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Abstract

Intelligent collaborative agents are becoming common in the human society. From virtual

assistants such as Siri and Google Now to assistive robots, they contribute to human activ-

ities in a variety of ways. As they become more pervasive, the challenge of customizing

them to a variety of environments and tasks becomes critical. It is infeasible for engineers

to program them for each individual use. Our research aims at building interactive robots

and agents that adapt to new environments autonomously by interacting with human

users using natural modalities.

This dissertation studies the problem of learning novel tasks from human-agent dialog.

We propose a novel approach for interactive task learning, situated interactive instruction

(SII), and investigate approaches to three computational challenges that arise in designing

SII agents: situated comprehension, mixed-initiative interaction, and interactive task learn-

ing. We propose a novel mixed-modality grounded representation for task verbs which

encompasses their lexical, semantic, and task-oriented aspects. This representation is use-

ful in situated comprehension and can be learned through human-agent interactions. We

introduce the Indexical Model of comprehension that can exploit extra-linguistic contexts

for resolving semantic ambiguities in situated comprehension of task commands. The

Indexical model is integrated with a mixed-initiative interaction model that facilitates a

flexible task-oriented human-agent dialog. This dialog serves as the basis of interactive

task learning. We propose an interactive variation of explanation-based learning that can

acquire the proposed representation. We demonstrate that our learning paradigm is effi-

cient, can transfer knowledge between structurally similar tasks, integrates agent-driven

xi



exploration with instructional learning, and can acquire several tasks. The methods pro-

posed in this thesis are integrated in Rosie - a generally instructable agent developed in

the Soar cognitive architecture and embodied on a table-top robot.
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Chapter 1

Introduction

With the recent advances in artificial intelligence, computational agents have begun to

take on new roles as intelligent collaborators in the human society. Virtual assistants -

Siri and Google Now - are on their way to becoming standard phone interfaces, providing

human users a novel way of interacting with their cellphones and accessing information.

It is expected that general-purpose, personal robots will become pervasive in domestic,

public, and industrial spaces within the next decade. They will assist humans in a vari-

ety of activities including doing household tasks and collaborating on the assembly line.

Personal robots, along with other intelligent agents such as smart homes and cars, will

add tremendously to the quality of human life. They will offer persons with impairments

more independence, help older adults with their daily chores, transport people and goods,

and perform search and rescue in environments that are too dangerous for humans.

Several challenges have to be addressed to make progress towards this vision. Each

home, office, or assembly line is organized differently. Users will want the agents to per-

form a variety of tasks and will have different preferences. Customizing every agent for

its deployment environment and user preferences is resource intensive and costly. One

approach to this challenge is designing a generally intelligent agent that can adapt to the

user requirement on its own instead of relying on dedicated programming. This approach

requires that the agent be an efficient online learner. It needs to learn object recognition,

semantic organization and categorization, spatial relations, and tasks from experiences

in its environment and exploit this knowledge immediately for performance. Learning
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through self-directed exploration alone can be challenging and slow, requiring numerous

interactions with the environment. This has motivated research on human-agent interac-

tion driven learning paradigms that studies how human feedback, guidance, and structure

can be used to reduce the complexity of learning. The goal is to develop agents that can

be easily extended by human users using natural interactions to perform new tasks.

Recently, interactive task learning (ITL) was identified as a challenge problem for inte-

grated intelligent agents (J. Laird, 2014). In order to learn a new task, an agent must learn

a variety of types of knowledge. It not only should know the description of task goals but

also learn to recognize relevant objects, their features, and relationships from its sensory

stream. It must learn to manipulate its environment to make progress toward its goals.

It also needs to acquire task parameters and specifications. Prior work (Chernova and

Thomaz, 2014) on learning from demonstration, dialog, and reinforcement has addressed

the ITL problem in parts. Several initiatives have focused on acquisition of control poli-

cies from either human generated embodied traces or reward. However, very few have

studied learning comprehensive representations of tasks from scratch.

A related challenge is that of supporting natural interactions with human collabora-

tors. Most commercially available agents and robots rely on menu-driven interactions

that are completely controlled by the human user. To design autonomous agents that

can meaningfully interact with humans to collaborate on tasks, more natural interaction

modalities such as language, gestures, sketching, or demonstrations have to be explored.

Both Siri andGoogle Now have taken encouraging steps in this direction by relying on spo-

ken language. However, their interaction paradigm is unidirectional, and they merely re-

spond to human initiated queries. Furthermore, they are constrained to pre-programmed

behaviors. An agent that learns effectively and efficiently by interacting with humans

must assume control of interactions on occasion and guide the conversation for its own

learning.

Mixed-initiative, task-oriented dialog arises naturally in scenarios where an expert

2



guides a novice to execute a novel task. This dialog is rich in useful information identi-

fying task relevant features, decomposition structure, goals, and constituent actions. In

comparison with other interaction modalities such as embodied traces or rewards that can

only encode very specific information (execution trajectory or value judgment), the lin-

guistic modality is extremely expressive. It can be used to communicate a variety of infor-

mation, and therefore, is useful in developing strong and flexible task learning paradigms.

However, it also poses a significant challenge. As the communication is high-level, the

agent must translate the linguistic symbols to representations that it uses for perceiving,

reasoning about, andmanipulating its world. The contextual flexibility of human language

and the ambiguities pervasive in it make this a hard problem.

This thesis addresses the problem of interactive task learning from human-agent in-

structional dialog. We introduce a learning paradigm based on linguistic communication

called situated interactive instruction (SII). In the SII approach, a human instructor and an

agent learner are simultaneously embedded in a shared environment. The shared percep-

tions and common sense knowledge about the world provides a common ground through

which the dialog is situated in aspects of the world. The human instructor gives the agent

instructions to execute new tasks. The agent grounds linguistic symbols in the instruc-

tions to objects, their perceptual attributes, spatial relationships, and tasks definitions.

Through this grounding process, the agent extracts specific examples from the environ-

ment that form the basis of learning. The agent effectively combines knowledge in inter-

actions with its experience in the environment to extract generally applicable knowledge

and adds it to its repertoire. The task structure, parameters, and execution knowledge so

acquired crucially provide the means through which the semantics of verbs are grounded

in the physical properties of the world. Grounding verbs in task representation acquired

from the instructor contributes to expanding the common ground between the agent and

the instructor. This not only allows the agent to communicate about tasks but also aids in

learning complex hierarchical tasks. The interactions are mixed-initiative and distribute

3



the onus of learning between both participants.

More specifically, this thesis proposes answers to the following questions.

• How can verbs be grounded in task goals and execution knowledge? Answering this

question is critical for communicating about tasks and producing behavior in re-

sponse to task commands (imperatives) such as set the table. The challenge key to

this question is identifying a representation which encodes lexical, semantic, and

procedural aspects of verbs and tasks that can be realized in a computational system.

• How can task commands be understood? This questions deals with grounded inter-

pretation of language - generating meaning by connecting words to non-linguistic

knowledge of the world. Linguistic interactions are contextual, flexible, and am-

biguous which makes understanding even simple imperatives a significant chal-

lenge.

• How can task-oriented linguistic interaction be sustained? In order to learn task rep-

resentations, the agent must acquire various aspects such as their parameters, goals,

execution policy, etc. This may involve extended conversations about these aspects.

In order to learn useful knowledge from interactions, the agent should be able to

sustain and direct these conversations.

• How can task goals, structure, and execution knowledge be learned interactively? Learn-

ing the structure of novel tasks and how to execute them is a challenging computa-

tional problem that requires acquiring a variety of knowledge including goal defini-

tions and hierarchical control information. Additionally the data available to learn

from is sparse, necessitating knowledge-intensive learning paradigms.

This thesis can also be characterized as a case study in designing complex agents that

have several intelligent capabilities. The methods in this thesis developed in answering

the questions above are integrated in Rosie, a generally instructable agent. Rosie can
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interactively learn a diverse variety of concepts including perceptual categorization and

classification (Mohan, Mininger, Kirk, et al., 2012), spatial composition (Mohan, Mininger,

Kirk, et al., 2012), hierarchical tasks (Mohan and J. Laird, 2014), and simple games (Kirk

and J. Laird, 2014).

1.1 Research approach

We approach the challenge of designing interactive learning agents with the following

three strategies.

1.1.1 An Integrated Account

Developing a generally intelligent artificial agent has proved to be an incredibly hard

challenge. A strategy that has been successful is to divide the problem of general AI into

smaller problem areas. This has led to tremendous successes in various sub-fields of AI

from recommender systems to autonomous robot navigation. Recent advances have led

to methods in several domains that can handle real-world complexity. However, there has

been limited work in studying how algorithms and methods developed in these sub-fields

can be integrated into a consistent framework for end-to-end intelligent behavior.

The problem of learning new tasks from human-agent dialog necessitates the integra-

tion of several intelligent capabilities including language comprehension and generation,

interaction and dialog, perception and actuation, and learning. Each of these is a signifi-

cant research challenge in its own regard. In order to make this cross-capability integra-

tion tractable, we focus on task learning in a simple robotic domain (described in detail in

Chapter 4). The domain consists of a robotic arm that can manipulate blocks on its table-

top workspace. This strategy simplifies the perceptual and actuation challenges, allowing

us to study representations and processes useful for interactive task learning while main-

taining end-to-end behavior. Our research is embedded in a larger research initiative that
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investigates methods to learn a variety of concepts ground-up in a single integrated agent.

The concepts that can be learned include perceptual attributes and spatial relations, tasks,

and simple games.

In studying situated language comprehension, we restrict the grammar and vocabu-

lary of communication to concrete nouns, adjectives, and verbs that can be grounded into

perceptual data and control hierarchies. This allows us to explore connections between

language and other aspects of intelligent behavior.

1.1.2 Architectural Implementation

Designing an agent with several intelligent capabilities is challenging and necessitates an

agent architecture that provides reliable and efficient mechanisms for perceptions, actua-

tion, memory, decision making and learning. The representations and methods described

in this paper are implemented as components of Rosie (Mohan, Mininger, Kirk, et al.,

2012) which is developed in the Soar cognitive architecture (J. Laird, 2012). Soar incor-

porates various learning, memory, and control mechanisms and is committed to reactive

behavior (50 ms perceive-decide-act cycle), online learning, and diverse modality-specific

representations. This makes Soar a suitable AI architecture for use on robots and in in-

teractive learning. An analysis of memories and processing useful in designing Rosie is

presented in Chapter 4.

1.1.3 Qualitative and Functional Evaluation

Our methods are motivated by and evaluated on desirable characteristics of interactive

learning agents. Chapter 2 identifies the desiderata for an intelligent agent that can main-

tain a situated task-oriented dialog and learn from this experience. This is based on prior

work in various fields that have studied human-human task-oriented dialog. Themethods

introduced in the later chapter are analyzed on how close they are to desirable behavior
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of interactive learners.

For functional evaluations, the primary metric used is the number of human-agent

utterances required to learn or execute a task. A competent interactive learner bears a

significant responsibility for its own learning and takes initiative in generalizing its ex-

perience, applying its background knowledge to learning, and exploring its environment.

Consequently, it requires less interaction with its instructor in comparison with a passive

learner that relies on the instructor to structure instructions and provide examples for

appropriate generalization.

This thesis takes an agent-oriented view of learning from human-agent dialog, ad-

dressing integration of various intelligent capabilities that will allow an agent to sustain

a task-oriented dialog and learn useful representations from it. Therefore, the evaluations

are functional, focusing on correctness and efficiency of task learning. In future, we will

evaluate our methods in human-robot/agent interaction contexts to explore variability in

human instruction and to develop methods that are robust to these variations.

1.2 Looking Ahead

Chapter 2 introduces situated interactive instruction (SII) - our approach to learning new

tasks. We begin by studying the properties of task-oriented dialog which forms the basis

of SII. Based on these properties, we then derive design requirements for agents that can

learn from SII.

Chapter 3 reviews literature related to our research and positions this thesis with re-

spect to contributions made by prior work.

In Chapter 4 we present an overview of Rosie, an SII agent. We begin with a brief

primer to the underlying cognitive architecture, Soar, and analyze the degree to which

the architecture satisfies SII requirements. Next, we describe our experimental robotic

domain and how it is interfaced with Rosie.
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Chapter 5 presents a semantic and task-oriented analysis of verbs used to describe

common domestic tasks. This analysis is then used to motivate a mixed-modality repre-

sentation for verbs that encodes lexical, semantic, and task-oriented knowledge.

Chapter 6 proposes a computational model of situated language comprehension based

on the Indexical Hypothesis Glenberg and Robertson, 1999. The Indexical Model gener-

ates meaning representations by translating amodal linguistic symbols to modal repre-

sentations of beliefs, knowledge, and experience external to the linguistic system. It in-

corporates multiple information sources including perceptions, domain knowledge, and

short-term and long-term experiences during comprehension to alleviate various seman-

tic ambiguities.

Chapter 7 describes a computationalmodel formaintaining task-oriented flexible human-

agent dialog. We show that the interaction model is sensitive to the agent's knowledge

state and accommodates instructor-driven and learner-driven learning strategy.

In Chapter 8, we study learning goal-oriented hierarchical tasks from SII. We frame

acquisition of novel tasks as an explanation-based learning (EBL) problem and propose an

interactive learning variant of EBL. We show that our approach can exploit information

in situated instructions along with the domain knowledge to demonstrate fast generaliza-

tion on several tasks. The knowledge acquired transfers across structurally similar tasks.

Finally, we show that our approach seamlessly combines agent-driven exploration with

instructions for mixed-initiative learning.

Chapter 9 re-iterates the contributions of this thesis and discusses open questions in

interactive task learning.
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Chapter 2

Situated Interactive Instruction

Task-oriented dialog arises naturally in scenarios when people collaborate on tasks. It is

also common in instructional scenarios when an expert guides a novice in a new task.

Research on collaborative task-oriented dialog suggests that such dialog is rich in infor-

mation relevant to task execution. It may identify relevant perceptual features (Grosz and

Sidner, 1986; Oviatt and Cohen, 1991; Scheutz, Cantrell, et al., 2011), subtasks (Grosz and

Sidner, 1986; Bangalore et al., 2008), or goals (Grosz and Sidner, 1986; Scheutz, Cantrell,

et al., 2011). It may also contain corrections (Litman and Allen, 1987), clarification (Lit-

man and Allen, 1990) or preconditions for task execution (Lochbaum, 1998). Task dialog,

therefore, can serve as an important tool to learn a new task and forms the basis of our

situated interactive instruction (SII) approach to interactive learning.

2.1 Situated Interactive Instruction

In SII, a instructor or mentor and a learner are simultaneously embedded in a shared en-

vironment and the instructor guides the novice to execute a novel task. The instructor

and the learner form a system of joint learning, which distributes the onus of learning

between both participants. The instructor takes initiative in identifying relevant percep-

tual features, objects, and relationships in the shared environment and in structuring and

decomposing the task. The learner takes initiative in actively comprehending and apply-

ing the instructions to the current situation, in applying common-sense reasoning and
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experience to understand ambiguous instructions, in exploring its environment, and in

posing relevant queries that elicit instructions useful in making progress in the task.

To design an agent that can learn from SII, several complex aspects of intelligence and

cognition have to be addressed. Not only must the agent maintain an ongoing, mixed-

initiative dialog with the instructor, it must also act in the world in accordance with the

instructions, and learn from its experience of the world. The challenge of developing

SII learners requires studying how language comprehension, dialog management, per-

ception, decision-making, action, and experience-driven learning can be integrated in a

single agent architecture. In order to guide the design of our agent, its capabilities, and

their integration, we first study the properties of general situated interactive instruction

in Section 2.2 and then, derive the design requirements in 2.3 along with identifying the

specific aspects this thesis addresses.

2.2 Properties

The properties of an interactive learner can be characterized along three dimensions. The

first dimension, modality, pertains to how the information in interactions is encoded. The

second, control, pertains to which participant of human-agent interaction has the onus

of learning. The third dimension data, characterizes data available to the learner to learn

from. Below we characterize SII along these dimensions.

2.2.1 Modality

Information in human-agent interaction can be encoded in various ways. In typical learn-

ing from demonstration approaches (Argall et al., 2009; Chernova and Thomaz, 2014), the

agent is given embodied traces of desired behavior either through teleoperation or by

direct manipulation of its actuators. The traces are composed of state-action pairs from

which the agent can induce a control policy. Interactive reinforcement learning methods
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(Maclin and Shavlik, 1996; Thomaz et al., 2006; Knox and Stone, 2010; Griffith et al., 2013)

have looked at interaction as a medium for rewarding the agent for behavior. Both classes

of interactions are low-level and are very close to agent's reasoning units (state, action,

rewards). Other approaches (Rybski et al., 2007; Cantrell, Talamadupula, et al., 2012; Mer-

içli et al., 2014) have looked at high-level dialog-type interactions. Interactions in SII are

high-level and rely on:

P1 Language: Language in task-oriented dialog is referential and is used to identify

and bring to the attention of the collaborator the objects of interests, actions to be

taken in the environment, useful relationships between objects, and feedback from

the environment. For example,

"so you see that thing on the wall on the right" (Byron and Fosler-Lussier,
2005)
"You should be seeing a door in front of you" (Scheutz, Cantrell, et al., 2011)

Through such references, the speaker and the hearer accumulate a common ground

of shared beliefs and mental representations. This allows them to situate the com-

munication in the current task and environmental state. Comprehending instruc-

tions requires the agent to translate the amodal symbols in the linguistic utterance

to its modal beliefs about perceptual state, domain knowledge, and experiences.

Even very simple instructions can be linguistically complex and ambiguous requir-

ing the hearer to use non-linguistic context and domain knowledge for unambigu-

ous interpretations. Disfluencies, continuations, and ungrammatical constructions

are common (Scheutz, Cantrell, et al., 2011) .

P2 Multi-modal: Although language is the primary modality in task-oriented dialog,

other modalities (Cassell et al., 1999) may be employed to convey information criti-

cal for task performance. Gestures are important for establishing object references

and may be used to communicate size or distance. Eye-gaze and gestures are useful

in conveying understanding, confusion, or distress.
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2.2.2 Control

Human-agent interaction for learning can be viewed on a continuum of instructor/agent

control. Learning from demonstration or by imitation focuses on instructor-controlled

interactions, in which the instructor provides examples of task performance, object recog-

nition and categorization, etc. The agent observes these examples, maps the performance

onto its own capabilities and induces knowledge, goals, or reward functions. Such sys-

tems place the onus of learning completely on the instructor, requiring the instructor to

model the learner and provide good samples from the feature space so that the learner

can acquire general hypotheses. Other approaches (Maclin and Shavlik, 1996; Thomaz

et al., 2006; Knox and Stone, 2010; Knox and Stone, 2012; Griffith et al., 2013) incorporate

human feedback as a reward in a reinforcement learning architecture, letting the agent

(or the agent designer) control learning. A few others (Allen et al., 2007; Huffman, 1994)

have explored distributing initiative between the instructor and the agent. SII can be

characterized as:

P3 Mixed-initiative: Task-oriented dialog is mixed-initiative, flexible, and collabora-

tive. Participants advance the dialog in accordance with their intentions and goals

and comply with each other's requests. Dialog provides an opportunity for mixed-

control of learning. An example from Grosz and Sidner (1986) (annotation ours):

E: First you have to remove the flywheel.
A: How do I remove the flywheel? (learner initiative)
E: First, loosen the two allen head setscrews holding it to the shaft, then pull
it off.
A: OK. I can only find one screw. Where's the other one? (learner initiative)
…
E: Use the wheelpuller. Do you know how to use it? (instructor initiative)
A: No.
E: Do you know what it looks like? (instructor initiative)
A: Yes.
E: Show it to me please. (instructor initiative)
A: OK.
E: Good, Loosen the screw in the center and place the jaws around the hub
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of the wheel, then tighten the screw onto the center of the shaft. The wheel
should slide off.

