tower of Hanoi and play games 
like Tic-Tac-Toe by giving instructions about the relevant 
parameters and constraints of legal actions and goals.  

Domain 
The learner is embodied in a table-top robot (Figure 1) that 
can perceive (via a Kinect) and manipulate small blocks. 
The workspace contains four locations: pantry, garbage, 
table, and stove. These locations have associated simulated 
functionalities. The learner can perform several primitive 
actions in the domain including open/close	   (pan-‐
try/stove),	   turn-‐on/turn-‐off	   (stove),	   pick-‐
up/put-‐down	  (object).  

 

 
Figure 1: The table-top robot assembly and the simulator. 

Preliminaries 
We begin with an overview of Soar and its mechanisms 
relevant to our implementation and brief descriptions of the 
models of referential comprehension and integrative interac-
tion. Later, we describe our task acquisition model in detail. 

Soar Cognitive Architecture 
Working memory encodes beliefs derived from the percep-
tions of the environment and the learner’s experiential 
knowledge encoded in its long-term memories. The beliefs 
derived from perceptions consist of all objects currently in 
the visual field. The spatial visual system (SVS) allows the 
learner to extract binary spatial predicates that describe the 
alignment of objects along the three axes and the distances 



between objects. Spatial relationships, such as right-of, are 
learned as a composition of spatial predicates. 

Procedural memory holds long-term knowledge for gen-
erating and controlling behavior, such as interaction man-
agement, language comprehension, and action and task exe-
cution knowledge. This knowledge is encoded as if-then 
rules that propose, select, and apply operators, which are 
the locus of decision-making. If the knowledge for selecting 
or applying an operator is incomplete, an impasse arises and 
a substate is generated, in which operators can be selected to 
resolve the impasse through methods such as task-
decomposition and planning. Chunking creates new rules 
that summarize the processing in a substate.  

Semantic memory stores context-independent declarative 
concepts about the environment, which are represented as 
sets of relational graph structures. Concepts are retrieved by 
creating a cue in a working memory buffer. The best match 
(biased by recency and frequency) is then added to working 
memory. Episodic memory stores the learner’s experiences 
of task execution and interactions. It enables the learner to 
recall the context and temporal relations of past experiences 
using cue-based retrievals. The best match (biased by recen-
cy) is retrieved and added to working memory.  

Integrative Interaction Model  
The learner uses an interaction model (Mohan et al. 2012) 
based on the theory of task-oriented discourse (requirement 
R1) by Grosz (1986). It organizes the expert-learner utter-
ances in discourse as hierarchical segments with purposes 
aligned with the goals of the task. The state of discourse is 
represented as a stack of segments. This model allows both 
participants to change the focus of the interaction by intro-
ducing a new segment with a specific purpose that will be 
useful in achieving the goal of the participant.  

Referential Comprehension Model 
To gain useful information from an utterance, the learner 
must ground linguistic references to symbols arising from 
perceptions, spatial reasoning, and task knowledge (re-
quirement R2). We use the term map for structures in se-
mantic memory that encode how linguistic symbols 
(nouns/adjectives, prepositions, and verbs) are associated 
with referent concepts - perceptual symbols, spatial compo-
sitions, and task concept networks. To ground a sentence, 
the indexing process (Mohan & Laird, 2012) retrieves rele-
vant maps from semantic memory so that it can connect the 
linguistic terms with their referents. If the terms are success-
fully mapped, the learner uses constraints derived from the 
referents, the current environmental state, domain models, 
and the interaction context to create a grounded representa-
tion of the utterance.  