Mixed initiative in task dialog offers some advantages. A learner that can assume

control on occasion can guide its own learning by requesting clarifications, asking

for missing information, exploring its environment, and correcting instructor’s re-

sponse based on its own understanding of the state. A learner that can relinquish

control on occasion, can take advantage of instructor’s knowledge of task struc-

turing and goal decomposition. In a mixed control setting, the instructor can rely

on the learner to provide information about its state and the environment. The in-

structor can verify the learner’s learning by questioning the learner and provide

corrections without having to continuously model the state of learner's knowledge.

2.2.3 Content

Information content in interactive learning can vary along several dimensions including

what information is encoded, how its presented, and how much of it is available to learn

from. It can be characterized as:

P4 Diverse information types: As noted earlier, task-oriented dialog contains a vari-

ety of information including task goals, decomposition substructure, relevant per-

ceptual features etc. The agent must continuously reason about how the current

instruction relates to the task in order to use it effectively.

P5 Incremental: Task instructions rarely contain the complete procedure to do task

in a single interaction. Rather, the dialog unfolds as the listener acts in the en-

vironment in response to the instructions, resulting in complex interactions. For

example, an instructional dialog for following a particular path in the environment

is given below (Scheutz, Cantrell, et al., 2011).
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Instructor: OK, continue to walk straight.
Robot (continuing straight): OK.
Instructor: You should be seeing a door in front of you.
Robot (looking out for a door): Yes.
Instructor: Good, go through that door.
Robot (moving through the door): OK. I'm through the door.
Instructor: Alright. Keep going. There should be a whiteboard.
Robot (looking for whiteboard): OK, I’m not seeing it yet. There it is.
Instructor: Great, then you should see an intersection, go there.
Robot (looking out for an intersection while moving): Got it, OK.

Such interaction requires that sensing, language understanding, and behavior must

be intertwined and must be performed online. The information provided for per-

forming the task is spread out in time. To learn from the interaction, the agent

must maintain the memory of task performance that is available for later analysis

and generalization.

P6 Situation Specific: Task-oriented dialog is specific to the current situation observ-

able to the speaker and the hearer.

"Good, go through that door." (Scheutz, Cantrell, et al., 2011)
"And put it so that it’s covering the hole in the bottom of that little cap."
(Oviatt and Cohen, 1991).

Therefore, the information extracted from the dialog applies to only a few scenarios

and does not encode how tasks can be executed in general.

P7 Sparse: In general, learning requires a large amount of data. A reinforcement learn-

ing architecture may need several iterations of taking an action and observing the

reward to induce a good policy. A supervised learning architecture may need sev-

eral labeled examples for inducing general concept definitions. However, human

time is costly and numerous, repetitive interactions about the task are undesirable.

Consequently, large amount of data may not be readily available while learning
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from human-agent interactions. Therefore, the agent must implement methods that

learn from a few instructions and examples.

2.3 Desiderata

Based on the properties of instructional dialog identified above, we nowderive the desider-

ata for SII learners. We refer to these desiderata throughout the remainder of this disser-

tation while studying the related work and developing the functional characteristics of

computational models well as evaluating our work.

D1 Real-time reactivity. The agent is embodied as a robot and must maintain interac-

tivity with its dynamic environment along with supporting a real-time1 dialog with

a human collaborator. This requires that the agent be reactive to changes in its

sensory input and respond in real-time.

2.3.1 Situated Comprehension

As the human-agent interaction in SII is high-level (P1) and multi-modal (P2), the agent

must implement a comprehensionmodel that extracts useful information from instructor's

utterances. The comprehension model must be:

D2 Referential. It must implement a theory of translating amodal linguistic symbols

used for communication to modal representations of beliefs, knowledge, and expe-

rience that are external to the linguistic system.

D3 Integrative. Human language is highly contextual and relies on several non-linguistic

sources to convey meaning. To successfully comprehend language, a model must

exploit multiple information sources, including perceptions, domain knowledge,
1Real-time in this context means that the response to instructions and questions in generated in less

than 500 milliseconds so that the human instructor is not disengaged.
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common-sense knowledge, and short- and long-term experiences. It should also

readily incorporate information from non-verbal communication such as gestures

and eye gazes.

D4 Active. All reasoning and knowledge access must be performed online as the inter-

action progresses. This processing should inform further communication with the

collaborator and learning.

D5 Expandable. As the agent gathers knowledge and experience of its environment, it

should use be able to use this to comprehend instructor's utterances.

D6 Incremental. The model must build up the meaning representation as each word

is processed. Incremental processing generates expectations about likely continua-

tions and informs linguistic, speech perception and provides robustness to noise.

2.3.2 Integrative Interaction

The agent must maintain a continual, online interaction with its human instructor. To

facilitate this, an interaction model is required that is:

D7 Task-oriented. The interaction model should capture the structure of task oriented

communication, provide discourse context for resolving ambiguities, correct inter-

pretation of instructions (P4), and organize dialog so that it is useful in task execu-

tion and learning. It must be useful for generating learning-oriented interpretations

of instructions and for asking questions relevant to the task execution.

D8 Integrative. The model should reason about a joint space of comprehension, inter-

action, behavior, and learning in order to interpret and advance the ongoing dialog.

D9 Flexible. SII affords mixed-control of learning (P3). To take advantage of this, the

interaction model must be flexible. The model should allow both participants of SII

to change the focus of communication (flexible initiation) regarding various aspects
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(perceptual, spatial, semantic, procedural) of task (flexible content). Furthermore,

the model should not impose any requirements on the order in which task-relevant

knowledge is presented (flexible ordering) but rely on what is required for making

progress in the current task.

2.3.3 Incremental Learning

The characterization of data in task-oriented dialog requires that the learning paradigm

be -

D10 Multi-method. It must employ methods that can learn useful knowledge from dif-

ferent types of information in SII (P4).

D11 Assimilative. The paradigm must collect information that is presented incremen-

tally (P5) in the dialog and induce an integrated task representation. The acquired

knowledge should integrate with prior knowledge that either has been pre-encoded

or has been acquired through other experience with the environment.

D12 Multi-task. The learning paradigm should be useful in learning a variety of tasks.

D13 General. As the data is situation-specific (P6), the paradigm generalize specific

instruction to unseen scenarios that may arise during task performance in future.

D14 Fast. Given that the data available for learning is sparse (P7), knowledge-rich learn-

ing algorithms must be employed. The paradigm should be able exploit the back-

ground knowledge to learn the best generalization from specific examples.

D15 Transferable. The sparsity of data (P7) also motivates exploiting the similarity be-

tween tasks to transfer knowledge from a known task to a new one.

D16 Active. As task-dialog affords mixed control, the agent must be an active partici-

pant in its own learning. The agent must detect when it lacks knowledge to make
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progress on the task and take actions to acquire that knowledge. This might include

exploring its environment, model, or asking a relevant question to the instructor.

D17 Online. The paradigm must acquire knowledge online, as the dialog progresses,

without interrupting other processes.
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Chapter 3

Related Work

Various fields in AI have studied the computational challenges relevant to the design of SII

learners. Therefore, our work can be compared to a wide variety of approaches along dif-

ferent dimensions. To present a coherent analysis of the related work, we use the desider-

ata for SII learners identified earlier. The following sections briefly summarize and analyze

the previous work categorized by its primary motivation. Section 3.1 presents work that

focuses on grounding language in extra-linguistic representations, section 3.2 describes

the progress made in sustaining human-agent dialog, and section 3.3 summarizes the prior

work in interactive learning. This thesis is uniquely placed as it presents an integrated

agent design addressing each of these categories.

3.1 Grounded Language Semantics

Designing a linguistic faculty for intelligent agents has been one of the original goals of

AI.The research pursued to approach this goal can be organized under the following broad

categories. The prior work reviewed in this section addresses the situated comprehension

desiderata (D2-D6).

3.1.1 Computational Linguistics

Research on semantics in computational linguistics and natural language processing can

be broadly categorized into three distinct groups, formal, distributional, and grounded se-
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mantics. While the earlier two approaches have been well studied in the literature, the

last approach has recently gained momentum. The formal approaches to semantics rep-

resent meaning as amodal first-order logic symbols and statements. Although this lets an

agent incorporate extra-linguistic knowledge during comprehension through inference,

the symbols and predicates are not grounded in the environment. Distributional seman-

tics only incorporates linguistic contexts with no explicit groundings to the observations

from the environment.

Work on grounded language acquisition has taken an application-oriented approach

and has developed solutions for applications including navigational tasks (MacMahon et

al., 2006; D. Chen andMooney, 2011) and RoboCup sportscasting (Liang et al., 2009). These

projects have focused on acquisition (D5) of grounded lexicon and semantic parsers from

aligned corpora of agent behavior and the text that describes it. There are several reasons

for why such approaches cannot be used to design collaborative agents that engage in

situated communication. These methods apply data-intensive learning paradigms offline.

Although this provides guarantees about robustness to noise in linguistic input, the meth-

ods cannot be adapted to learn online (D17). Failure in comprehension is reported but is

not used to drive communication or learning (D4). Further, the work proposes that the en-

tire complexity of language comprehension be encoded in a semantic parser and does not

address the use of reasoning mechanisms and background conceptual knowledge for the

purposes of language comprehension. Finally, these approaches assume a propositional

state and action representations. This simple representation of theworld state and dynam-

ics poses problems in adapting the comprehension model to agents embedded in physical

environments that require complex, relational representations for reasoning and action.

Additionally, these approaches do not provide insights into the role of non-linguistic con-

text on language processing (D3).
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3.1.2 Integrated AI Systems

There has been a long history of studying language understanding and generation in AI

systems going back to SHRDLU (Winograd, 1972). SHRDLU was an early attempt to de-

sign an intelligent agent that could understand and generate natural language referring

to objects and actions (D2) in a simple virtual blocks world. It performed semantic inter-

pretation by attaching short procedures to lexical units. It demonstrated simple learning

as the user could define compositions of blocks (such as a tower) that the system would

remember and could construct and answer questions about (minimally addresses D5).

However, the system did not learn new procedures or perceptual knowledge, constraining

the system to pre-programmed behaviors and features. The system's reliance on formal

logic for internal representation not only made it harder to extend its capabilities but also

made it brittle and unsuitable for robotic domains. Nevertheless, SHRDLU pioneered the

view that language processing for agents greatly benefits from general problem solving

capabilities, which this thesis also propounds.

Ongoing work on Direct Memory Access Parsing (DMAP; Livingston and Riesbeck,

2009) studies the utility of incorporating information from ontological and instance-based

inference for linguistic processing in the context of learning by reading. DMAP incremen-

tally integrates conceptual memory (available through an ontology) during parsing, which

can reduce the number of ambiguous interpretations and reference resolution. DMAP has

several desirable properties. It is referential (D2), integrative (D3), and active (D4) but it

has not been investigated in human-agent interaction contexts.

Other work has addressed the challenge of situated language processing for human-

agent interaction. Scheutz, Eberhard, et al. (2004) presented a visually-grounded, filter-

based model for reference resolution that is implemented on a robot with audio and video

inputs. Ambiguities are resolved by accounting for attentional context arising from fixa-

tions in the work area. In a related work, Kruijff et al. (2007) demonstrated incremental

parsing at multiple levels that includes non-linguistic contexts, such as the ongoing dialog
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and declarative pre-encoded selectional restrictions along with visual semantics. Apart

from being referential and integrative, these projects address issues that arise in spoken

dialog processing and online, incremental comprehension (D6). Brenner et al. (2007) de-

scribe how action commands can be interpreted in a task-oriented fashion to identify and

instantiate goals and plans. This model brings in knowledge about initial state and goal

descriptions that are relevant to generating and executing a plan.

3.1.3 Robotics

In robotics, language comprehension has been studied within the context of grounding

verbs in reasoning for force-dynamic properties (Siskind, 2001), describing a visual scene

(Roy, 2002), learning and describing perceptual features (Matuszek et al., 2012), under-

standing descriptions of a scene (Gorniak and Roy, 2004), understanding spatial direc-

tions (Kollar et al., 2010), and understanding natural language commands for navigation

(Tellex et al., 2011). These comprehension models work with the complex state and action

representations required for reasoning about physical worlds (D2). Their primary focus

has been on the acquisition of grounding models through offline learning from human-

generated descriptions of robot's perceptions or behavior. The agents are prone to failure

if their training is insufficient for grounding a novel instruction. An interactive agent on

the other hand will switch to learning mode if it is unable to comprehend the instruction.

It is unclear if such data intensive, corpus-based learning paradigms can be effectively

incorporated in online and incremental human-agent interactions.

3.2 Human-Agent Dialog

Conversational systems have been investigated both for virtual agents/characters and for

robots operating in physical world. While the research on conversational virtual agents

has focused on the desiderata for integrative interaction (D7 - D9), research on conversa-
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tional robots has also addressed some desiderata for situated comprehension (D2 - D6).

3.2.1 Virtual Agents

Research on virtual conversational agents (Cassell, 2000a) has progressed in two sepa-

rate themes. A body of research (Cassell, 2000b; Poggi et al., 2005; Swartout et al., 2006)

has focused on believable agents, usually embodied in human avatars. The agents devel-

oped have several similarities to human conversational behavior including recognizing

and generating verbal and non-verbal interactions; dealing with conversational functions

such as turn-taking, feedback, and repair mechanisms; giving signals that indicate the

state of conversation; and, expressing emotions. Typically, the dialog strategies devel-

oped are not task-oriented (D7).

A separate body of research has looked at conversational agents engaged in collabo-

rative tasks with humans. Although, these agents tend to less believable, they are more

relevant to this thesis as they address desiderata D7. Rich and Sidner (1998) demonstrated

an application-independent collaboration manager that allows an agent to provide intel-

ligent, mixed-initiative assistance for an air-travel application. The agent was a planning

system that interacted with a human user to determine the constraints and goals of their

air-travel and managed reservations. Task-oriented virtual agents have been recently

incorporated in smartphone architectures. Siri (Apple, 2013) and Google Now (Google,

2013) collaborate with users to search the web, user's emails, calendars etc. and retrieve

relevant information.

3.2.2 Conversational Robots

Recent advancements in AI, vision, and robotics has made real-time interactions with

robots feasible. Consequently, several research projects have begun to look at linguistic

human-robot interactions. Cantrell, Scheutz, et al. (2010) demonstrate a natural language
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understanding architecture for human-robot interaction that integrates speech recogni-

tion, incremental parsing, incremental semantic analysis and situated reference resolu-

tion. The semantic interpretation of sentences is based on lambda representations and

combinatory categorial grammar.

Other research has looked at the consequences of embodiment in physical worlds in

human-robot dialog and the various challenges it presents. Human and robots have sig-

nificant differences in perceiving the shared environment and their representations may

bemisaligned. Chai et al. (2014) investigate how a robot operating with impoverished rep-

resentations can use its communicative experience to mediate a shared perceptual basis.

Deits et al. (2013) demonstrate that dialog strategies implemented using an information-

theoretic framework are useful in reducing uncertainty in language understanding. Both

of these projects demonstrate referential (D2) and active (D4) comprehension along with

implementing flexible (D9) dialog strategies. Other work such as Mutlu et al. (2009) has

studied the role of gaze cues in human-robot dialog (D3).

3.3 Interactive Learning

Research on interactive learning has explored learning from various types of interaction

modalities. Low-level interactions include embodied traces provided through teleoperation

or kinesthetic training, observed traces from similarly embodied agents, and rewards.

High-level interactions typically involve the use of symbolic language or gestures to convey

information. This body of work primarily addresses the incremental learning desiderata

(D10-D17).

3.3.1 Learning from Low-level Interactions

Learning from embodied demonstration traces has historically focused on learning control

policies or skills (Sammut et al., 1992; Atkeson and Schaal, 1997). The demonstration traces
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are obtained either through teleoperation or shadowing. These traces consists of relevant

state-action pairs from which the agent can derive control policies. Argall et al. (2009)

and Chernova and Thomaz (2014) provide a more comprehensive survey of skill learning

from demonstration.

A few prior approaches have studied learning tasks from demonstration. They frame

task learning as learning compositions of known primitive actions. Bentivegna et al.

(2004) proposed a framework that learns subgoals from segmented observed data. The

system can use its experience to optimize its policy of selecting subgoals. Grollman and

Jenkins (2010) formulate the problem of task acquisition as inferring a finite-state machine

from segmented observations of a demonstrator performing the task. While the former is

a batch learning system, the latter focuses on learning interactively during performance.

Although powerful, these methods are instructor-driven (D9) and rely on the instructor

to provide good samples for appropriate generality. Further, these methods usually re-

quire several demonstrations (D14) and do not make any claims about generality (D13)

and transferability (D15).

Other work (Maclin and Shavlik, 1996; Thomaz et al., 2006; Knox and Stone, 2010;

Griffith et al., 2013) has explored instructions as rewards in a reinforcement learning

framework. Usually, the agent is pre-encoded with state descriptors and actions. Dur-

ing its exploration of its environments an intelligent observer can reward the agent for

perceived good behavior. This reward is used to optimize an action selection policy. These

methods have focused on only a single aspect of task learning and cannot be extended to

learning goals or action pre-conditions, models etc. (D10).

3.3.2 Learning from High-level Interactions

Priorwork on task learning from spoken dialog (Rybski et al., 2007; Cantrell, Talamadupula,

et al., 2012; Meriçli et al., 2014) addresses learning task procedures. Through linguistic con-

structions (obtained by imposing additional syntactic constraints on natural language),
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these agents can be programmed to execute procedures defined over their primitive, pre-

encoded actions. An example from Rybski et al., 2007 is below.

>> When I say deliver message
>> If Person1 is present
>> Give message to Person1
>> Otherwise
>> If Person2 is present
>> Give message to Person2
>> Otherwise
>> Report message delivery failure
>> Goto home

Using domain-general mechanisms, this instruction is translated into procedures that

are added to the agent’s repertoire. In these approaches too, the onus of learning is on

the instructor (D9, P3) who must explicitly identify the pre-conditions, termination crite-

rion, and the procedure of doing a task. Furthermore, the instructions deviate from what

constitutes a natural task-oriented dialog which usually involves executing a specific task

(P6). Instead, explicit programming control structures such as the if-then block (in the

example above) are included in instructions.

Others have looked at learning from task-oriented interactions. Early work done on

learning from instruction by Huffman and J. Laird (1995) demonstrated how instructions

can be useful in learning different types of knowledge in the problem space computa-

tional model (PSCM) for a virtual agent. Our work can be characterized as a significant

extension to this work. We present an integrated account of task learning, comprehen-

sion, and interaction management. The prior work neither identified the space in which

tasks vary nor identified the representations sufficient for representing a variety of tasks

(D12), which is central to this thesis. Further, the prior work was silent on the generality

and transferability of acquired knowledge.

Nicolescu and Mataric (2003) proposed learning task behavior networks from expe-

rienced demonstrations. The demonstrations can be accompanied by verbal instructions

that are used to indicate moments with relevant sensory features (here), to induce the
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learner in doing certain actions (drop), and signaling the beginning and end of the demon-

stration (start, done). The learning framework also allows practice trials in which the in-

structor can provide feedback and corrections to the robot's performance using speech.

The approach integrates language with demonstration (P2, D10) which results in quicker

generalization of task representations. The authors do not comment on if their task rep-

resentation can be used for encoding a variety of tasks (D12) or if acquired networks can

be shared between multiple tasks (D15).

Allen et al. (2007) demonstrated a virtual learning agent that learns executable task

models from a single collaborative session of demonstration, learning, and dialog. The

human teacher provides a set of tutorial instructions accompanied with related demon-

strations in a shared environment, from which the agent acquires task models. The ini-

tiative of learning is on the human user. However, the agent controls certain aspects of

its learning by making generalizations about certain tasks without requiring the human

to provide numerous examples (D15). This approach is novel in that it combines learn-

ing from demonstrations with explicit instructions (P2, D10). Although the approach de-

scribed is powerful, the authors do not make any claims about generality of their methods

and if their methods are sufficient for learning a variety of tasks. The agent lived in a vir-

tual environment which simplified the problem of grounding words to elements of the

world.

X. Chen et al. (2010) describe a unified agent architecture for human-robot collabo-

ration that combines natural language processing and common sense reasoning. They

developed a planning agent that relies on communication with the human to acquire fur-

ther information about under-specified tasks. The agent also demonstrates limited learn-

ing by acquiring novel common sense rules through dialog. Although the work demon-

strates integrated natural language processing, common sense reasoning, planning, and

robot navigation and manipulation, it is silent on how their design could be extended to

demonstrated diverse and comprehensive task learning (D10).
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3.4 Summary and Discussion

In this chapter, we reviewed prior work that studies different computational challenges of

SII. While these aspects - situated comprehension, human-agent dialog, interactive learning

- have been explored individually by different AI communities, very few initiatives have

looked at integrating these capabilities in a single agent which is one of themain thrusts of

this thesis. Several methods proposed recently (Liang et al., 2009; Kollar et al., 2010; Tellex

et al., 2011; D. Chen andMooney, 2011) for situated comprehension rely on offline learning

from a human-generated corpus. These methods are unsuitable for interactive agents that

must process information and acquire knowledge online while being reactive to their

world and collaborators. Similarly, work on believable conversational agents has limited

relevance to designing functional learning agents. Our proposed approach for situated

task-oriented dialog stresses the role of non-linguistic context for comprehension and can

be categorized with work done in integrated AI systems (Scheutz, Eberhard, et al., 2004;

Brenner et al., 2007; Kruijff et al., 2007) and in conversational robots (Cantrell, Scheutz,

et al., 2010; Chai et al., 2014). The task learning paradigm proposed in this thesis shares

goals and motivations with Huffman and J. Laird, 1995 and Allen et al., 2007. Our work

makes significant extensions to these approaches by proposing and analyzing general,

composable, hierarchical task representations that provide grounding to verbs.
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Chapter 4

Rosie Overview

Rosie is a generally instructable agent developed in the Soar cognitive architecture (J.

Laird, 2012) and embodied in a table-top robotic arm. It uses the SII approach to learn

concepts such as perceptual attributes (color, shape, size), spatial relationships (right-of,

in), tasks (place, stack), and simple games (tower-of-hanoi, tic-tac-toe). Below we describe

Soar, the cognitive architecture underlying Rosie and then give a brief overview of Rosie's

environment, interfaces, and processing cycle.

4.1 The Soar Cognitive Architecture

Soar is a cognitive architecture that has been applied to a wide variety of AI applications

and cognitive models. Recent extensions to Soar, including episodic and semantic memo-

ries, as well as a visual-spatial system, enhance Soar's ability to support the SII approach

for interactive task learning. Components relevant to Rosie's design are described in be-

low. Later, we analyze the degree to which it satisfies the requirements of SII agents. For

definitions of the terms used here refer to Appendix 1.

4.1.1 Architecture Overview

Figure 4.1 shows a structural diagram of Soar. Soar's working memory represents the

agent's current state. Functionally, it serves as a common substrate that maintains sym-

bolic relational representations of current and recent sensory data, current goals, and the
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Figure 4.1: The Soar Cognitive Architecture (adapted from J. Laird, 2012)

agent's interpretation of the current situation encoded as connected, directed graph. It

also provides interfaces to Soar's long-term memories and other modules. The unit of

knowledge representation in working memory is a working memory element (WME).

Soar contains a task-independent spatial visual system (SVS) that supports transla-

tion between the continuous representations required for perception and actuation in

the physical world and the symbolic, relational representations necessary for high-level

reasoning. The continuous environment state is represented in SVS as a scene graph com-

posed of discrete objects and their continuous properties. SVS computes truth-values of

continuous spatial predicates about objects describing properties such as alignment, con-

tainment, etc. in response to queries issued in working memory. The set of predicates that

SVS can reason about is task independent and fixed, but predicate extraction is controlled

using task-specific knowledge.
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Semantic memory stores context independent knowledge about the world as a directed

graph. The agent can store workingmemory elements into semantic memory. Later, these

can be retrieved by creating a cue in a working memory buffer. The best match to the

cue (biased by recency and frequency) is retrieved from semantic memory to working

memory. Semantic memory provides bi-directional access to knowledge. The agent can

retrieve a node either by creating a cue composed of its children or by retrieving its parent.

Episodic memory stores context-dependent records of the agent's experiences. It takes

snapshots of workingmemory (episodes) and stores them in chronological order, enabling

the agent to retrieve both the context and temporal relations of past experiences. The

agent can deliberately retrieve an episode by creating a cue in a working memory buffer.

The best partial match (biased by recency) is retrieved and added to working memory.

Procedural memory contains the agent's knowledge of when and how to perform ac-

tions, both internal, such as accessing knowledge in long-termmemories or querying SVS,

and external, such as manipulating its environment. This knowledge is encoded as if-then

rules.

At the lowest level, Soar's processing consists of matching and firing rules in the pro-

cedural memory. Unlike most rule-based systems, the locus of decision making is not the

selection of a rule. Instead, Soar fires all rules in parallel. The rules propose, evaluate, or

apply operators, which are the locus of decision making. Only a single operator can be

selected at a time, and once an operator is selected, rules sensitive to its selection and the

current context perform its actions (both internal and external) by modifying working

memory. Soar's primitive decision cycle consists of the following phases: encode per-

ceptual input, elaborate current state, propose operators, select operator, process output

command, and access long-term memories/SVS.

Whenever procedural knowledge for selecting or applying an operator is incomplete

or in conflict, an impasse occurs and a substate is created in which more reasoning can

occur. In Soar, complex behavior arises not from complex, pre-programmed plans or se-
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quential procedural knowledge, but from the interplay of the agent's knowledge (or lack

thereof) and the dynamics of the environment.

Chunking is a learning mechanism, similar to explanation-based learning (Mitchell et

al., 1986), that creates new rules from the reasoning that occurred in a substate. When

a result is created in a substate, a rule is compiled. The conditions of this rule are the

working-memory elements that existed before the substate and that were necessary for

creating the result, and the actions are the result. The rule is added to procedural memory

and can fire immediately. Soar also incorporates reinforcement learning that tunes oper-

ator selection strategy in accordance with intrinsic or environmental reward functions.

4.1.2 Analysis

Soar provides a variety of knowledge representations and learningmechanisms (D10). The

semantic memory encodes context-independent declarative knowledge; episodic mem-

ory stores temporal changes in the agent's state; procedural memory can represent goal-

driven control hierarchies; and SVS can reason about continuous of the physical world.

This is useful in representing different aspects of task knowledge including goals, decom-

positional substructure, control hierarchies, relevant perceptual features etc along with

syntax and semantics of verbs. The memories and SVS store modal representations of

perceptual and spatial knowledge provide grounding to linguistic symbols (D2).

Soar adopts the problem space computational model (PSCM: Newell and Simon, 1972)

and bounded rationality (Simon, 1991) as core theoretical commitments in order to main-

tain reactivity to environmental changes. A typical Soar decision cycle, takes much less

than 50 milliseconds. Empirical evidence suggests that this is sufficient for reactive be-

havior in numerous domains including human-computer interaction tasks, video games,

and robotics. A decision cycle may involve accessing large bodies of knowledge in long-

term memories, however, each access (in the expected case) is a bounded search and is

guaranteed to complete in finite time. Computationally unbounded search such as logi-
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cal inference or generalized search is spread out over multiple decision cycles. This lets

the agent be reactive to environmental changes and terminate unbounded computation if

something immediate requires attention.

Whenever a Soar agent lacks knowledge to make progress, an impasse occurs and

Soar automatically creates a substate in which the goal is to resolve the impasse. In the

substate, the agent can reason about why the impasse occurred and implement a strategy

to resolve it. This meta-cognitive reasoning (discussed in detail in later chapters) is useful

in active situated comprehension (D4) and agent-driven learning (D16).

As noted earlier, SII presents information incrementally as the dialog unfolds. Soar's

episodic memory automatically stores how the agent's state evolves temporally. The

memory stores the changes in environmental state along with capturing the history of

dialog. This history is available for retrospective analysis and learning a comprehensive

task representation (further details are in Chapter 8).

4.2 Rosie

In the following sections, we give a brief overview of Rosie's environment and interfaces

and briefly describe the interaction cycle that forms the basis of interactive learning. The

details are presented in Mohan, Mininger, Kirk, et al., 2012.

4.2.1 Environment

Rosie acts in a mixed reality environment that simulates a toy kitchen. It consists of

a table-top robotic arm that can manipulate small foam blocks and a Kinect camera for

sensing. The workspace contains several locations that have simulated functionality. For

example, a stove can be turned on and off, and the pantry can be opened and closed. This

can change the state of the world. For example, when the stove is turned on, it changes

the simulated state of an object on it to cooked after an appropriate delay.
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Figure 4.2: Rosie's table-top workspace and the interaction window.

4.2.1.1 Perception

The perception system generates an object-oriented representation from the continuous

data stream (3D point cloud) available from the Kinect. Each object can is associated with

a vector of perceptual symbols (red, large, triangle) corresponding to the three perceptual

properties - color, size, and shape - available through the camera. The perceptual symbols

are extracted through K-Nearest Neighbor (kNN) classifiers with Gaussian weightings

built for the perceptual properties. For example, a perceptual symbol R43 may be asso-

ciated with the region in the color feature space that corresponds to the word red. The

perceptual symbols, along with position and bounding box information are provided to

Rosie. The perceptual classifiers are trained through instruction (as explained in later

sections).

4.2.1.2 Actuation

To act in the world, Rosie can send the following types of action commands to the robot

controller.

• Object manipulation such as pick-up (object-id), place (x,y,z) allows the

agent to move objects on the work area.
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• Functional manipulation commands such as turn-on(stove) change the virtual

functional state of the locations.

The low-level policies corresponding to these action commands are pre-programmed

in the robot controller and the environment. The environment provides a degree of feed-

back indicating whether the policy was successfully executed and whether the robotic

arm is free and waiting for a command. This is useful in implementing robust closed-loop

control of the arm.

4.2.1.3 Interaction

Rosie can interact with the human instructor either through speech or through text in

a chat interface. Speech input is converted to text using CMUSphinx (CMUSphinx 2014).

Messages from the instructor are parsed to extract part of speech tags and syntactic struc-

ture. The messages from the agent are translated to language using templates. The in-

structor can also point to different objects by clicking them in a live camera feed. Sup-

porting the entire range of complexity in human language is not a primary aim of this

work, therefore, the vocabulary and grammar supported by Rosie is highly constrained.

However, even in very simple constructions, some semantic ambiguity may arise due to

under-constrained reference or omitting of information critical for task performance. This

is studied in Chapter 6.

4.2.2 Knowledge Representation

4.2.2.1 Perceptual Knowledge

Rosie's visual knowledge is encoded in its long-term perceptual memory and semantic

memory (refer to Figure 4.3). The perceptual memory accumulates training examples that

are used to classify objects in terms of visual attributes: color, size, and shape. Each visual

attribute has a k-nearest neighbor (kNN) classifier associated with it and each class within
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the kNN is referred to using a perceptual symbol. For example, the color classifier may

have classes labeled with perceptual symbols C22, C53, C49, each of which corresponds

to a color known to Rosie. Semantic memory associates perceptual symbols with their

linguistic counterparts. For example, it may maintain that the perceptual symbol C22

corresponds to the word blue.

All objects in the workspace are represented in the working memory and SVS. SVS

maintains each object's positional information along with its bounding volume and cen-

troid. Working memory contains symbolic information about objects. The domain is par-
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tially observable; objects occlude each other and while moving objects around, the arm

may move the object out of visibility. This makes tracking objects correctly a challenge.

Perceptual reasoning implemented in Rosie's procedural memory meets this challenge to

a large extent by exploiting other sources of information (Mininger, 2014).

4.2.2.2 Spatial Knowledge

Rosie's spatial knowledge is distributed between semantic memory and SVS (shown in

Figure 4.3). It learns and represents spatial prepositions such as on and near as composi-

tions of the following task-independent primitive predicates in SVS.

• The directional primitives describe how the reference and primary objects are aligned

along each axis in a 3-dimensional coordinate system: X, Y, and Z. In relation to the

reference object, the primary object can be aligned, greater-than, or less-than.

For example, two objects on the same plane are Z-aligned. These relations are

useful in learning prepositions that are based on spatial order, such as right of or

diagonal with.

• These distance primitives encode the distance between the reference and the pri-

mary object along each axis. The distance is measured from the closest surface of

each object. Distance-based primitives are useful in the acquisition of prepositions

such as near or far.

The learned spatial relations for prepositions are represented by a logical combination

of directional primitives and a distribution of distance-based primitives. The combination

of directional primitives contain conjunctions from different axes, such as X-less-than

and Z-aligned, and disjunctions on the same axis, such as Y-aligned or Y-greater-than.

The initial teaching demonstration results in a representation with a conjunction of the

current true directional primitives. Subsequent demonstrations can add disjunctive prim-

itives. Additional demonstrations provide a distribution of distances from which a range
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can be calculated. Logical combinations of primitives allow the agent to acquire a wide

range of complex spatial prepositions, including ones based on both distance and direction

such as next-to.

This representation of spatial relations is useful for reasoning about existing spatial

relationships on the workspace (such as the red cylinder is on the stove) to generate the

current state and for executing actions that establish specific spatial relationships between

arguments (such as put the red cylinder on the stove).

4.2.2.3 State Representation

Rosie maintains an object-oriented representation of the world in its working memory.

An object in its view can be described as a set of perceptual features (color, shape, size,

volume) and their value assignments. Formally, let F = {f1, f2, ..., fn} be the set of at-

tributes observable in the environment. Every attribute fi (such as color) has an associated

domain domain(fi) (such as {r2, b11, …}) of symbols. An object o ∈ O can be described

as the set of attribute-value pairs, o = {(f, symbolf )|f ∈ F, symbolf ∈ domain(f)} that

are currently known to the agent. As explained earlier in Section 4.2.2.1, Rosie may be-

gin with an incomplete knowledge of the domains of perceptual attributes. It learns the

domain through instruction when the need arises.

The current state of the agent is composed of a set of beliefs about observable objects

represented as relational predicates defined over visible objects. They are of following

types.

• Existence, Pe. These are predicates that capture if the object is observable or not.

• Category, Pc. These predicates indicate if the an object o is a location or a movable

block.

• Spatial relations, Pr. These are predicates that indicate if a spatial relation r exists

between two objects, o1 and o2. The spatial relation is represented as a composition
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of primitive predicates in SVS as described in Section 4.2.2.2 and can be learned from

instruction.

• Functional state, Pf . These predicates are available for certain objects and capture

their function state such as if they are open or closed and on or off.

4.2.3 Interaction Cycle

We pre-encoded Rosie with rules that assist in parsing and categorizing utterances, main-

tain the interaction state, ground utterances to extra-linguistic knowledge, and assist

learning. Below, we describe the interaction cycle implemented using these rules which

forms the basis of processing in Rosie. During the interaction cycle, Rosie selects and

applies operators to interpret the instructor's utterances and generate behavior. The in-

teraction cycle begins with a natural language utterance from the instructor (shown using

solid line in Figure 4.4) and is processed in following phases. Consider the example in Fig-

ure 4.5. An interaction cycle begins when the instructor commands Rosie to perform the

move task in Line 2.

4.2.3.1 Lexical Processing

LG-Soar (Lonsdale et al., 2006), a natural language component implemented as operators

in Soar, generates a syntactic parse of the utterance using a static dictionary and gram-

mar. It uses part-of-speech tags to create a parse in Rosie's working memory, identifying

the useful content in the message. This parse is further categorized as task-command,

goal-description, descriptive-sentence, etc. based on its lexical structure. For ex-

ample, Line 2 is characterized as a task-command in this phase.
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1.  Rosie: Give me a task.
2.  Instructor: Move the orange triangle to the pantry.
3.  Rosie: What kind of attribute is orange?
4.  Instructor: A color
5.  Rosie: (learns semantic categorization)
6.  Rosie: What is the goal of the action?
7.  Instructor: The goal is the orange triangle in the pantry.
8.  Rosie: I don't know the preposition in. Please teach me 
..  with examples.
9.  Instructor: The orange triangle is in the garbage.
10. Rosie: Okay.
11. Rosie: (learns semantic composition of 'in')
12. Rosie: (learns goal of 'move')
13. Rosie: What action should I take next?
14. Instructor: Pick up the orange triangle.
15. Rosie: (picks up the orange triangle)
16. Rosie: What action should I take next?
17. Instructor: Put the triangle in the pantry.
18. Rosie: (puts the triangle in the pantry)
19. Rosie: (learns 'move' with retrospective projection)

Figure 4.5: Rosie's learning interaction trace.
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4.2.3.2 Interaction Management

After the utterance has been categorized, Rosie interprets within the context of the ongo-

ing dialog. Using the context of the ongoing interaction and the contents of instruction,

Rosie creates a purpose1 to pursue using pre-encoded heuristics. The purpose may include

performing actions in the environment in response to commands from the instructor, pro-

viding responses to instructor's queries, or learning from provided demonstrations. The

purpose of the instruction in line 2 is executing the move task with the relevant objects.

Chapter 7 describes in further detail how the state of interaction is represented and main-

tained.

4.2.3.3 Situated Comprehension

To gain useful information from an instruction, Rosie must ground linguistic references

to objects, spatial relationships, and actions. We use the term map for structures in se-

mantic memory that encode how linguistic symbols (nouns/adjectives, spatial preposi-

tions, and action verbs) are associated with perceptual symbols, spatial compositions, and

task knowledge. Maps are learned through interactions with the environment and the

instructor and are stored in semantic memory. To ground a sentence, an indexing pro-

cess (Chapter 6) attempts to retrieve relevant maps from semantic memory so that it can

connect the linguistic terms with their referents. If the terms are successfully mapped,

Rosie uses constraints derived from the retrieved maps, the current state, known action

models, and the interaction state to create a grounded representation of the instruction.

These sources of knowledge can be used to resolve semantic ambiguity. If indexing fails

to retrieve a map or there is insufficient knowledge to resolve the ambiguity, an impasse

will arise (see Section 4.2.3.5).

In the example (in Figure 4.5), during comprehension of the instruction, Rosie fails at
1We use the term purpose to refer to Rosie's internal reasoning goals in order to distinguish them from

external task goals such as (in(A1,pantry))
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associating the adjective word orange to a color classifier. This results in an impasse and

consequent interactions to learn this knowledge (see Section 4.2.3.5).

4.2.3.4 Behavior

If Rosie is successful in generating a grounded representation of the instructor's utterance,

it attempts to pursue the purpose of the utterance. A natural language command Pick

up the orange triangle results in Rosie picking up the referenced object (Lines 14, 15 in

Figure 4.5). Apart from executing tasks, Rosie can also generate linguistic descriptions of

the scene and can be queried about various objects and spatial relationships to verify its

learning. If Rosie does not know how to execute a task, an impasse will arise (see Section

4.2.3.5).