Task Knowledge Representation 
A task is defined by a goal state that requires primitive ac-
tions by the learner in the environment. In our formulation 
tasks are referred to using verbs. For example, “move the 
blue cylinder to the pantry” is a task where the learner must 

execute primitive actions pick up the blue cylinder and put 
the cylinder in the pantry to establish the spatial-relationship 
in(blue cylinder, pantry). A task (and thus a verb) may be 
composed of other constituent tasks (and verbs) that ulti-
mately ground out in primitive actions. To store an object, 
the learner can open the pantry and execute the constituent 
task move such that it establishes the goal of store. In learn-
ing the hierarchical knowledge for a task, the learner must 
acquire the following concepts. 
 A goal is a composition of predicates that encode the 
state of objects, spatial relationships between objects, etc. 
that determine if the task has been successfully executed. 
The problem-space is a set of operators that are sufficient 
for successfully completing a task. This set can contain 
primitive actions (open, pick-up, put-down) or constituent 
tasks (move). The goal and problem-space are learned 
through instruction and encoded declaratively in the learn-
er’s semantic memory as a task concept network (tCN). 
An example tCN (nodes M22, G22, PR1, O2 PR2, PS22, 
A12) for store is in Figure 2.  
 A map connects the syntactical structure of the verb that 
describes the action and its argument structure to the tCN. 
This knowledge is useful for referential comprehension of 
verbs while generating interpretations of action commands. 
An example is in Figure 2 (nodes L22, O1) connects to the 
tCN via the map node M22. 
 Behavior is produced by rules that select the correct op-
erator to execute given the current environmental context 
and goals. A behavior is abstracted as a task operator (nodes 
P22, O1 in Figure 2). The tCN constrains how the task op-
erator op1 is instantiated given the contents of the action 
command and goals. For example, argument1 of op1 is con-
strained to be the object that satisfies the description in the 
direct-object argument of the verb store. 
 

 
Figure 2: Action Concept Network 

Acquisition Model 

The acquisition model tightly couples comprehension of 
utterances with acquisition through metacognitively moti-
vated learning. To comprehend an utterance, the learner 
exploits all its knowledge to generate a situated interpreta-
tion of the utterance and to apply it to the current situation. 
It may reach different kinds of knowledge failures such as 
impasses or retrieval failures. In a substate, the learner per-



forms a metacognitive analysis. During this analysis, the 
learner reasons about its current task knowledge and identi-
fies the concept it lacks to generate an appropriate question. 
It also records how the missing concept relates to its prior 
knowledge as context on the interaction stack, which is use-
ful in assimilating instructions (requirement R4).  

Declarative Knowledge Acquisition 
When the learner is given an action command - “store the 
blue cylinder,” it uses its knowledge of English syntax to 
extract the surface features of the verb and creates a cue – 
( <q>	   ^verb	   store	   ^direct-‐object	   <o>) . The learner 
searches its semantic memory for a conceptual graph that 
matches this cue. If the learner has had no prior experience 
with the syntactical structure of store, this search fails. The 
learner then deliberately stores this graph in its semantic 
memory, subgraph (L22,O1), and associates it with a new 
task operator op1, via the mapping node M22 and the object 
slot O1. The node O1 represents a slot that can be filled up 
by any object in the environment that satisfies the direct-
object referring expression (RE) of store. Future accesses 
using this cue allow the learner to access the task operator 
and the constraints on its instantiation. 
 If the search of semantic memory is successful, the learn-
er initializes the operator arguments under the constraints 
afforded by the mapping graph. In the example case, op1 
will be instantiated with an object in the environment that 
satisfies the referring expression – the blue cylinder. This 
task-operator is then proposed and the learner attempts to 
execute this operator. The first step in applying a task-
operator is generating a desired state, which describes the 
state and the spatial predicates that have to be true in the 
world for successful completion of a task. To generate the 
desired state for the current situation, the learner should 
know what state storing a blue cylinder results in. This in-
formation is encoded in the tCN as goal predicates. If this is 
the first time the learner is attempting to execute the action 
store, it does not have the goal concept in its tCN, and there-
fore it fails to generate the desired state.  
 A summary of why the learner failed is generated and 
stored on the interaction stack. This summary includes links 
to the partially built tCN for store. The learner queries the 
expert for the goal of the verb that it is trying to execute. 
The expert uses the current perceptual and task context to 
reply, “The goal is the blue cylinder is in the pantry, and the 
pantry is closed.” Using its knowledge of grounded preposi-
tions and nouns, the learner extracts spatial and state predi-
cates from this. The predicates are then incorporated in the 
tCN (accessed using the context summary on the interaction 
stack) by adding a new subgraph (M22, G22, PR1, PR2, R2, 
O1, O2). 
 With the definition of the goal and the constraints afford-
ed by the tCN, the learner can successfully generate an in-
ternal representation of the desired state. However, it still 
cannot execute the task and an impasse occurs because the 
behavior rules are unknown. Therefore, the learner stores 
the current summary on the interaction stack, and queries 