4.2.3.5 Impasse and Acquisition

If Rosie fails to ground an utterance or is unable to execute the requested task, an impasse

arises. In response to the impasse, Rosie initiates a new interaction with the instructor

(shown using dotted lines in Figure 4.4) to acquire the missing knowledge. If there are

multiple failures during interpretation of a new instruction (comprehension of Line 2 in

Figure 4.5 results in failure for the words orange and move), Rosie processes them one at

a time, leading the instructor through a series of interactions until it can resolve all the

impasses. From impasses arising during situated comprehension phase and the ensuing in-

teractions (Lines 3, 4, and 5), Rosie can learn groundings for nouns, adjectives, and verbs.

From impasses arising during behavior (Lines 13, 14, 15), it learns task representations

(Chapter 8).
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4.3 Summary and Discussion

In this chapter, we reviewed the Soar cognitive architecture and presented an analysis of

how different components in Soar contribute to the design of Rosie. The various long-

term memories and spatial-visual system are useful in representing different aspects of

task and verb knowledge. Soar's commitment to online processing, memory access, and

learning alongwith architectural guarantees on real-time reactivitymake it an ideal archi-

tecture for designing interactive agents. We gave a brief overview of Rosie and described

the representations used for encoding perceptual and spatial knowledge. As demonstrated

in Mohan, Mininger, Kirk, et al., 2012, this knowledge can be acquired from SII. For the

rest of this thesis, we will assume that the agent has this knowledge from previous SII

episodes. We also described the interaction cycles that forms the basis of SII. It serves to

integrate various capabilities in Rosie from lexical processing to learning. A phase in the

cycle produces results which are required by the next phase in the cycle. Failures in a

phase (impasses) result in Rosie analyzing their cause and asking appropriate questions

to resolve the issue. This tightly integrates processing with knowledge acquisition and

biases learning to what Rosie requires for making progress on the task at hand.

43



Chapter 5

Verbs and Tasks

Describing an action (or an event) and its participants is a central aspect of any human

language. In the English language, this function is largely served by the verb grammati-

cal class, often aided by prepositions, adverbs, and wh-clauses. It, therefore, is critical for

taskable communicative agents to represent, understand, and generate verbs in order to

use language effectively. For an agent that uses language for collaboration and learn-

ing, it is essential to ground the lexical aspects of the verb and its arguments in internal

representations of goals, intentions, tasks, and experience.

There has been extensive work in grounding concrete nouns and adjectives and prepo-

sitions for physically grounded agents. However, the problem of grounding verbs is rel-

atively unexplored. Why is this so? Gentner (2006) argues that "the noun class has the

privilege of naming the highly cohesive bits of the world, whereas verbs and prepositions have

the job of partitioning the leftovers - a diffuse set of largely relational components." In other

words, concrete nouns and adjectives refer to naturally bounded referents, perceptible in

the world. In contrast, even very concrete verbs such as those that describe actions, stand

for complex relationships between their objects, goals, and execution policy. Acquisition

of verbs, therefore, is a significant challenge, where the learner must induce hypotheses

about how the objects of the verb are related and how these relationships affect behavior.

The difference in difficulty of learning nouns versus verbs is also apparent in human

language acquisition. Evidence from research in native language acquisition suggests

that not only are verb words harder to learn than noun words (Gentner, 1982; Childers
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and Tomasello, 2002), but also, generalizing verbs to novel scenarios poses a significant

challenge to children and is harder than generalizing nouns to new classes of objects

(Kersten and Smith, 2002; Imai et al., 2005). In extending a verb that has been mapped

onto an action involving an object, the object must be separated from the action and be

treated as a variable that can be changed. Additionally, verbs place some constraints on

the types of arguments with which they can be used. Further, the use of verbs in human

language is highly variable and often omits arguments. These aspects of verbs makes

learning them especially challenging.

The general problem of grounding verbs is incredibly challenging as they encode a

variety of things including actions (bring, make), occurrences (happen, become), or state

of being (exist, stand). In this thesis, instead of studying the general problem of verb

grounding, we focus on concrete verbs that describe tasks. We study how verbs such as

put can be grounded in learnable task representations. This not only allows the agent to

produce behavior in response to imperatives such as put away that book, but also allows a

human user to teach new verbs and corresponding behaviors, thereby, extending agent's

linguistic capability and functionality. From the perspective of SII agents, learning to align

the lexical structure of verbs with task representations facilitates language-driven future

collaboration with humans along with assisting in learning complex, hierarchical tasks.

By proposing a task-oriented representation of verbs, this chapter sets the stage for

learning new tasks (Chapter 8) and comprehending imperatives (Chapter 6). We begin

by a summary of prior work in Section 5.1. Then, in Section 5.2, we study how humans

use task verbs for describing domestic chores. This analysis motivates the task-oriented

representation for grounded verb semantics in Section 5.3.
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5.1 Prior Work on Grounded Verb Semantics

The challenge of grounding verbs in actions has been addressed from different perspec-

tives in AI community. Siskind (2001) presents Leonard, an agent that recognizes and

describes simple actions from a sequence of images. The lexical semantics of verbs are

grounded in perceptual data and are represented as event-logic expressions describing

the force-dynamic relations between the participants of the action. The representations

are insensitive to specific motion profiles and the presence of irrelevant objects in the field

view. This work pioneered the research in action/event recognition in computer vision

and describes a powerful approach. However, the proposed representations do not en-

code the control knowledge required to perform an action in the environment which is

essential for producing behavior in response to action commands.

Others have looked at grounding verbs inmotor-control programs. Bailey (1997) intro-

duced executing-schemas - a graphical Petri Nets representation for action control. Every

verb is associated with an executing-schema which is designed to achieve a relevant goal

(such as obtaining an object) and may encode various ways of achieving the goal based

on the world state. Although this is sufficient for producing behavior in response to task

commands, the schemas are hand-engineered and the author gives no account of how and

if these representations can be learned.

Roy et al. (2003) propose grounding verbs in motor programs or procedures. For ex-

ample, the verb touch can be grounded in a perceptually-guided program below.

procedure Touch(x) {
repeat: Reach-towards(x)
until touch sensor(s) activated

if x in view then return success
else return failure
end if

}

This, too, does not provide an account of how these representations can be learned

and relies on hand-engineered programs.
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Recent work by Kollar et al. (2014) presented a system that can learn control programs

corresponding to action command such as follow the person to the kitchen from human

generated traces of similar behavior. The action command is represented as a set of spatial

description clauses (SDCs) obtained by constraining factor graphs (Kollar et al., 2010). The

SDC containing verbs are associated with motion trajectories from human traces. Given

a command, the inference engine computes a set of states that must be achieved during

motion based on human data. A controller then plans and executes a motion trajectory.

The learning paradigm allows the system to handle some variation in verb usage. The

learning paradigm is data intensive and relies on offline processing of human generated

corpus. It is unclear if such representations can be effectively incorporated in interactive

agents that learn online.

This thesis contributes amixed-modality representation of task verbs that grounds lex-

ical and semantic aspects of verbs in task goals and policy. The representation is learnable

and can be acquired from human-agent instructional interaction.

5.2 An Analysis of Task Verbs

Although prior work has investigated a few representations for grounded verb semantics,

none has characterized how verbs are used to describe tasks and if the proposed repre-

sentations cover the variability in verb usage. We present a preliminary analysis of com-

monly used task verbs in a domestic or a kitchen environment below. This analysis has

two components. The semantic analysis (in Section 5.2.2) is based on VerbNet (Schuler,

2005) and studies how humans use verbs to describe tasks while the task-oriented anal-

ysis (in Section 5.2.3) characterizes the goals and control structures of these tasks. This

analysis motivates our representation (in Section 5.3) that incorporates linguistic, seman-

tic, and procedural elements. It also serves as a useful tool to evaluate if the proposed

representation and corresponding learning paradigm covers a variety of tasks (D12).
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5.2.1 Chores Dataset

Chore lists are created by members of a household and are useful in managing tasks and

the division of labor. They reveal the need, preferences, and the rules of the household.

Cakmak and Takayama (2013) proposed using chore lists to guide the design of domestic

robots as they give valuable information about what robotic capabilities will be useful for

users. The language used in chore lists reflects how humans describe common household

tasks, and therefore, is a good starting point for analyzing task verbs.

Cakmak and Takayama (2013) collected 25 chore lists from the world wide web by

searching various combinations of the keywords house, household, housekeeping, and task,

chore,work. We collected 20 additional chore lists for kitchen tasks by searching the world

wide web with combinations of keywords kitchen and tasks, chores, chore lists. Following

Cakmak and Takayama (2013), we pre-processed the data (henceforth, chores dataset) to

separate out each task as a separate item. For example, the chore make breakfast, lunch,

dinner was included as three items make breakfast, make lunch, make dinner. The lists

were collated and were organized by the verbs used to describe tasks and then by their

objects1.

The kitchen chores dataset contains 53 verbs and the home chores dataset contains

contains 46 verbs. The verbs are used with a variety of household objects (kitchen chair,

dishes), locations (curb), appliances or instruments (fridge, stove), and surfaces (tabletop,

kitchen floor).

5.2.2 Semantic Analysis

VerbNet (Schuler, 2005) is a lexicon that organizes and categorizes various English verbs

on the basis of their common syntactic and semantic properties. It has been used for sev-

eral linguistic tasks including human-agent dialog, verb sense disambiguation, and con-

cept network creation. The representation of verbs in VerbNet captures both the syntax
1Available at http://www.shiwali.me/home-data.html, http://www.shiwali.me/kitchen-data.html
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and semantics of the verbs and makes explicit links between the two. As the represen-

tation in VerbNet are declarative, it is insufficient for representing behavior or control

policies. However, it identifies the classes of knowledge that are useful in linguistic tasks

and therefore, should be included in grounded verb semantics. Below we present an anal-

ysis of verbs in the chores data set based on the components of semantic representation

in VerbNet. Later in Chapter 6, we describe how some components of this knowledge are

useful in understanding and executing task commands (or imperatives).

5.2.2.1 Thematic roles

Thematic roles (Jackendoff, 1972) express the role the object referred to by a noun phrase

plays with respect to the action or state described by the sentence's verb. In the sentence,

Tom broke the cup.

Tom serves the role of an agent - an active instigator of an event; and the cup serves the

role of a patient - a participant undergoing a state change through an action. VerbNet's

argument list consists of a set of 23 thematic roles that cover arguments for all verb classes.

The chores dataset contains only a few thematic roles which are described below. The

distribution is shown in Table 5.1.

• Theme: used for participants in a location or undergoing a change of location. Ex-

ample: Put the dishes in the dishwasher.

• Patient: used for participants undergoing a change in state. Example: Cook rice.

• Instrument: used for objects (or forces) that come in contact with an object and

cause some change in them. Example: Cook potatoes on the stove.

• Spatial Locations2:
2There is some ambiguity in VerbNet about classifying arguments as destination or a general location.

49



Thematic Role Objects Verbs

patient dish, fridge, shower, sink, pans,

meal, food

wash, clean,

cook, fold

theme dishes, napkins, placemats,

garbage, cup, plate, clothes,

laundry

put, set, take,

clear, load,

unload, carry

product salad, dinner, meals, grocery list make, prepare

instrument soap andwater, sponge, stove, non-

toxic cleanser

clean, wipe, cook

destination dishwasher, table, curb, street,

counter

put, take, load,

unload

source dishwasher unload, put

location counter, dishwasher, freezer, table,

pantry, shelf

empty, organize,

set, clear

Table 5.1: Thematic roles represented in the chores dataset

– Destination: end point of motion, usually introduced by a to prepositional

phrase. Example: Take the recycling to the curb.

– Source: start point of motion, usually introduced by a source prepositional

phrase. Example: Unload silverware from the dishwasher.

– Location: unspecified source, destination, or place. Example: Clean the table.

• Product: end result of a transformation, usually used with verbs of creation. Exam-

ple: Make a salad.

• Time, frequency3: when should the task be done. Verbs clean, and wipe also con-

tained arguments such as after every meal, weekly that identify when and how fre-
3These roles are not included in VerbNet.
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quently the task should be done. These types or arguments are not represented in

VerbNet.

Levin (1993) reports that for a wide range of activity verbs, the object may be left un-

expressed. This alternation goes by several names including unexpressed object, indefinite

object, and indefinite NP deletion alternation. The author only reports instances where the

direct object is left unexpressed. However, in the chores dataset, it is apparent that other

objects may also be left unexpressed.

• Theme. Verbs such as load, unload, empty, clear, set optionally leave their themes

unexpressed.

1. Unload the silverware from the dishwasher.
2. Unload utensils from the dishwasher.
3. Unload the dishwasher.

• Location (destination). Verbs such as take, put, load, carry often leave the locations

unexpressed.

1. Take recycling to the curb.
2. Take out recycling.

• Instrument. Verbs such as clean, cook, wipe leave the instrument unexpressed.

1. Cook potatoes on the stove.
2. Cook rice.

5.2.2.2 Selectional restrictions

Selectional restrictions indicate the constraints the verb imposes on the nature of the ar-

guments it may be combined with. Usually, they are represented as labels (edible, physical

object) which are obtained from a general ontology of objects in the world. For example,

the verb eat takes edible as a direct object. VerbNet's ontology is hierarchically composed
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of is-a relationship with multiple inheritances. VerbNet does not make any distinctions

between different types of selectional restrictions and only represents ontology-driven

restrictions. However, research on human sentence processing suggests that some selec-

tional restrictions may be non-linguistic in nature.

• Semantic Knowledge: Kamide et al. (2003) conducted a visual word experiment

with a scene portraying a hare, a cabbage, a fox, and a tree and the auditory versions

of the following sentences.

The hare will shortly eat the cabbage.
The hare will be shortly eaten by the fox.

They report that the second noun phrase was predicted (indicated by a saccade to

the relevant object in the scene) before the onset of the referring noun. This sug-

gest that humans rapidly integrate semantic domain knowledge (knowledge of the

food hierarchy in this case) during comprehension. A general ontology of objects

is insufficient to produce this behavior.

In the chores dataset, this restriction plays a role when certain arguments are left

unexpressed in a sentence. Examples:

Put away books. (on the shelf).
Put away leftovers. (in the fridge).

The main verb is common in both sentences. However, the understood location is

different and depends on the theme.

• Environmental State: Chambers et al. (2004) conducted experiments in which the

participantswere asked to follow instructions containing syntactic ambiguities (such

as pour the egg in the bowl over the flour). The authors varied the affordances of task-

relevant objects with respect to the action required by the instruction (whether one

or both eggs in the workspace were in liquid form, allowing them to be poured).
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The number of candidate objects that could afford the action was found to deter-

mine whether listeners initially misinterpreted the ambiguous phrase (in the bowl)

as specifying a location. The findings indicate that comprehension is influenced by

the hearer's evaluation of how to achieve the goal in the current state. This re-

striction is not observed in the chores dataset because this depends on the state in

which the hearer was asked to perform the task while the chores dataset only cap-

tures language. However, encoding this is necessary to match a human speaker's

expectations.

5.2.2.3 Syntactic Frames

Syntactic frames are surface realizations for a verb. Example:

Agent v Patient
(Bob hits the ball.)

Frames describe constructions such as transitive, intransitive, prepositional phrases,

etc. A syntactic frame consists of the thematic role in their argument position around

the verb, the verb, and other supporting lexical items. Additional restrictions may be

included based on number agreement and syntactical restrictions. Table 5.2 summarizes

the common syntactic frames in the chores dataset.

5.2.2.4 Semantic Predicates

Semantic predicates encode relational information about the objects of the verb including

their state, spatial configuration, movement, manner, and time. VerbNet specifies whether

a predicate is true at all times in the event (E), at the start (start(E)), in the preparatory

(during(E)), culmination (end(E)), or consequent (result(E)) stage of the event. An example

from VerbNet is below.

Paula hit the ball.
(Agent V Patient)
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Frame Verbs

V Patient clean, wash, wipe, dry, cook

V Patient with Instrument wipe

V Theme in, on, to Destination put, take, load, carry

V Theme from Source put, unload

V Location empty

V Theme from Location empty, clear

V Theme set

V Product make, prepare

Table 5.2: Syntactic frames represented in the chores dataset

cause (Agent, E)
manner (during(E), directedMotion, Agent)
!contact (during(E), Agent, Patient)
manner (end(E), forceful, Agent)
contact (end(E), Agent, Patient)

Such knowledge is useful for extra-linguistic reasoning about the linguistic input and

potentially in producing behavior. However, this knowledge in VerbNet is not grounded

and is incomplete. Even though VerbNet encodes the truth values of predicates with re-

spect to the action denoted by the verb, it does not contain any knowledge about how the

action can be performed or how the predicates connect to what is observed in the world.

5.2.3 Task-Oriented Analysis

We now analyze the various tasks that are represented in the chores dataset. This analysis

informs how the task representation should be structured and what components should

be included in the agent such that it can be used to encode several tasks.
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5.2.3.1 Skill-Oriented versus Goal Oriented

Cakmak and Takayama (2013) report that in the home chores dataset, cleaning tasks com-

prise a significant number of chores and involve verbs such as clean, wipe, vacuum, dust,

wash, sweep, mop, and scrub. Similarly, in the kitchen chores dataset verbs clean, wipe,

wash, mop and sweep indicate cleaning chores. The patients include rooms, floors, appli-

ances, furniture, and parts of the house including cabinets, sinks, windows, and counter-

tops. The cleaning tasks can be characterized as a skill of applying a tool (such as sponge,

usually an unexpressed object) on the surface specified by the patient of the verb. Such

skills can be represented as continuous policies.

Other tasks are goal-oriented and can be characterized as applying several continuous

policies in succession to achieve a goal state in the environment. These tasks can be

broadly categorized as -

• Organizational. These involve moving and rearranging household items where the

final goal can be characterized as establishing a set of spatial relationships between

items. Common verbs include organize, put-away, pick-up, tidy, empty, clear, load,

unload, clean (pantry).

• Functional. These involve acting to change the state of objects. Common verbs

include cook, make, wash (dishes, clothes), prepare.

5.2.3.2 Implicit Information

• Implicit Goal. In the chores dataset, the goals of tasks are never explicitly identified.

Instead, the verbs used to describe them serve as abstractions over their goals and

how the tasks are executed.

Example:
Take the trash to the curb.
does not specify what spatial relations should be established between
participant objects.
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• Implicit Arguments. Semantic analysis of several task verbs reveals that occasion-

ally, some thematic roles are left unexpressed in a task command. This causes crit-

ical task arguments to be left unspecified,

Example:
put-away the toys
unspecified location: does not specify where the toys must be placed

or implicitly identified.

Example:
set the table
implicit theme: does not identify which items should be placed on the
table.

5.2.3.3 Goal Types

• Achievement. A large majority of tasks can be characterized as achievement tasks.

The agent must undertake a sequence of actions to achieve the task goal. A few

tasks were formulated as prospective goals and the descriptions included informa-

tion about when the tasks should be done. Example:

Clean the dishes after every meal.

• Maintenance. Maintenance tasks require the agent to observe and maintain some

world state defined by the goal. Only three instances of maintenance tasks were

observed, all of which involved the use of verb keep. For example:

Keep the counter-tops clean.

• Performance. Tasks such as patrol refer to performing an activity instead of acting

to achieve a goal. No instances of such tasks were observed in the chores dataset.
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5.3 ATask-Oriented Representation forGroundedVerb Se-
mantics

The analysis above informs the formulation of representations that are useful not only in

comprehending language but also for encoding behavior. The representation should have

two characteristics. First, it should be comprehensive - apart from encoding the syntactic

information, it must encompass the semantics useful for understanding language and the

knowledge useful in task structuring and execution, establishing explicit links between

the two. Furthermore, if the agent is functioning in real-world-like scenarios, the repre-

sentationmust handle continuous and probabilistic properties of its environment. Second,

the representation must be learnable - the agent must be able to induce this representation

from its experience of its domain and interactions with a human instructor.

We now propose a mixed representation that employs modality-specific representa-

tions for various aspects of task verbs. Chapter 8 addresses interactive methods for learn-

ing these representations and Chapter 6 discusses the contributions made by this repre-

sentation in comprehension of action commands. We refer to Figure 5.1 throughout this

section to explain different components of our representation. The graph in block c in

Figure 5.1 shows a task concept network (TCN) that mediates various modality specific

representations. The symbols in TCN serve as pointers to knowledge in different long-

term memories and SVS. For example, the symbol color-blue refers to a class in the kNN

classifier in perceptual memory and the symbol x-alignment refers to alignment along

the X-axis in SVS. The modality specific knowledge is accessed and processed when the

need arises. For example, for executing the task put the red object on the table, Rosie needs

to find a point on the scene that satisfies an on relationship with the table. SVS will com-

pute this point using the definition of on (graph in block a) and grounding the symbols in

its knowledge of alignments, containment, etc. in the continuous environment.

The figure shows the TCN that corresponds to the verb store which can be used in two

different alternations.
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Figure 5.1: A task-oriented representation for grounded verb semantics in Rosie's mem-

ories. Nodes and symbols in color purple correspond to spatial knowledge, orange to

perceptual knowledge, green to goal definition and constraints, blue to procedural knowl-

edge, and red to syntactical knowledge. 58



a. Store the red cylinder on the table.
b. Store away the red cylinder.

5.3.1 Syntactic Knowledge

Syntactic knowledge of a verb is represented declaratively in Rosie's semantic memory.

An example is shown in Figure 5.1 as the red colored subgraph rooted at node L1. The

subgraph encodes that the verb store has a direct object and optionally (shown in dotted

lines) a prepositional phrase that identifies the location. This knowledge serves a function

similar to syntactic frames in VerbNet. Thematic roles are not explicitly encoded but are

implicitly represented in the task goals and policy (explained in later sections).

5.3.2 Association Knowledge: Map

We use the termmap for nodes and edges in semantic memory that encode how linguistic

symbols (nouns/adjectives, spatial prepositions, and verbs) and constructions are associ-

ated with perceptual symbols, spatial compositions, and task knowledge. For compre-

hending a word (explained in detail in Chapter 6), Rosie searches its semantic memory

for a corresponding map that will allow it to access relevant non-linguistic knowledge

implementing referential comprehension (desiderata D2).

Nodes M1, A1, A2, R1 align the syntax of the verb with the structure of the task (de-

scribed in Section 5.3.3) and corresponding p knowledge (described in Section 5.3.4). M1 is

is an abstraction over all knowledge that corresponds to the verb store. Nodes A1 and A2

are slot nodes that can be filled with physical objects referred to noun phrase (NP) object

of the verb. The slot node R1 can be filled by known spatial compositions. The slot nodes

constrain the instantiation of structural and procedural knowledge to objects and spatial

compositions referred to by the task command or known default instantiations (described

later).
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5.3.3 Structural Knowledge

The structural knowledge is encoded declaratively in Rosie's semantic memory and con-

sists of the following components.

5.3.3.1 Goal Description

An explicit definition of goal is stored in semantic memory. The goal definition is encoded

as a composition of spatial relation or functional state predicates. The spatial relations are

directly grounded in positional data in perceptions. The functional state is grounded in

virtual state of objects in the environment.

The subgraph rooted at G1 encodes the goal definition for the store verb. It is composed

of two predicates: one that identifies the spatial relation that is to be established between

the object and the location and the other that established the state of the location. The

goal instantiation is constrained to the values in slot nodes A1, R1, A2. If a slot is filled by

referents grounded in the environment, they are used for goal instantiation. Otherwise,

their associative default values are used (described below).

5.3.3.2 Associative Default Values

As noted earlier, several verbs have unexpressed object alternations. In put away the books,

the role of location is left unexpressed. Usually, the implicit or unexpressed arguments

depend on the specified object and its semantic or perceptual categorization. For the

task command put away the book, the implied location is the shelf but for put away the

clothes, the implied location can be a closet. The associative default values represents such

associations between the specified object and unexpressed objects of the verb.

The subgraph rooted at C1 gives an example. It encodes that in situations where the

value of slot A2 is not constrained linguistically, if arg1 of predicate D1 contains the per-

ceptual feature color-red (that corresponds to a class in the kNN classifier), then fill
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A2 with an object that contains the feature pantry. Similarly, the subgraph rooted at

C2 provides an alternative location if the specified object contains the perceptual feature

color-blue.

5.3.3.3 Subtasks

The subgraph rooted at S1 establishes connections between the task and its constituents

subtasks (P3, P4, ...).

5.3.4 Procedural Knowledge

Task execution knowledge is encoded in Rosie's procedural memory as rules. This knowl-

edge is useful in producing behavior in response to task commands from the instructor. It

is encapsulated in a task operator which is proposed, selected, and applied in appropriate

environmental states. The instantiation of the task operator is dependent on how the task

command is grounded in the environment. The edges P1,A1, P1,R1, and P1,A2 align the

procedural knowledge of store encapsulated in the task operator op_storewith structural

and linguistic knowledge of put. In the following sections, we describe the components

of task execution knowledge.

As explained earlier, the beliefs about the current state s ∈ S are encoded as a set of

relational predicates P defined over the set of objects O. The execution knowledge for

a task is encapsulated in a task operator (t ∈ T , op_store in this case). The execution

knowledge has the following components.

5.3.4.1 Parameters

Every task operator t is instantiated with a set of objects (Ot ⊆ O) that are involved in

the application of the task. Parameters can be explicit or implicit.

• Explicit parameters are the objects of the verb in the task command. In store the red
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cylinder, the object described by the red cylinder is an explicit parameter.

• Implicit parameters are objects that are left unexpressed but are critical for task

execution. The locations pantry and table are implicit parameters of op_store and

are elaborated during goal elaboration described below.

5.3.4.2 Goal Elaboration

A goal elaboration operator is the proceduralized instance of the goal definition. It aug-

ments the task operator with instantiated goal predicates. The application of this opera-

tor also elaborates the implicit parameters of the task. If the implicit parameter are con-

strained to different values based on the attributes of explicit parameters, those constrains

are included as well.

For the store task, the goal elaboration operator will instantiate the goal as (o1, in,

pantry) and closed(pantry), if o1 is red in color and as (o1, on, table), if o1 is blue

in color.

5.3.4.3 Availability Conditions

An important aspect of knowing a task is knowing when that task is available to be or

should be executed in the environment. In Rosie, the availability conditions are encoded

as operator proposal rules. These rules propose task operators (op_store in Figure 5.1)

which may later be selected for execution. The proposal rule incorporates the following -

• Selectional restrictions. The rules incorporate the affordance of objects relevant

to the task. Only those task operators are proposed that are afforded in the cur-

rent state of objects and their configuration. For example, the proposal rule for

op_store tests if the object is movable and is clear. The availability of certain tasks

biases resolution of referring expressions in case of ambiguity (further explained in

Chapter 6). This implements environmental state driven selectional restrictions of
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verbs (5.2.2.2).

• Goal sensitivity. Acquired availability conditions also test for the absence of the

goal realization in the current state. For example, the proposal rule for op_store

test if the object is not already in its desired location.

• Prospective goals. It was noted earlier that some chore descriptions describedwhen

is it appropriate to perform the chores (clean the dishes after every meal). This in-

formation can be encoded in the proposal conditions, triggering the task operator

when those conditions are met in the environment. We have not addressed this

capability in this thesis but will explore it in the future.

5.3.4.4 Subtask Availability Conditions

These rules are similar to task availability rules but they also include the task context in-

cluding its name and its parameters. These rules propose the subtasks of twhile executing

it.

For store, the subtask availability conditions propose op_put-down(o1, [loc]) op-

erators to various locations, if the robot is holding o1.

5.3.4.5 Policy

The policy rules select the subtasks based on the current state of the environment while

executing the tasks.

For put, the policy rules select the subtask operator op_place(o1, in, pantry), if

the pantry is open.

5.3.4.6 Application

These rules apply the task and its substasks to the current state. These rules may affect the

state by either executing themotor commands in the environment, or through a deliberate
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step in internal reasoning. The application rules determine how the objects in the envi-

ronment will be manipulated, implementing the thematic roles implicitly. For example,

in response to place the red cylinder in the pantry, the place operator causes the robotic

arm to use its gripper to pick the red cylinder up and place it at a different co-ordinate in

the pantry. In this case, the object red cylinder serves the role of theme of the verb place.

5.3.4.7 Model

The model predicts the future state s′ of the world after the task is executed in the current

state s. It is represented as a set of rules that encode how predicates in s transition to

predicates in s′ under task t. This is useful in exploring a path to the goal in addition to

retrospectively explaining the instructions given to execute a task.

The model the operator pick-up(o1) encodes that the resulting state will include the

predicate holding(o1).

5.3.4.8 Termination Conditions

This rule detects if the goal predicates are realized in the environment and terminates

the task policy. For store, this rule will monitor if the predicates (o1,in,pantry) and

closed(pantry) are realized in the environment and will terminate the policy if they do.

5.4 Discussion

In order tomake progress toward interactive agents that can communicate about activities

and tasks, it is important to develop representations that align the syntactic and semantic

aspects of verbs with knowledge of executing activities and tasks. This chapter presents

a preliminary analysis of verbs commonly used to describe household chores. A typical

chore description consists of a relevant verb along with a direct object and may option-

ally include prepositional objects. The analysis reveals some complexities in the use of
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verbs. Some objects that are critical to verb understanding and task execution may be

left unexpressed. Another critical aspect of verbs is semantic and state-driven selectional

restrictions it imposes on the nature of its arguments. Prior work in grounded language

understanding and learning has not discussed such issues that lie on the interface of task

execution and verb semantics. A major contribution of this thesis is a learnable verb rep-

resentation that not only encodes task knowledge but also uses this knowledge to address

variations in verb usage. Although, the analysis and our representation only scratches the

surface of complexity in verb usage in natural language, it takes a step toward developing

a comprehensive theory of grounded verb semantics.

A concern about the representation proposed here is that it is symbolic and discrete,

and therefore, unsuitable for behavior in the real-world. However, the representation

is hybrid and incorporates probabilistic and continuous information in addition to dis-

crete symbols. While some symbols such as those that describe the goal, are abstract,

others are concrete and are grounded in sensory data and motor actuation policies. Per-

ceptual symbols correspond to classes in Gaussian kNN classifiers and spatial symbols

correspond to alignment of objects in the continuous space and distribution over dis-

tances between objects. Abstract symbols such as goals of tasks are defined as composi-

tions of such grounded symbols and consequently encode non-discrete information. Sim-

ilarly, policy symbols that define behavior eventually ground out to continuous motor-

control programs. The symbols in the representation serve as pointers to a variety of

knowledge types, often represented in other memories. This knowledge is accessed when

needed to execute a task. The proposed representation is also relational and can be used

with knowledge-intensive learning algorithms such as explanation-based generalization

Mitchell et al., 1986 resulting in quick generalization and learning from small data online

(described in Chapter 8).
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5.5 Looking Ahead

This chapter proposes a mixed-modality representation which encompasses lexical, se-

mantic, and task-oriented aspects of verbs. The representations are useful in linguistic

tasks and are learnable. In Chapter 6, we propose an Indexical Model for comprehension

that uses these representations for reducing ambiguities in generating grounded repre-

sentations of task commands (or imperative sentences). In Chapter 8, we propose an

interactive learning paradigm based on explanation-based generalization (EBG: Mitchell

et al., 1986; J. Laird et al., 1986) that can acquire these representations through SII.
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Chapter 6

Comprehending Situated Commands

Communication in collaborative task execution (or SII) is situated. The speaker's (instruc-

tor's) linguistic utterances refer to objects, spatial configurations, and tasks in the shared

environment. To respond and react to utterances, the hearer (learner) must associate the

amodal linguistic symbols (words) and constructions (phrases) with the modal representa-

tions of perceptions, environmental state, domain knowledge, goals, and policies that are

required for reasoning about and manipulating the environment.

Being situated provides a common ground of shared perceptions, goals, and domain

knowledge that can be exploited during linguistic communication. Information that is ap-

parent from the current state of the environment or that is a component of shared beliefs

can be left out of the linguistic utterance by the speaker. This results in more efficient

(fewer words) but ambiguous utterances. Humans frequently use referring expressions

such as it or that cylinder that do not by themselves provide enough discriminative in-

formation for unambiguous resolution. The speaker assumes that the hearer can exploit

extra-linguistic information, such as the context of the ongoing discourse or the state of

current task execution for unambiguous comprehension. Similarly, several verbs such as

those in the chores dataset studied in Chapter 5 are used in alternations where their argu-

ment are left unexpressed. Imperative sentences such as take out the trash incompletely

specify the task by omitting critical information about the location where the trash should

be moved. Such ambiguities and implied information make situated comprehension a sig-

nificant challenge for interactive agents.
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This chapter studies how imperative sentences such as those in the chores dataset

can be comprehended by grounding them in perceptual, spatial, and task knowledge. In

the following sections, we introduce the problem of comprehending imperative sentences

(Section 6.1), give an overview of the Indexical Hypothesis (Glenberg and Robertson, 1999)

- a psycholinguistic theory of grounded comprehension (Section 6.2), present the Indexical

Model (Mohan, Mininger, and J. Laird, 2014) - an implemented computational model based

on the Indexical Hypothesis (Section 6.4), describe how complexities such as the use of

ambiguous referring expressions (Section 6.5) and unexpressed object verb alternations

(Section 6.6) can be addressed by using non-linguistic context and knowledge, and discuss

the degree to which the Indexical Model satisfies the requirements of SII agents (Section

6.7).

6.1 Comprehending Imperative Sentences

In a joint collaborative activity, imperative sentences convey that the speaker intends the

hearer to complete a task. The joint communicative goal is for the hearer to identify the

intended task and relevant objects and to correctly instantiate the task goals. A typical

imperative sentence in our domain is composed of a verb that indicates an action/task

to be taken in the environment which is then instantiated with objects described with

noun phrases (NPs). An example is - move the red large block in the pantry. The goal of

comprehension of imperative sentences is to generate an instantiated task representation

that includes the task goals and execute the corresponding policy.

An example is shown below

Instruction: Move the red, large, triangle to the right of the blue cylinder.
Interpretation: task: operator op_move, arg1 O1, arg2 O2,
desired.predicate D1: O1, P4, O2.

where the object O1 satisfies the descriptive referring expression (RE) the red, large,
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triangle, the location O2 satisfies the descriptive RE, the pantry, and the D1 corresponds

to the spatial predicate composed of objects O1, O2, and spatial composition P4 associ-

ated with to the right of. Operator op_move is an abstraction over the execution policy

corresponding to the verb move.

There are several challenges in generating a grounded task instantiation. A few of

them arise because natural language is ambiguous. Lexical knowledge and grammar of

the language may be useful in rejecting several possible task instantiations that can be

mapped to the language, however, typically such knowledge under-constrains the space

of potential instantiations. Evidence from cognitive linguistics (Piantadosi et al., 2012)

suggests that ambiguity in language is useful in encoding a large amount of knowledge

with fewer symbols. The extra-linguistic contexts these symbols are used in, provides

the remaining constraints to generate an unambiguous representation. Both the speaker

and hearer are aware of the extra-linguistic context of language and use it to generate

meaning. Some challenges are described below.

• Referring expressions: The use of referring expressions to indicate the object of in-

terest is context dependent. Consider the RE red large triangle and the object O1

it refers to in example above. Consider an environmental state in which the other

object is smaller than O1. The instructor may refer to O1 as the large object and omit

information about color (red) or shape (triangle). Other contexts such as the con-

text of the current task, attention, affordances of action may cause the instructor to

use different REs including the severely under-constraining pronoun it to refer to

the same object. The comprehension model in the agent should be robust to such

context sensitive use of REs.

• Unexpressed object alternations of verbs: As discussed in Chapter 5, several verbs can

be used in alternations that leave critical task arguments unexpressed. Moreover,

the goal and task structure corresponding to the verb may be different based on

the semantic and perceptual categorization of its objects. Linguistic information by
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itself does not provide enough information to correctly instantiate a task. There-

fore, the agent may have to rely on its knowledge and experience of its domain to

generate instantiations when the linguistic information falls short.

• Verb and task argument alignment: Consider the sentence in the example above.

Successful execution of the task described by the sentence requires the agent to

correctly instantiate the spatial predicate D1 such that it is in agreement with the

argument structure of the verbmove (p1(O1, P4, O2) instead of D1(O2, P4, O1)).

This constraint is not explicit in the linguistic structure of the sentence and has to

be derived from the domain models of the environment and prior experience with

the verb.

• Preposition phrase attachment: The decision regarding the site of attaching the prepo-

sition phrase is ambiguous in English language. For example, the sentence, move

the red large object in the pantry to the right of the green cylinder, is ambiguous. It

could mean either move (the red large object) (to the right of the green cylinder in the

pantry), or move (the red large object to the right of the green cylinder) (in the pantry).

Such ambiguities can be resolved by analyzing the current situation and reasoning

about the likely interpretation.

6.2 The Indexical Hypothesis

The Indexical Hypothesis (Glenberg and Robertson, 1999) of language comprehension ex-

plains how sentences become meaningful through grounding their interpretation in sit-

uated action. The hypothesis asserts that comprehending a sentence requires three pro-

cesses:

• indexing words and phrases to referents that establishes the contents of the linguis-

tic input,
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• deriving affordances from these referents,

• and meshing these affordances under the guidance of physical constraints along

with the constraints provided by the syntax of the sentence.

According to the hypothesis, the linguistic information specifies the situation by iden-

tifying which components (objects, relationships, etc.) are relevant, and the semantic and

experiential knowledge associated with these components augments the linguistic input

with details that are required for reasoning and taking action. In this formulation of sen-

tence comprehension, linguistic symbols (words) and constructions (grammatical units)

serve as cues to the hearer to search the common ground which may involve shared per-

ceptions, experience, or common sense knowledge in order to identify the referents. The

referents are then composed together to generate the meaning of a sentence.

6.3 Our Approach

Earlier work on the Indexical Hypothesis of language comprehension identifies the pro-

cesses that humans use for comprehension (Glenberg and Robertson, 1999) and provides

supporting data from human studies (Kaschak and Glenberg, 2000). It, however, does not

propose a computational model nor identify the representations and the computation nec-

essary for implementing indexical comprehension. A contribution of our work is a com-

putational model - the Indexical Model - that precisely defines the processes described in

the Indexical Hypothesis. It pursues the primary thesis that language comprehension can

be formulated as a search over elements in perceptions, short-term memory, and long-

term knowledge and composition of the relevant elements under syntactical and physical

constraints. We also propose methods for referring expression resolution and handling

unexpressed argument alternation of verbs within the Indexical Model. The model is im-

plemented in Soar and has been integrated with the task learning component described

in Chapter 8.
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We show that our formulation of situated comprehension addresses several desiderata

for SII identified previously in Chapter 2 and reiterated below.

• Referential (D2). It translates linguistic symbols to symbols in perceptions, spatial

reasoning, and task representation to produce behavior when given an imperative

sentence.