the expert for an action that it can take to make progress 
towards the goal. On a reply – “open the pantry,” the learn-
er executes this action in the environment. Using the context 
on the interaction stack, this action is added to the problem 
space of store (subgraph (M22, PS22, A12)). Since, execut-
ing this action does not achieve the goal, an impasse occurs 
again. This interleaving of interaction and execution contin-
ues until the desired state is achieved in the environment. 
The learner’s episodic memory automatically stores the in-
teractions with the expert, the tasks performed in the envi-
ronment, and the corresponding state changes.  

Proceduralization 
On successfully achieving the desired state in the environ-
ment, the learner analyzes its experience to explain to itself 
why this particular sequence of actions achieved the desired 
state. This analysis leads to the creation of rules (through 
chunking) that implement the instructed behavior. Our ap-
proach implements a form of EBL. 
 During explanation, the learner decouples its internal pro-
cessing from the external state and retrieves from episodic 
memory the state it was in when it began the instructed exe-
cution of the task. It then attempts to internally simulate the 
execution of the actions and constituent tasks associated 
with the new task so that it can use EBL to learn the behav-
ior. First it retrieves the goal definition of the task and in-
stantiates the desired state. It then retrieves the problem-
space definition and proposes all associated operators. 
Chunking compiles this process into rules that propose those 
operators when the task is being performed. For example, 
the learner learns that if it is trying to store an object, it 
should consider moving it. The learner then uses its memory 
of the instructions to recursively forward project the prob-
lem space actions. If the desired state is achieved, the opera-
tor’s forward projection is a success and chunking compiles 
a rule. Each rule tests for the state conditions under which 
application of an operator resulted in the desired state, and 
creates a preference for that operator so it is preferred over 
the other applicable operators. The set of rules complied 
from this deliberate explanation implement the behavior 
corresponding to the task. 

Evaluation 
Our experiments and demonstrations evaluate the model 
along the dimensions of behavioral requirements identified 
earlier. We use the same learner model for all the experi-
ments. The learner’s prior knowledge is varied to evaluate 
different learning behaviors. Prior knowledge states are cat-
egorized as: null, the learner is not pre-encoded with any 
domain knowledge beyond the primitive actions; O, the 
learner has prior knowledge of how to recognize objects 
referred to using noun phrases such as the red large trian-
gle; O+S, the learner has prior knowledge of object recogni-
tion and spatial relationships such as in; and O+S+T, the 
learner has declarative and procedural knowledge of the task 
in addition to the knowledge of object attributes and spatial 
relationships. 



 The learner learned and executed three task templates: 
move [obj] to [loc]; shift [obj] to [loc]; and store [obj], 
where move is a constituent task of shift and store. For 
teaching, task templates were instantiated with an object and 
a location. If the learner asked any questions, appropriate 
answers were provided. To acquire and execute these tasks, 
the learner must comprehend instructions that provide ex-
ample executions of actions such as pick up the red large 
triangle and goal concepts such as the goal is the triangle is 
in the pantry. This requires the learner to resolve noun 
phrases to objects in the scene, prepositions to spatial rela-
tionships, and verbs to tCNs. The results reported in this 
paper were obtained from a simulation of the table-top do-
main that is faithful to the sensory and control systems of 
the real robot. 