• Expandable (D5) and Active (D4). If there are failures in comprehension because

Rosie lacks relevant knowledge, the Indexical Model provides information that is

useful in learning the lacking knowledge through instruction. As Rosie learns on-

line about its environment, the Indexical Model can use this knowledge for language

comprehension. Prior approaches (Liang et al., 2009; D. Chen and Mooney, 2011;

Tellex et al., 2011; Matuszek et al., 2012) on situated comprehension incorporate

batch-learning methods that make a distinction between the training phase and the

trial phase. In these approaches, the trained model cannot be extended online to

comprehend new sentences. In comparison, the Rosie reverts to learning if it lacks

knowledge to ground new sentence.

• Integrative (D3). Formulation of language comprehension as a search has a natural

role for non-linguistic context. It guides search and provides additional constraints

over hypotheses about themeaning of an ambiguous utterance. The IndexicalModel

can leverage perceptual, spatial, and task knowledge along with the context of the

ongoing dialog for resolving ambiguous referring expressions. The non-linguistic

context can also provide additional information to comprehension. The Indexical

Model leverages task execution in situations where the certain objects are left un-

expressed but are relevant to the task. Such questions that lie at the interface of

language comprehension and behavior have not been studied in prior computa-

tional work on situated comprehension but are critical to robust communication.

We demonstrate that diverse contexts can be exploited in the Indexical Model to re-
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solve ambiguities arising fromunder-specific referring expressions and unexpressed

argument alternation of verbs.

6.4 The Indexical Model of Comprehension

We assume that an imperative sentence consists of a verb, a direct object referring ex-

pression (RE), and optionally, a prepositional phrase that includes a preposition and an

object RE. The process of indexical comprehension involves identifying the referents of

the linguistic input (REs, prepositions, verbs) and composing them to generate an action

instantiation grounded in the modal symbols that support reasoning about and manipu-

lation of the environment.

Referents in the Indexical Model are derived from the following two sources. We refer

to Figure 6.1 to explain the representation. The figure shows how referents are represented

in Rosie's semantic memory.

• Working memory. The working memory captures the current perceptual state of

the world. As described earlier, an object in the Rosie's view is described as a set

of perceptual features (color, shape, size, volume) and their value assignments. As

described earlier (in Chapter 4), an object o ∈ O can be described as the set of

feature-value pairs, o = {(f, symbolf )|f ∈ F, symbolf ∈ domain(f)} that are

currently known to Rosie. symbolf correspond to a class in the kNN classifier as-

sociated with the feature f . O provides referents for RE in the imperative sentence.

• Semantic memory. Semantic memory contains Rosie's long-term knowledge of the

world and consists of the following -

– Perceptual classes: symbols referring to kNN classes symbolf and the corre-

sponding feature f (C22 and color in network B in Figure 6.1). These provide

referents for nouns and adjectives in the RE.
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P4

color

feature

sense

Figure 6.1: Environment state and the knowledge encoded in Rosie's semantic memory.

The white nodes (P4, L1, M2, L2, L3) represent indexical maps between amodal

linguistic symbols (in red: right, red, move) and modal domain knowledge. Yellow

nodes (R10, R11, R12, A31) represent spatial symbols and slots (round rectangles:

A31), blue nodes (V1, A11, A21) represent visual symbol and slots, and green nodes (P2,

P3, G2, G3) represent procedural symbols.

– Spatial compositions. spatial compositions (s ∈ S) that describe alignment

along axes and distribution over distances between objects in example in-

stances (node P4 in network A in Figure 6.1). These provide referents for

prepositions.

– Task policy and goal. task execution knowledge (defined previously in Chapter

5 and shown in Network C in Figure 6.1). This knowledge provides referents

for verbs.

Additionally, the semantic memory also contains Indexical maps (or maps) that are

nodes (L1, V1) that align lexical symbols (red) with their corresponding referents

(C22).

The Indexical Model uses a simple referential grammar: nouns and adjectives refer
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to visual properties; referring expressions refer to objects; prepositions refer to spatial

relationships; verbs refer to task operators; and the imperative sentence refers to an task

operator instantiated with relevant arguments.

Consider the imperative sentence move the large red cylinder to the right of the blue

triangle. Following the Indexical Hypothesis, comprehension is carried out as described

in Algorithm 1. Some relevant terminology is below.

• The function smem-query([a : b]) queries the semantic memory for a long-term

identifier (LTI) that contains the attribute-value pair [a : b] and retrieves the graph

rooted at the LTI to the working memory.

• n.a1.a2 refers to the node or symbol along edges a1 and a2 from node n.

The comprehension is carried out in following three stages in the Indexical Model.

6.4.1 Indexing

After preliminary lexical processing, Rosie establishes that the linguistic input contains

two referring expressions (REs: the red cylinder and the blue triangle), a spatial preposition

(to the right of ), and a verb (move). The goal of the indexing step is to identify the referents

for these linguistic units. In the following text (and the Algorithm 1), Rsuper
sub denotes the

referent set. The superscript super denotes the contents of the set (o for objects, s for

spatial relations, and a for actions/tasks) and the subscript sub denotes the words used to

generate the set.

To index REs (the red cylinder, procedure index-RE in Algorithm 1), the model must

first index the descriptive words (red and cylinder). For each of these words, the model

queries the semantic memory for a node that was previously learned to be associated

with the lexical string. For the string red, the memory returns node L1 (refer to Figure 6.1).

Node L1maps the lexical string red to the corresponding perceptual symbol C22which is a

class in the color classifier. Once the model has retrieved perceptual symbols for all words,
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Algorithm 1 Comprehending a parsed imperative sentence

1: procedure index-RE(referring expression re)
2: ▷ partially described here, details in Section 6.5
3: while re contains a descriptive word w that has not been grounded do
4: T ← ϕ
5: if n← smem-query([lex: w]) not a failure then add n.sense.class in set T
6: else the noun/adjective w is novel, begin learning interactions
7: if (R← o ∈ O|T ⊆ o) ̸= ϕ then
8: if |R| = 1 then return R
9: else apply resolution strategy described in Section 6.5

10: else described object cannot be recognized, ask for examples
11: procedure index-preposition(preposition p)
12: if n← smem-query([lex: p]) not a failure then return {n}
13: else the preposition p is novel, begin learning interactions
14: procedure index-verb(verb v)
15: n← smem-query([verb: v])
16: m← smem-query([lex: n])
17: return R← {(m.lex,m.proc,m.goal)}
18: procedure index-imperative(sentence s)
19: if direct object do of s has not been grounded then
20: Ro

do ← index-NP(do)

21: if s contains a preposition phrase pp that has not been grounded then
22: if preposition p in pp has not been grounded then
23: Rs

p ← index-preposition(p)
24: if object po in pp has not been grounded then
25: Ro

po ← index-NP(po)

26: Rr
pp ← ([relation: rsp], [object: ropo])|rsp ∈ Rs

p ∧ ropo ∈ Ro
po ▷ assumption: |Rs

p| = 1
27: if verb v of s has not been grounded then
28: Ra

v ← index-verb(v)
29: (lex, proc, goal)← rv ∈ Ra

v ▷ assumption: |Ra
v | = 1

30: slot← lex.direct-obj ▷ process direct object
31: arg1← edge of proc that connects to slot
32: Aarg1 ← [arg1 : rdo]|rdo ∈ Ro

do

33: if s contains a preposition phrase pp then
34: sloto ← lex.pp-obj.obj
35: arg2← edge of proc such that proc.edge.object connects to sloto
36: Aarg2 ← [arg2 : rpp]|rpp ∈ Ro

pp

37: Is = [name: proc.name]×Aarg1 ×Aarg2

38: elseIs = [name: proc.name]×Aarg1

39: T ← t|available(t, s) X = T ∩ Is
40: if |X|= 1 then execute(x ∈ X)

41: if |X| = 0 then the described task is unknown, learn it through instruction
42: if |X| > 1 then several instances of the task are applicable, ask further questions to con-

strain interpretations
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it searches working memory for objects that have the required perceptual symbols. These

objects are assumed to be the intended referents of the RE. In cases where the RE is under-

specific (e.g., this block), there may be multiple objects that match, resulting in ambiguity.

The model can use other kinds of information to resolve such ambiguities as we describe

in Section 6.5. For the sake of simplicity, in this example we assume that only one object

(O12) matches the cue. This object is included in the referent set (Ro
red,cylinder = O12)

for the RE the red cylinder. Similarly, Ro
blue,triangle = {O32} for the RE the blue triangle.

If these sets are empty, there is an impasse and the model cannot progress further. It

indicates that Rosie lacks knowledge to generate groundings of the RE, in which case it

prompts the instructor for training examples.

Prepositions are indexed in a similar fashion (procedure index-preposition in Algo-

rithm 1). For a preposition string (right), the model queries the semantic memory for an

indexical node that had previously been learned and is associated with it. On the retrieval

of the requested node (P4), the model creates the referent set Rs
right = {P4}. If the set is

empty, Rosie asks the instructor to provide an example of right-of in the environment.

To index the verbmove(procedure index-verb in Algorithm 1), the model queries the

semantic memory for a node that is connected to the stringmove. Thememory returns the

node L2. Then themodel retrieves the mapping node M2 that associates the verb to domain

knowledge of the task -- the goal definition G2 and procedural operator node P2. The

referent set for the verb consists of the task-concept network, Ra
move = {(L2,P2,G2)}.

6.4.2 Instantiating Domain Knowledge

Once the referents have been identified, the next step is to retrieve the domain knowledge

associated with them and instantiate it under the syntactical constraints of the sentence

(Lines 26 - 35 in Algorithm 1). The model begins by retrieving the previously learned

syntactical nodes associated with the verb move. The sentence move the large red cylinder

to the right of the blue triangle has a direct object (RE, the large red cylinder) and a prepo-
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sitional object (RE, the blue triangle) connected to the verb through the preposition right.

Following this syntactical structure, the model retrieves the direct object (direct-obj in

the figure) node A11 and the prepositional phrase object (pp-object in the figure) node L3

which is further expanded to retrieve nodes A21 and A31. The slot nodes A11 and A21 can

receive sets of objects in the environment. A11 is filled by Ro
red,cylinder as the red cylinder

is the direct object of the verb put and A21 is filled by Ro
blue,triangle, as the blue cylinder is

the RE in the prepositional phrase of the verb. A31 is a spatial slot that is filled by Rs
right,

the referent set for right.

Next, the model expands the domain knowledge nodes P2 and G2. The subgraph (P2,

P3, A11, A21, A31) constrains how the policy operator op_1 is instantiated. The sub-

graph (G2, G3, A11, A21, A31) constrains the instantiation of goal of the task. The

values of the slot nodes (A11, A21, A31) determine the contents of the goal and the pol-

icy operator op_1. Instantiation of domain knowledge results in the interpretation set Is.

This set contains the policy op_1 defined over objects drawn from setsRo
red,cylinder,Rs

right,

and Ro
blue,triangle which is executed until the corresponding goal is achieved.

In Glenberg and Robertson's (1999) formulation of the Indexical Hypothesis, this step

was described as deriving the affordances. However, the term instantiating domain knowl-

edge better describes our formulation of the process.

6.4.3 Meshing

The interpretation set Is is the set of different groundings of the imperative sentence,

which can have several elements arising from under-constraining cues in the linguistic

input. However, only a subset of these groundings can be executed in the environment

given the physical constraints and spatial relationships between objects. For example,

the open action can only be executed for stove and pantry. When open is used with an

under-constraining RE such as it, there will multiple interpretations, but only two of those

interpretations can be executed in the environment. This implements the state-sensitive
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selectional restrictions of verbs described in Chapter 5.

The meshing step is described in Lines 36 - 39 in Algorithm 1. Suppose T is a set

of tasks that can be executed in the current state based on their availability conditions.

The intersection set Is ∩ T is the set of tasks that the instructor intends Rosie to execute.

If this set contains a single element, that task operator is selected and executed. If this

set contains multiple elements, further interaction or internal reasoning is necessary for

resolution. The cardinality of the referent sets (R) is used to determine the source of the

ambiguity. Rosie asks questions to gather information that will reduce the cardinality of

the ambiguous set. If the Is ∩T = ϕ, Rosie does not have enough knowledge to generate

the correct groundings for the required task. This is an opportunity to learn the task, so

Rosie begins a learning interaction by prompting the human collaborator to present an

example execution.

6.4.4 Active and Expandable

The Indexical Model proposed here formulates the problem of comprehension as search-

ing the common ground for referents using words as cues and then composing them un-

der the constraints imposed by the syntax and what is afforded in the environment. The

search for a referent is a failure if Rosie lacks knowledge of how to associate words with

non-linguistic knowledge. For example if it does not know which perceptual symbol the

word red maps to, it fails while trying to index it and an impasse occurs. Soar's state stack

contains information about the processing phase during which the failure occurred. This

information is not only useful in constructing an informative query (What is red?) but

also is useful in learning from instructor's response. The newly acquired knowledge then

can be immediately exploited for making progress on comprehension. Consequently, the

Indexical Model expands to incorporate newly acquired knowledge (D5) without ever re-

quiring Rosie to go offline to learn grounding knowledge. This is in contrast with related

work (D. Chen and Mooney, 2011; Tellex et al., 2011) on grounded comprehension that
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fails while comprehending words that the system wasn't trained on. The Indexical Model

provides information that is not only useful in progressing the interactive dialog forward

but also in integrating incremental instructions in a comprehensive task-oriented repre-

sentation (D4).

We constructed a corpus of task commands by composing nine nouns and adjectives,

three prepositions, and three verbs. Rosie was asked to execute the task commands one-

by-one. It began with no prior knowledge of any of the words. In order to correctly

comprehend the task command and execute the task, Rosie must learn how to ground

words into its perceptual, spatial, and task knowledge.

Figure 6.2 shows the Rosie's performance in comprehending and executing tasks. The

data is representative of Rosie performance over several runs. To execute the first com-

mand, it initiates 24 interactions as it fails to ground the noun (rectangle), adjectives (blue,

small), and verb (move) and attempts to learn them. The knowledge acquired is general

and the Indexical Model can use this knowledge for interpretation of other task com-

mands. For example, the spatial and task knowledge learned for left-of and move is useful

in comprehension and execution of task command 15. The interactions for task command

15 pertain only to learning new adjectives large and red and the new noun arch and there-

fore, are less than those required to execute task command 1. At task command 25, Rosie

has learned all elements of the dataset and does not require any learning interactions.

Note that the reduction in number of interactions as the experiment progresses is a

consequence of the dataset used. If after task command 25, new verbs, adjectives, nouns,

or prepositions are introduced in the dataset, the number of interactions will increase.

This is because the Indexical Model will fail at grounding the novel words and Rosie will

begin interactions to learn their groundings. However, after learning this knowledge,

the Indexical Model will be able to use this knowledge for comprehension of other task

commands that use these novel words. This occurs online.
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Figure 6.2: Number of agent-initiated interactions per task command. The boxes show

task commands 1, 15, and 25. The words in color blue are unknown to Rosie when that

task command was given.

6.5 Reference Resolution

Humans use a variety of surface forms to refer to the same entity. A few, such as definite

noun phrases (the large red cylinder on the table), may uniquely identify the intended refer-

ent from the current shared perceptions. However, the majority of referring expressions

(REs) encountered in conversations, such as noun phrases with indefinite determiners

(a cylinder), demonstrative/diectic pronouns (this, that), and personal pronouns (it), are

ambiguous.

For the generation and comprehension of REs, the communicative goal is the identi-

fication of the intended object by the hearer. The form of REs and other linguistic (word

order) and phonetic (intonation) aspects are influenced by the cooperative speaker's as-
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sumptions about the relative salience of referents to the hearer. An object might be more

salient than others because it is useful in performing a task, it is being pointed at, it

changes appearance, or it is unexpected. The ongoing discourse can also make objects

more salient. Speakers make assumptions about which objects are more salient to the

hearers and use these assumptions to choose an appropriate RE. More salient objects can

be referred to by less informative REs, as the hearer can exploit saliency for disambigua-

tion. This leads to efficient (fewer symbols) communication.

Gundel et al. (1993) express the notion of the current and historical salience of an

object to the hearer as its cognitive status. They propose a Givenness Hierarchy (GH) that

relates the cognitive status of objects with different RE surface forms. The GH identifies

six cognitive statuses, only four of which are relevant to our domain:

in-focus (personal pronouns) > activated (demonstrative pronouns, demon-
strative noun phrases) > uniquely-identifiable (definite noun phrase) > type-
identifiable (indefinite noun phrase).

Each status in the GH is the necessary and sufficient condition for use of the corre-

sponding RE and entails all the lower statuses. The choice of a RE form by the speaker is

indicative of which cognitive status is useful for resolution. Given the cognitive status of

an object and the hearer's knowledge about the environment, the information in the RE

uniquely identifies the intended referent.

6.5.1 Non-linguistic Contexts

Knoeferle and Crocker (2006) identify two dimensions of the interaction between the lin-

guistic and situated context: informational and temporal. The first dimension refers to the

rapid integration of diverse information for various cognitive modules including percep-

tual processes and domain knowledge. The second dimension refers to the temporal coor-

dination between attentional processes and utterance comprehension. While REs such as

noun phrases (lower in the GH) exploit the informational dimension of language-context
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interaction, ambiguous REs such as pronouns (higher in the GH) exploit the temporal

dimension. To process the complete range of RE forms in the GH, the Indexical Model

exploits both the informational (described previously) and the temporal dimensions (de-

scribed below).

• Interaction: When conversation participants communicate, they focus their atten-

tion on only a small portion of what each of them perceives, knows, and believes.

Some entities (objects, relationships, actions) are central to information transfer at

a certain point in dialog and, hence, are more salient than others. This is exploited

by both the speaker and the hearer. It lets the speaker refer to focused entities with

minimal information and lets the hearer heuristically constrain the set of possible

referents, reducing cognitive load on both.

Rosie has a model of instructional interaction that is based on a collaborative dis-

course theory by Grosz and Sidner (1986). The details of this model are in Chapter 7.

The model organizes the discourse structure according to the goals of the task and

maintains a set of all referents (objects, spatial predicates, actions) that are related

to the ongoing dialog. The set of objects (Ostack) is most pertinent to this chapter be-

cause it identifies all the objects that have been referred to in the current discourse,

making them more salient than other perceivable objects.

• Attention: Object referents that have been brought to attention, either through lin-

guistic or extra-linguistic means, but are not in the focus of the ongoing commu-

nication are usually referred to by demonstrative pronouns or demonstrative noun

phrases (this, that cylinder) (Gundel et al., 1993). The extra-linguistic means may

include pointing by the speaker or unexpected stimulus such as a loud noise. To

resolve such REs, Rosie must maintain the history of references to objects in its

perceptions.

Rosie uses the architectural recency-based activation in Soar's semantic memory
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as a form of attention. The recency-based activation biases retrieval from semantic

memory towards the more recently accessed elements. An object is accessed only

if it was pointed at or was used in an action or learning. Anytime an object is

accessed, Rosie stores its representation in the semantic memory which boosts its

activation in accordance with recency computation. A completely ordered subset

Oactive of the highest activated n objects is retrieved from Rosie's semantic memory

to its working memory. These are combined with objects in focus to give a set of

objects to which Rosie is attending (Oattend = Ostack ∪Oactive). This formulation of

attention combines linguistic and extra-linguistic notions of salience.

6.5.2 Resolving References in the Indexical Model

In Section 6.4.1, we described the indexing of referring expressions in simple cases where

the words in the RE and their corresponding perceptual symbols by themselves uniquely

identified the referent object. Here, we give details about how an ambiguous RE is indexed

by incrementally adding diverse types of information in the Indexical Model. The steps

below implement the index-RE procedure in Algorithm 1.

1. Maintain cognitive status. Following the Givenness Hierarchy, the model maintains

different cognitive statuses for objects:

• Objects in the interaction stack (Ostack) have the in-focus status;

• Objects that are being attended to (Oactive) have the activated status;

• Objects in perceptions (Opercept) have the identifiable status.

2. Assign resolution type. For any RE r, the model determines its resolution type based

on its surface form. If the RE is:

• a definite noun phrase (the red cylinder), demonstrative pronoun (this), or per-

sonal pronouns (it), the speaker has a specific intended referent and compre-
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hension should unambiguously determine it (unique resolution);

• an indefinite noun phrase (a red cylinder), this indicates that there is no specific

intended referent and any object that fits the noun phrase can be used for

resolution (any resolution).

3. Determine the candidate referent set. The model uses the RE surface forms to deter-

mine which set contains the intended referent. The candidate referent set is:

• Ro
r = Ostack for personal pronouns (it);

• Ro
r = Oattend for demonstrative pronouns (this, that) and noun phrases (this

cylinder);

• Ro
r = Opercept for definite (the cylinder) and indefinite (a cylinder) noun phrases.

4. Apply the visual filter. Rosie's knowledge of the perceptual symbols and how they

relate to words is useful in identifying the referents of descriptive REs (the red cylin-

der). The model indexes each descriptive word (red, cylinder) in a noun phrase, and

then the model looks up its corresponding perceptual symbols, which are collected

into a set as a cue. All the objects in the candidate set (Ro
r) whose working memory

representations do not contain this cue are deleted from this set.

5. Apply the spatial filter. If the RE uses spatial reference (the cylinder on the right

of the pantry), referent sets for both noun phrases (Ro
cylinder, Ro

pantry) are obtained.

The model indexes the preposition right to retrieve the corresponding spatial re-

lationship predicate P4. Items in Ro
cylinder that do not satisfy the relationship P3

with any item inRo
pantry are deleted. This is a meshing step that combines linguistic

information with the domain knowledge and the perceptual state.

6. Apply the task filter. If the REs are used with verbs, as in an action command (put

the cylinder in the pantry), the model uses the knowledge of task restrictions to con-

strain their interpretation. To access this knowledge, the model indexes the verb to
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retrieve a task-operator and its corresponding goal. During meshing, it looks at all

task-operator instantiations that are applicable in the current environmental state

under the physical constraints and the knowledge of object affordances. Any object

that does not occur in the arguments of currently applicable task instantiations is

removed from Ro
r of the RE.

7. Obtain partial ordering. The elements of the referent set (r ∈ Ro
r) are partially

ordered based on their cognitive status and resolution type. If resolution is unique

(from step 1), then ri ∈ Ostack > rj ∈ Oactive > rk ∈ Opercept. If resolution is any,

then all objects have equal preference.

8. Resolve. After applying all available filters, if Ro
r contains only a single object, that

object is selected as the intended referent. If it contains multiple objects, the model

uses the partial ordering obtained earlier to select the object highest in the order as

the intended referent. If the partial ordering is not informative enough for resolu-

tion, the model initiates a subdialog to obtain more information from the instructor.

If the resolution is any, all objects have equal preference and one is chosen at ran-

dom.

The resolution process described here integrates seamlesslywith the incremental learn-

ing modules and the interaction model for mixed-initiative conversations.

6.5.3 Integrative Processing

Human situated communication exploits non-linguistic contexts to convey meaning. Of-

ten, the speaker omits information that is apparent from perceptions, common knowledge,

or shared experience and relies on the hearer to infer it. This results in efficient (fewer

words) but linguistically ambiguous communication. The use of under-specific referring

expressions such as it or this cylinder that by themselves do not uniquely identify the

referent is an example of this. An intelligent agent that effectively engages in linguis-
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tic communication with a human must be able to handle such omissions undertaken for

efficiency.

The RE resolution in the Indexical Model proposed in this chapter can exploit a variety

of non-linguistic contexts (informational and temporal) to address object reference am-

biguity in natural language. We demonstrate this through the experiment below where

we construct scenarios with different levels of ambiguity in object reference and record

the behavior of different variation of Rosie that use varying amounts of non-linguistic

contexts.

6.5.3.1 Experiment

Dataset: We generated a corpus of 25 instructor utterances that addresses different ca-

pabilities of the agent. This corpus contains instruction sequences that teach and query

Rosie about objects and their attributes, present and verify grounded examples of spa-

tial prepositions, and teach verbs. This corpus contains references to three objects on the

scene. These objects are referred to using varying forms of referring expressions includ-

ing 12 instances of personal pronouns (such as it), 4 instances of demonstrative pronouns

(such as this), 3 instances of demonstrative phrases (such as that cylinder), and 14 vary-

ing length noun phrases with different descriptive words (such as the red cylinder). Note

that this corpus consists of utterances by the instructor only. As these instructions are

provided to the agent, it engages the instructor in subdialogs for correctly identifying the

referent and for learning verbs. The length of these dialogs vary with different models

of comprehension and scenarios (described below). From the 16 dialogs (4 models × 4

scenarios), the longest dialog had 178 human/agent utterances.

Models: We evaluated various models of comprehension that exploit different dimen-

sions of language-context interaction. The baseline model p uses the context derived from

perceptual semantics only. To obtain other models, we incrementally added other kinds

of contexts. Model p+t exploits the restrictions derived from task knowledge along with
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perceptual semantics. Model p+t+a exploits the temporal dimension by encoding the at-

tentional state. Model p+t+a+d encodes both the attentional and dialog states.

Scenario Ambiguity: Each of the comprehension models was evaluated using the in-

struction corpus on different scenarios of increasing perceptual ambiguity in the environ-

ment obtained by adding distractor objects. The ambiguity 1 scenario only contained the

intended referent objects on the scene. Ambiguity 2 contained distractor objects that were

perceptually distinct (different colors, shapes) from the intended referents. Ambiguity 3

contained distractor objects that were of the same color as the intended referent but of

different shapes. Ambiguity 4 contained distractor objects that were perceptually similar

to the intended referents and required the use of spatial references.

Evaluation metric: We seek to measure the length (number of lexical symbols) of the

optimal RE for a model in a scenario - the shortest RE that uniquely identifies an object

without any further interactions about it. Other aspects of communications being the

same, the model that has shorter optimal REs can sustain more efficient communication.

We arrive at this measure indirectly as described below.

Rosie is an interactive agent that engages the human instructor in a subdialog if it

fails at any stage in its processing. On failing to resolve ambiguous referring expressions

in sentences, Rosie asks questions to obtain more information that will constrain its reso-

lution. The instructor can, then, incrementally provide more identifying information. An

example dialog is below.

Instructor: Pick it up.
Agent: Which object?
Instructor: the blue one.
Agent: Which blue object?
Instructor: the cylinder.
Agent: Which blue cylinder?
Instructor: the one in the pantry.

The question-answer pairs (object identification queries) are informative of how am-

biguous an RE is given the ambiguity in the current scenario and the contexts. The instruc-
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tor could have provided all the identifying information in a single response (Which object?,

the blue cylinder in the pantry). However, letting Rosie take the initiative in resolution

ensures that it accumulates the minimum information required for unique identification

in the current situation. The number of object identification queries in this setup correlates

with the length of the optimal RE for the agent in the particular scenario.

6.5.3.2 Results

The graph in Figure 6.3 shows the number of object identification queries asked by Rosie

while using different comprehension models in scenarios with varying perceptual am-

biguity. The models reliably integrate information provided incrementally over several

interactions for resolution. Consequently, all REs were eventually correctly resolved in

all models in all scenarios. Themodel p+t+a+d can exploit the informational and temporal

dimensions effectively for resolution.

The baseline model p, which only exploits the contexts derived from perceptual se-

mantics, generates the most queries for all levels of ambiguity. Model p+t is able to

use its knowledge about the task to constrain resolution and, therefore, requires fewer

queries (has shorter optimal REs) for achieving the same resolution results. The models

that exploit both the temporal and informational dimensions require even fewer queries

to achieve similar performance across all scenarios. Conversing with agents that only en-

code the informational dimension of non-linguistic context usually requires wordy REs,

such as the red cylinder in the pantry, that must be repeated in all interactions related

to that object. The use of the temporal dimension for comprehension allows the use of

shorter referring expressions (it, this cylinder), resulting in efficient communication.

As perceptual ambiguity in the environment increases, models that exploit only the

informational dimension (p, p+t) require more perceptual information for resolving REs.

Models that exploit the temporal dimension (p+t+a, p+t+a+d) ask the same number of

queries across all scenarios, demonstrating that the use of co-reference is an efficient (uses
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Figure 6.3: Number of object queries asked by Rosie for RE resolution.

fewer lexical symbols) way to communicate about objects in human-agent dialogs. It lets

the instructor communicate the intended referent without incorporating large amounts

of information in utterances in perceptually ambiguous scenarios.

To establish that the non-linguistic context contributes information above and be-

yond what is encoded in the linguistic features, we ran Stanford CoreNLP (Lee et al.,

2012) on our corpus. Co-reference resolution in CoreNLP incorrectly resolved ten (28.6%)

references. Features used in CoreNLP for reference resolution roughly correspond to the

interaction context used in our model and are derived from several heuristics about coref-

erence. The majority of the errors in CoreNLP are pronoun errors and arise due to the

way in which it evaluates potential antecedents (previous reference to the same object).

CoreNLP biases resolution of it to an antecedent closer in history. This bias may result in

incorrect resolutions. Consider the teaching interaction below.

Instructor (points to object1): This is red.
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Rosie: OK.
Instructor (points to object2): This is blue.

CoreNLP resolves the first this to a new object, which can be correctly resolved to

object1 after some additional reasoning. It, then, incorrectly resolves the second instance

of this to the antecedent (first this) in the first instruction and consequently to object1.

This occurs because CoreNLP processes a pronoun by collecting references made to ob-

jects previously and picking one based on its heuristics. As the heuristics only capture

linguistic features, the fact that the instructor pointed to an object is not incorporated in

the resolution.

In the Indexical Model, the activation of objects changes as they are pointed at, acted

upon, or are used in learning. This activation plays a role in resolution (attentional con-

text). In the example above when the instructor points to object2, it becomes highly ac-

tivated and the most promising candidate. Similarly, task knowledge of which objects

can be picked up plays are role in resolving pronouns. CoreNLP on the other hand relies

on the order antecedents are presented resulting in resolution to objects that cannot be

picked up.

The results presented here are expected: the model with more knowledge and reason-

ing capabilities can sustain more efficient communication. However, prior work on situ-

ated comprehension has largely ignored the role of non-linguistic knowledge and prob-

lem solving in language understanding. The Indexical Model proposed here facilitates

the incorporation of reasoning and problem solving in comprehension. The results pre-

sented here show that these contexts can be useful in handling ambiguities. Finally, the

non-linguistic contexts presented here are only a subset of what is required to sustain

a human-like conversation. Other kinds of reasoning and inference may also find use in

comprehension. Future work will investigate what reasoning is useful for comprehension

and how it can be incorporated in the Indexical Model.
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6.6 Unexpressed Argument Alternations of Verbs

In Rosie, the goal of comprehension of an imperative sentence is to correctly instantiate a

task that can be executed in the environment. The verb of the sentence identifies the task

and the verb's objects identify the arguments of the task. The syntax is useful in instanti-

ating the task goals and a policy that can be executed in the environment to achieve them.

However, as explained in Chapter 5, several verbs have unexpressed object alternations.

A example is the verb take which is used in two alternations:

1. Take the trash out to the curb.
2. Take the trash out.

The second alternation leaves the location unexpressed. Humans generate and com-

prehend such sentences by relying on the shared knowledge about the domain. In the

example, both the speaker and the hearer know that the trash is usually put on the curb.

This lets the speaker omit the location in the sentence take the trash out for the sake of

communicative efficiency. The choice of this syntax by the speaker indicates that they as-

sume the hearer can fill the missing location from their knowledge of the domain. Upon

hearing the utterance, the hearer must exploit this knowledge and generate an appropri-

ate, complete representation of the task.

6.6.1 Exploiting the Hearer's Instructional Experience

To deal with imperative sentences with unexpressed information about the action, the

model relies on Rosie's task representations learned through interactions with the in-

structor described later in Chapter 8. Here we briefly summarize the process. Consider

the verb move and the variations of imperatives that can be constructed from it:

(a) Move the green object to the right of the table.

(b) Move the green object to the table.

92



In (a), the direct-object the green object, the location the table, and their spatial relation-

ship (right of ) are completely specified. In (b), the spatial relationship is omitted with

an understanding that there is a default configuration (on) between the object and the

location.

The default configurations are learned from multiple instructional task executions of

the task. The default configuration can be extracted from the experience of learning how

to perform the move task. When Rosie is asked to execute a task for the first time, it

leads the instructor through a series of interactions to learn the structure of the task.

Suppose that Rosie does not know how to perform move. On receiving the imperative

sentence (a), it asks a question about the goal (what is the goal of the task?) and the

human instructor replies, the goal is the green object to the right of the table. By analyzing

the sentence and the goal description, Rosie extracts a general schema that relates the

linguistic structure of the utterance to the goal of the task. It uses a simple heuristic that

information (object, location, and spatial relationship) specified in the imperative sentence

can be generalized away in the goal definition. Rosie assumes that future instances of the

verb move will completely specify the goal. At a later stage, Rosie receives the sentence

(b). Using its knowledge of the goal definition, Rosie attempts to generate an instantiation.

This fails because no relationship is specified. So, Rosie asks the instructor to describe

the goal. The instructor may reply with the goal is the green object is on the table. By

comparing the current situation (for sentence (b)) and its experience with sentence (a),

Rosie concludes that the verb move may be used in two alternations. The representation

of move is augmented to reflect that, if the relationship is not specified, it should attempt

to establish the on relationship between the object and the location.

When comprehending the verb move in the future, the model can use the default val-

ues to complete the argumentation of the action if those values are not specified in the

linguistic input itself. These values are available through the goal elaboration operator

described in Chapter 5. This lets the model use Rosie's instructional experience to fill in
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information that is not specified in the linguistic input but is essential for action.

6.6.2 Integrative Processing

In situations where a task is incompletely specified linguistically, the Indexical Model can

employ prior experience with task execution to extract relevant information. We demon-

strate this in the experiment below where we report the performance of the Indexical

Model on unexpressed verb alternations.

6.6.2.1 Experiment

In an environment with four objects, we instructed Rosie to perform eight instances of

five tasks using a uniform distribution over alternations of the relevant verb. Here we

characterize the verbs used in the experiments.

• The verb pick takes a direct object and does not have any alternation. Example: pick

up the red cylinder.

• The verb put takes a direct object and a prepositional object and does not have any

alternation. Example put down the red cylinder on the table.

• The verb move has two alternations. The first specifies the object, the prepositional

object, and the intended spatial relationship (as in move the red cylinder to the right

of the table). The second does not specify the spatial relationship between the direct

and prepositional object (as in move the red object to the table).

• The verb store has two alternations. The first specifies the direct object, the prepo-

sitional object, and the intended spatial relationship between them (as in store the

red cylinder in the pantry). The second leaves the prepositional object unexpressed

(as in store the red cylinder).
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• The verb cook has two alternations. One specifies the instrument used for cooking

along with the object to be cooked (as in cook the steak on the stove). The other

leaves the instrument unexpressed (as in cook the steak).

The first two verbs are primitives that have been pre-encoded in Rosie; the last three are

acquired through human-agent linguistic interaction. For training, Rosie was taught the

task with the first alternation of the corresponding verb. After it successfully learns the

task, we asked it to perform the task using the second alternation. Any questions asked

by Rosie during this training episode were appropriately answered. Two variations of

the comprehension model were evaluated. Model+e uses Rosie's instructional experience

to augment the linguistic input that is missing information required for task execution.

Model-e is a lesioned version of model+e that does not exploit the instructional experience

but relies on asking the instructor a question for the missing information. Both models

were given the same instructional experience (12 interactions formove and 16 interactions

for cook).

6.6.2.2 Results

Thegraph in Figure 6.4 shows the number of interactions that occurred during the compre-

hension of task commands in model+e (in blue) and model-e (in red). The patterned bars

correspond to the first alternation and the plain bars correspond to the second alternation

(if applicable). For verbs without alternations (pick and put), both models take equal num-

ber of interactions to execute the task (one per task instance). For verbs with alternations,

the models behave differently for different alternations. For the first alternation in which

all information is specified, both models take one interaction per task. However, for the

second alternation that leaves some argumentation unexpressed, model+e takes only one

interaction per task because it uses the knowledge acquired through learning to fill in the

missing information. Model-e must ask questions to gather the information missing from

the sentences with unexpressed verb argumentation, resulting in more human-agent in-
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Figure 6.4: Number of interactions required for comprehending verbs in different alter-

nations.

teractions (three per task instance). Both models comprehend both alternations of verbs

and correctly execute the task.

The method and analysis presented here are fairly simplistic. This is a product of

both the domain and our limited understanding of when and why information is omitted

in communication. Although, prior work in linguistics (Levin, 1993) presents a detailed

analysis of what kinds of verb objects may be left unexpressed, it does not discuss why

this occurs. The issue of unexpressed verb objects and its impact on grounded verb repre-

sentation and processing has not been addressed by prior computational work on situated

comprehension.
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6.7 Summary and Discussion

The Indexical Model proposed in this chapter implements referential comprehension by

formulating comprehension as search over perceptions, short-term memory, and long-

term knowledge (D2). In this chapter, we introduced indexical maps, structures in Rosie's

long-term semantic memory that align linguistic symbols and constructions to those that

represent modal knowledge about the world. Using a simple referential grammar, the

model can search its semanticmemory usingwords such as red and can access a perceptual

symbol C22 that refers to a class in Rosie's perceptual memory. C22 can be used to search

the working memory for all objects that are red in order to comprehend pick up the red

block.

In formulating comprehension as a search over short-term and long-term experiential

knowledge, non-linguistic context has a natural role (D3). It provides constraints over the

hypothesis space and guides search. Non-linguistic context can be derived from various

sources including the ongoing discourse, the current perceptual state, the knowledge of

tasks, and the models of environmental dynamics. Other cognitive mechanisms such as

reasoning and attention also contribute to comprehension by providing additional con-

straints on interpretations. We have shown that exploiting different contexts in the Index-

ical Model reduces ambiguity in referring expression resolution. Experiential knowledge

augments the linguistic input by incorporating knowledge from prior experiences with

the environment. This is useful in situations where the linguistic input, such as take the

trash out, is under-specific and does not encode enough information for reasoning and

action.

In comparison to standard approaches to semantics andmeaning representations preva-

lent in natural language community, the Indexical approach to language comprehension

affords several advantages. Previous approaches either encode semantics as amodal sym-

bols that are not grounded in real-world experiences or as propositions that do not capture

the relational or distributional properties of complex environments. In the Indexical ap-
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proach, semantics can be encoded using diverse, modality-specific representations. These

include probabilistic representations for perceptions, relational representations for spatial

reasoning, hierarchical policies for task execution, and models for reasoning about the

environmental dynamics. Such representations are typical of agents designed to function

in complex environments. Additionally, established learning algorithms (kNN, version-

space learning, explanation-based learning) can be used to expand the agent's knowledge,

thereby, extending its situated comprehension capabilities (D5).

Themodel is implemented in Soar andmakes extensive use of meta-cognitive informa-

tion such as the state stack or the kind of impasse to reason about failures in processing an

utterance. This information is useful in determining the cause of failure and in generating

appropriate questions in case of ambiguity or missing information (D4).