Generality of Task Learning 
The results summarized in Table 1 show the knowledge 
acquired for each task. Column I records the number of pos-
sible instantiations of a template and S records the number 
of possible initial world states. The acquired knowledge is 
general (behavior B1) in the following ways.  
 Generality of arguments: Since the learner acquires 
general tCNs and learns behavior through chunking, the 
knowledge learned during the single training instance gen-
eralizes to other objects and locations in the scene. This was 
tested by giving randomly instantiated tasks to the learner 
and verifying that they were correctly executed. Further 
analysis of the learned rules showed that the learner can 
execute all instantiations of task after learning from a single 
example execution with the expert. 
 Generality of instruction sequence: During procedurali-
zation, the learner determines why a sequence of actions and 
constituent tasks was useful for achieving the desired goal 
of the task. Superfluous actions in the training sequence, 
those that were not useful in progress towards the goal, are 
automatically eliminated. For example, if the training se-
quence of move the blue cylinder to the garbage was pick up 
the blue cylinder, put the cylinder in the pantry, pick up the 
cylinder, put the cylinder in the garbage, the learner’s ac-
quired behavior for move[obj], is pick-up[obj], put-
down[in, obj, loc] since executing this sequence directly 
achieves the goal of the task. 
 State sensitive task execution: From a single training 
sequence, the learner acquires a behavior that applies to any 
legal initial state (column S) of the world. If the learner is 
executing store, and the pantry is open, it does not open the 
pantry again, but moves the relevant object to the pantry. 
Thus the learner acquires causal execution knowledge as 
opposed to rote memorization of action/task sequences. 

 Table 1. Tasks acquired by the learner 

Changes in Processing 
The learner’s procedural memory encodes the knowledge 
for the following cognitive capabilities: interaction man-
agement, lexical and referential processing, and learning. To 
acquire and execute task knowledge from situated interac-
tive instruction, the learner uses these capabilities by select-
ing associated operators during various stages of processing 
the instruction. The use of these cognitive capabilities varies 
with the domain knowledge the learner possesses. Figure 3 
shows the distribution of capability use when the learner 
performs store the blue cylinder. In the null state, it must 
not only learn how to perform the task, but it must also ac-
quire knowledge of the spatial-relationship in, and of attrib-
utes blue and cylinder. This requires interactions with the 
expert about these concepts and lexical and comprehension 
of expert’s utterances. When more knowledge is available in 
the learner (O+S, O+S+T), it does not need to communicate 
with the expert to learn these concepts. Therefore, fewer 
operators belonging to these capabilities are selected. Simi-
larly, object/spatial learning and task-acquisition operators 
are not selected when the learner possess knowledge of the 
domain and the task. This demonstrates how processing 
changes with learning, so that at the end, task-execution 
dominates. It also shows how the overall time required to 
perform the task greatly decreases with experience. 
 These results can be compared to those reported by An-
derson (2007) for learning from pre-encoded declarative 
instructions. With practice in the domain, the instruction 
interpretation (memory retrieval) steps in ACT-R models 
dropout. In our model, instruction interpretation corresponds 
to interaction-management and lexical and referential com-
prehension. As the model accumulates more knowledge of 
the task, these capabilities are employed less often. 
 

 
Figure 3. Operator selection during the execution of the task 
store in different initial states of prior knowledge. 

Flexible Instruction 
To evaluate if the learner model supports flexible instruc-
tion, we report the number of expert-learner utterances re-
quired to learn the different actions in each prior knowledge 
state (Figure 4). Expert-learner utterances are categorized by 
the knowledge that the learner intends to acquire. For exam-

Task I Goal Problem Space, Behavior S 
move 16 in(obj,loc) pick up (obj), put down (in, 

obj, loc) 
2 

shift 16 in(obj,loc) move (in, obj, loc) 4 
store 4 in(obj,pantry) 

close(pantry) 
open (pantry), move (in, 
obj, pantry), close (pantry) 

4 



ple, through object-attribute utterances, the learner acquires 
the knowledge of concepts such as red and how they map to 
perceptual symbols.  
 When the learner begins in null state, it initiates several 
sub-dialogs to learn about objects and spatial relationships. 
These interactions do not occur if the learner begins in O+S 
states because it already has knowledge of these concepts. 
The results show that the learner only requests knowledge 
when it is missing and therefore, the expert does not need to 
maintain a perfect mental model of the learner in order to 
teach it a new concept. The expert can rely on the learner to 
guide interactions to learning basic concepts if they are un-
known to the learner allowing for flexible instruction (be-
havior B2). 

 
Figure 4. The number of expert-learner interactions when 
learning tasks in different states of prior knowledge. 

Extendible behavior 
Using the acquired concepts associated with verbs, preposi-
tions, nouns, and adjectives the learner can interactively 
learn the specifications for problems, such as classic puzzles 
like 8-Puzzle or Towers of Hanoi, and then solve them (be-
havior B3). The learner acquires the rules of the problem by 
asking the expert to specify legal actions in the game, which 
include what task they are associated with and the pre-
conditions for the action. For example a legal move in 8-
Puzzle involves the task move, with the conditions that the 
target location be empty and next-to the location that the 
target object is in. The conditions can be either spatial, i.e. 
“the block is not in a location,” or describe desired attrib-
utes, i.e. “the block is blue.” The learner also acquires the 
goal of the problem in a similar manner. The specifications 
for goals and actions can involve any number of parameters 
and associated constraints between them, as demonstrated 
below. The learner requests teaching examples when en-
countering unknown concepts, while taking advantage of 
concepts already acquired through other interactions. 

A sample of part of the interaction for learning an action 
for 8-puzzle between Learner L and Expert E is as follows: 

“L: What in the name of a verb associated with this action?” 
“E: move” (initiates teaching if unknown) 
“L: What is a parameter for this action? (or finished if done)” 
 “E: a block”  
“L: What is a condition for this parameter?(or finished if done)” 

“E: the block is in 3” (3 refers to the third parameter) 
Using this information, the learner extracts the relevant 

relationships, indexes potential objects, and determines 
which actions and goals are present. Even though the expert 
does not teach full action models of the game mechanics, 
such as that moving piece x from location y to z in 8-puzzle 
also causes a in(x,y) to be false, the fact that the action 
knowledge is grounded enables the learner to internally 
simulate the actions in SVS and search forward for a solu-
tion. This enables the learner to solve novel problems where 
it only receives instruction on the problem definition. Our 
approach is sufficient to specify a variety of problems that 
can be described by spatial and visual attribute constraints, 
or problems with an appropriate isomorphism. To date these 
include Towers of Hanoi, the Toads and Frogs puzzle, Tic-
Tac-Toe, Connect Four, and 8-Puzzle.  In future work we 
will attempt to have the learner learn action models so that 
more advanced problem solving techniques can be utilized.  

Discussion and Conclusion 
Learning from social interactions such as instructions is a 
distinctly human capability. Through instructions, humans 
learn a wide range of knowledge, from declarative 
knowledge in schools to procedural knowledge through ap-
prenticeship with an expert. Prior ACT-R models of learn-
ing with instruction (Anderson, 2007) have addressed how 
procedural knowledge can be acquired through problem 
solving experience guided by declarative instructions in 
memory. Such models provided limited answers to how 
humans learn from social interactions. In this paper, we 
identified the computational challenges associated with de-
signing models that can learn from mixed-initiative, situated 
interactions with an expert. We presented a model imple-
mented within the constraints of the Soar cognitive architec-
ture that can learn novel task knowledge through situated 
instructions. The model acquires diverse knowledge – lin-
guistic, semantic, and procedural by employing different 
cognitive mechanisms including semantic and episodic 
memory and chunking.   
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