The focus of our future work will be on studying other linguistic ambiguities that arise

in instructional interactions and how they can be addressed by incorporating information

from different cognitive modules. Ambiguity may arise in determining the site of prepo-

sitional phrase attachment. In the sentence store the red cylinder on the green block in the

pantry, it is unclear if the phrase in the pantry attaches to the verb store directly, or to the

phrase on the green block. This can be resolved by the incorporating the current state of the

environment. Another concern is that the proposed model does not support interpreta-

tion of quantification (store all red objects) or of categories of objects (chess pawns cannot

move backwards). This limits what can be expressed in instructions for tasks requiring

them to be specific to perceivable objects instead of describing general characteristics and

rules. Another direction for future research is incremental comprehension (D6) which can

provide useful constraints on linguistic perception. This will lead to robustness to noise

in speech and better performance on incomplete and ungrammatical linguistic input.

This chapter has focused on mechanisms that are useful in language comprehension

where the elements of an utterance can be directly grounded in the shared state between

the speaker and the hearer. However, much of human communication is non-situated as
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when people talk about scenarios that are not directly perceived and have occurred in the

past (retrospective) or may occur in the future (prospective). In such cases, human hear-

ers readily generate perceptual simulations guided by the content of the utterance and

use these models to reason about the scenario being described. The perceptual simula-

tions are informed by the hearer's experience of the world. In the future, we will expand

the indexical approach to address non-situated comprehension and its interaction with

knowledge acquisition and learning.
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Chapter 7

Maintaining Flexible Dialog

Situated interactive instruction is a powerful learning paradigm. It distributes the onus

of learning between the instructor and the learner. In the SII approach, an instructor

can be freed from using a specific ordering to teach the agent new words and concepts.

Often in human-controlled interactive learning, the instructor must attempt to build and

maintain an internal model of what the agent knows and doesn't know to give it good

examples. This is especially challenging when the agent is dynamically learning a vari-

ety of concepts (perceptual, spatial, task knowledge in Rosie) from real-world data. In

contrast, with mixed initiative interaction, the instructor can rely on the agent to initi-

ate an interaction when needed. This approach can speed instruction by eliminating the

need for the instructor to carefully structure the interaction or repeatedly check with the

agent to ensure it has completely learned a concept. The agent can actively seek exam-

ples of concepts that are hard to learn and avoid asking for multiple examples of easily

acquired concepts. The instructor can take initiative in presenting interesting examples

to the agent that it might have overlooked, refining agent's learning.

To support SII so that the onus of learning is distributed between both participants, a

critical capability is maintaining a flexible task-oriented dialog with the human instruc-

tor. This capability provides temporal context for situated comprehension along with

contributing to accumulation of common ground (as in Chapter 6) and allows Rosie to

ask questions while learning tasks (as in Chapter 8) or other aspects of its world (Mohan,

Mininger, Kirk, et al., 2012; Kirk and J. Laird, 2014). It also allows the instructor to the
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structure the task instruction in different ways.

This chapter describes how Rosie maintains a mixed-initiative interaction with the

instructor and how the interaction model is integrated with comprehension and learning.

In the following sections, we give an overview of Grosz and Sidner's (1986) theory of

collaborative discourse that stresses the role of intentions (Section 7.1), describe Rosie's

interactionmodel (Mohan, Mininger, Kirk, et al., 2012; Mohan, Kirk, et al., 2013) in Section

7.2, present empirical data (Section 7.4), and discuss the degree to which the interaction

model satisfies the SII desiderata (Section 7.5).

7.1 Collaborative Discourse Theory

Grosz and Sidner (1986) posit that all discourse in some sense is task-oriented - discourse

participants communicate with each other in pursuit of tasks which may pertain to ma-

nipulating and navigating their environments, changing each other's belief states, or com-

prehending language. The main thesis of the work is that the structure of any discourse

can be considered as a composition of the following three related elements.

• Linguistic structure. This refers to the linguistic aspects of the discourse and captures

how the sequence of utterances in the discourse are organized. Utterances in a

discourse can be aggregated into discourse segments that fulfill a certain function

with respect to the overall discourse.

• Intentional structure. A participant that initiates a segment does sowith a purpose (or

intention). The purpose provides a reason why this particular information is being

conveyed as opposed to some other information and why a communicative action

is being performed as opposed to some other action. The purpose specifies how the

ongoing segment contributes to achieving the overall purpose of the discourse.

• Attentional state. This is an abstraction of the participants' focus of attention as the

discourse progresses. This contains entities (objects, events etc.) that are salient
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because either they were mentioned explicitly or were useful in producing or un-

derstanding the utterances in the discourse.

The rest of this chapter describes Rosie's interaction model that is based on the col-

laborative discourse theory (CDT).

7.2 Our Approach

Prior work on collaborative discourse theory formulates a model of collaborative plan-

ning (Grosz and Sidner, 1986; Grosz and Kraus, 1996) for agents and applies the model

to develop a collaboration manager that provides intelligent assistance to air travel (Rich

and Sidner, 1998). This model assumed a closed knowledge-set - the agents were pre-

programmed with all the knowledge they require to act in their environment. In order

to design an interactive learning agent, the model of interaction should accommodate a

growing knowledge-set. No prior work has investigated if CDT can be used in the design

of interactive learners since it was proposed. In the next section, we describe how CDT

can be extended to support interactive learning. This thesis makes a contribution to inter-

active learning systems by demonstrating that with a simple extension, CDT is sufficient

for the desiderata for SII. In comparison with Chapters 6 and 8, the contributions of the

work described in this chapter are relatively minor.

• Task-oriented (D7) and Integrative (D8). The central thesis of collaborative dis-

course theory is that all discourse is task-oriented where the participants pursue

communicative goals in order to achieve their extra-linguistic goals. A subset of

communicative goals pertain to gathering and presenting information critical for

task execution. Our model invokes appropriate learning algorithms when it rec-

ognizes such goals in the ongoing dialog, effectively integrating learning with task

execution and interaction.
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• Flexible (D9). We demonstrate that the interaction model allows for flexible control

of instruction. Rosie can guide conversation to various aspects of the task unknown

to it. The instructor can also assume control and introduce concepts to Rosie before

they are required for task execution.

7.3 Mixed-Initiative Dialog Model

Our interaction model is adapted from Rich and Sidner (1998) that implements collabora-

tive discourse theory and extends their framework to accommodate learning from situated

instruction. Figure 7.1 is an annotated trace of how these concepts are used by Rosie while

learning the verb store. Rosie also needs to learn the adjective orange and preposition in

in order to learn the verb. The figure shows various elements of how the interaction state

is represented. The events column annotates the dialog, actions, and acquisition events,

the dialog-class column contains classification of human-agent utterances, the segments

column contains contiguous events that are related by a common purpose, and the stack

column captures the state of interaction at the specified point.

7.3.1 Interaction State Representation

The model represents the state of ongoing interactions using the elements below.

7.3.1.1 Events

An event causes change, either in the environment (action-event), the human-agent dis-

course (dialog-event), or the agent's knowledge (learning-event). Action-events corre-

spond to primitive actions or tasks that Rosie can undertake in the environment. Dialog-

events refer to utterances in the human-agent dialog. They are categorized into dif-

ferent classes based on their lexical and syntactic structures, such as get-next-task,

verb-command, and attribute-query as shown in the left most column of Figure 7.1. A
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Agent: Waiting for the next command...
Human: Store the orange object.
Agent: What kind of attribute is orange?
Human: A color
Agent: (learns semantic categorization)
Agent: I don't see an orange object. Please teach me to 
recognize one
Human: (clicks on the object). This is orange.
Agent: (learns perceptual symbol + class) 
Agent: What is the goal of the action?
Human: The goal is the orange object in the pantry.
Agent: I don't know the preposition in. 
Human: The orange object is in the garbage.
Agent: (learns semantic composition of 'in')
Agent: (learns goal of 'store')
Agent: What action should I take next?
Human: Pick up the orange object.
Agent: (picks up the orange triangle)
Agent: What action should I take next?
Human: Put the object in the pantry.
Agent: (puts the triangle in the pantry)
Agent: What action should I take next?
Human: You are done.
Agent: (learns 'store' with retrospective projection)

dialog-event
dialog-event
dialog-event
dialog-event
learning-event
dialog-event

dialog-event
learning-event
dialog-event
dialog-event
dialog-event

learning-event
learning-event
dialog-event
dialog-event
action-event
dialog-event
dialog-event
action-event
dialog-event
dialog-event
learning-event

O11

A1
G12

P121

A13

A14

A15

A1: external
action store

G12: acquire
goal for store

Events Dialog Segments Stack

get-next-task
verb-command
attribute-q
attribute-ans

get-goal
goal-semantics
relation-q

relation-ans

get-action
verb-command

Dialog-class

O12

Figure 7.1: Annotated human-agent dialog for acquisition of store

.

learning-event is the successful acquisition of perceptual, spatial, semantic, linguistic, or

procedural knowledge.

7.3.1.2 Segment

A discourse segment (O12, G12 in Figure 7.1) is a contiguous sequence of events that

serves a specific purpose and organizes a dialog into purpose-oriented blocks. For exam-

ple, a question and an answer sequence constitute a segment whose purpose is to achieve

shared knowledge between participants; an action-command and an action sequence con-

stitute a segment whose purpose is to change the state of the environment. Segments are

hierarchical; a segment is said to be contributing to a parent segment if its purpose con-

tributes to its parents purpose (such as P121 contributing to G12). The segments provide

the context for Rosie to organize its processing and interactions in pursuit of its task goals.
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In our implementation, a segment has the following constituents.

1. Purpose. The purpose1 represents the process goal Rosie attempts to pursue. In our

model, they can be of three types: generate a response for instructor's questions,

perform the requested task, or learn from provided demonstrations.

When a purpose is assigned to a segment, Rosie selects satisfy-purpose operators

for execution. These operators are responsible for collecting information to reply

to instructor's questions, setting up the Rosie's internal state for learning, or for

executing a task. The purpose of a segment is heuristically determined based on

the fact that Rosie functions in an instructional domain. A collaborator may use a

sentence such as the orange object is in the garbage to achieve a shared understanding

of the perceptual state. In Rosie, this is treated as a beginning of a learning segment

in addition to using this information to augment the visual state.

2. Satisfaction. The set of events that indicate that the purpose of the segment has been

achieved. For example, for a task learning segment, successfully inducing the task

representation indicates that the purpose has been achieved.

3. Cause. The segments optionally also encode the reason why they were initiated.

This informs language parsing, comprehension, and learning. The context of the

segment O11 is useful when parsing the noun-phrase fragment (a color) while learn-

ing the word orange.

When initiated by Rosie, the segments allow the agent to learn a new verb (A1), acquire

amap for a novel word (such as O11 and P121 in Figure 7.1), acquire a goal (G12), or acquire

a task representation that is required to execute a verb (A13, A14, A15).
1We use the term purpose to refer to Rosie's internal reasoning goals in order to distinguish them from

external task goals such as (in(A1,pantry))
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7.3.1.3 Active Segment Stack

The attentional structure of discourse is captured in a stack of active segments. When a

new segment is created, it is pushed onto the stack. The top segment is the focus of the

current interaction, and Rosie acts to achieve its purpose. When the purpose of the top

segment is achieved, it is popped from the stack. The right-most column in Figure 7.1

shows a snapshot of the stack. It contains three open segments, P121, G12, and A1, with

P121 being the top segment. The segments are hierarchically ordered with each segment

contributing towards achieving its parent's purpose (which is lower in the stack). To learn

store, the agent must acquire a description of the goal and must learn the spatial concept

corresponding to the preposition in.

The stack also summarizes all the referents of grounded utterances in the ongoing

interaction. This includes all objects and relations referred to along with instantiated

tasks being pursued. For situated comprehension, this context is useful in generating

hypothesis about objects referred to by REs. For task learning, it provides context useful in

combining information provided incrementally into a comprehensive task representation

and in creating cues for querying episodic memory during retrospective analysis.

7.3.2 Interaction Management

The interaction model (described in Algorithm 2) changes the interaction state when ei-

ther the instructor makes an utterance (dialog-event, Lines 6-13 in in Algorithm 2) or

Rosie compiles a status while pursuing a purpose (Line 14-18, in Algorithm 2). The status

is compiled during the comprehension phase or the behavior phase and contains infor-

mation about whether or not Rosie was able to successfully complete the phase (Lines

19-27). The success status indicates that either Rosie was able to compile a response to

instructor's questions (dialog-event), was able to complete the task (action-event), or was

able to learn from the examples given (learning-event). If Rosie fails during any phase,

106



it performs a meta-cognitive analysis in an impasse of why it failed and what informa-

tion from the instructor will be useful in making progress. A summary of this analysis is

included in the failure status.

If the interaction model is triggered, it determines if the event in question is in the

satisfaction set of the topmost active segment on the stack. If it is true, the purpose of the

segment is over and the segment is removed from the stack. If it is not true, a rule fires

that begins a new segment on the stack and elaborates the purpose of the segment based

on heuristics encoded in the model.

Consider the beginning of the interaction in Figure 7.1. When the instructor utters the

task command store the orange object, the model begins a new segment A1, the purpose of

which is to execute the store task and its satisfaction set contains an action-event corre-

sponding to the verb store. In order to execute the task, a grounded representation of the

task command must be created. During situated comprehension, Rosie fails to ground

the word orange. This results in a failure status that indicates that orange is a new noun

word. In response to the failure status, the interaction model begins a new segment O1

with the purpose of obtaining the perceptual category of the noun orange and with the

satisfaction set that includes a dialog-event from the instructor identifying the category.

This segment causes a dialog-event by Rosie - what kind of attribute is orange?. The in-

structor responds with another dialog-event - a color. The interaction model terminates

the segment O1 and simultaneously begins a new segment C11 to incorporate this infor-

mation in its knowledge about the world. This segment is removed from the stack once

acquisition of the perceptual category is successfully completed.

7.4 Evaluation

In the following sections, we demonstrate the interaction model described in the previous

sections can sustain a flexible instructional dialog. Further, we show that either partici-
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Algorithm 2

1: procedure insert-new-segment(dialog-event or failure status i, fs)
2: new ← create-new-segment
3: new.purpose← identify-purpose(i, fs.top)
4: new.satisfaction ← identify-satisfaction-event(i, new)
5: push(fs, new)
6: procedure interaction-management(instructor's utterance m, focus stack fs)
7: i← create-dialog-event
8: i.message = m
9: i.category ← classify-interaction(i.message)

10: if i = fs.top.satisfaction then
11: pop(fs)
12: else
13: insert-new-segment(i, fs)
14: procedure interaction-management(status s, focus stack fs)
15: if status.event = fs.top.satisfaction then
16: pop(fs)
17: else
18: insert-new-segment(s, fs)
19: procedure satisfy-purpose(stack fs)
20: proc← identify-procedure(s.top.purpose)
21: if event← execute-procedure(proc) ̸= null then
22: status← success
23: status.event← event
24: else
25: status← failure
26: status.context←metacognitive-analysis
27: interaction-management(status, fs)
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pant of the instructional dialog can control the instruction.

7.4.1 Adaptive, Flexible Dialog

The interaction model described in this chapter facilitates a flexible human-agent dialog

instead of forcing the dialog to follow any preset script. The dialog contents are influenced

by what Rosie knows and does not know about its environment.

7.4.1.1 Experiment

Rosie's prior knowledge was varied to evaluate if the interaction model supports flexible

dialog. Prior knowledge states were categorized as:

• null: Rosie has no prior domain knowledge beyond the primitive actions

• O: Rosie has prior knowledge of how to recognize objects referred to using noun

phrases such as the red large triangle

• O+S: Rosie has prior knowledge of object recognition and spatial relationships such

as in.

• O+S+T: Rosie has structural and execution knowledge of the task in addition to the

knowledge of object attributes and spatial relationships.

In these varying initial knowledge states, Rosie was asked to execute three tasks:

place, move, and store where place was the constituent task for move and store. The task

commands were generated by combining the verbs with various nouns, adjectives, and

prepositions. If it asked any questions in executing the tasks, appropriate answers were

given.
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place move store

null O O+S

place move store place move store

Figure 7.2: Number of agent-initiated interactions per task command in different initial

stages of prior knowledge.

7.4.1.2 Results

Figure 7.2 shows the number of human-agent utterances required to execute each task in

different initial knowledge-states. Human-agent interactions are categorized according

to what was the interaction about. For example, the object-attribute label refers to inter-

actions that occurred when Rosie learns perceptual concepts such as red and how they

map to perceptual symbols. When Rosie begins in null state, it initiates several discourse

segments to learn about objects and spatial relationships. These interactions do not occur

if the learner begins in O+S states because it already has knowledge of these concepts. In

each of these cases, Rosie was able to successfully execute the task. The results show that

the human-agent dialog adapts to what is required by Rosie for making progress on the
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Figure 7.3: Initial and final environment states for learning set the table task.

task. The interaction model allows Rosie to change the focus of interaction on various

aspects of the task. Further, results show that Rosie only requests knowledge when it is

missing resulting in more efficient learning.

7.4.2 Mixed-Control of Learning

The interaction model does not impose a strict order on how Rosie is taught new con-

cepts. This gives flexibility in how the instruction is structured and who takes the onus of

learning. The instructor can choose to control how and when Rosie learns. The instruc-

tor can teach basic concepts before teaching complex concepts that require knowledge of

the basic concepts. However, the expert may not know or remember the state of Rosie's

knowledge. In situationswhen the learner is learning complex concepts but lacks required

knowledge of basic concepts, it will take the initiative and guide the interaction to acquire

the relevant basic concepts first.

We taught Rosie the set the table task with two instructional strategies: instructor-

controlled and agent-controlled. Set the table task requires that the purple object be placed

on the table and the green object be placed on the the right of the purple object. The initial

and final states of teaching the task are in Figure 7.3. The dialog trace in Figure 7.4 shows
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Mentor: this is red
Agent: What kind of attribute is red?
Mentor: a color
Agent: Okay.
Mentor: this is green
Agent: What kind of attribute is green?
Mentor: a color
Agent: Okay.
Mentor: this is blue
Agent: What kind of attribute is blue?
Mentor: a color
Agent: Okay.
Mentor: this is purple
Agent: What kind of attribute is purple? 
Mentor: a color
Agent: Okay. [learns 'purple']
Mentor: the red object is on the table 
Agent: Okay. [learns 'on']
Mentor: the blue object is right of the green object
Agent: Okay. [learns 'right of']
Mentor: place the blue object on the table
Agent: This is a new task for me. What is the goal of this task?
Mentor: the goal is the blue object on the table
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: pick up the blue object
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: put the blue object on the table       [   learns task]
Agent: Test me or give me another task.
Mentor: set the table
Agent: This is a new task for me. What is the goal of this task?
Mentor: the goal is the purple object on the table and 

the green object right of the purple object
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: place the purple object on the table
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: place the green object right of the purple object [learns task]
Agent: Test me or give me another task.

Figure 7.4: Human-agent interaction trace for instructor-controlled teaching strategy

(simplified).
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Mentor: set the table
Agent: This is a new task for me. What is the goal of this task?
Mentor: the goal is the purple object on the table and

the green object right of the purple object
Agent: I don't know the preposition right-of. Please teach me with examples
Mentor: the green object is right of the blue object
Agent: What kind of attribute is green?
Mentor: a color
Agent: I don't see the green object. Please teach me to recognize one
Mentor: this is green
Agent: What kind of attribute is blue?
Mentor: a color
Agent: I don't see the blue object. Please teach me to recognize one
Mentor: this is blue [learns 'blue']
Agent: I don't see the green object. Please teach me to recognize one
Mentor: this is green [learns 'green']
Agent: I don't know the preposition on. Please teach me with examples
Mentor: the red object is on the table
Agent: What kind of attribute is red?
Mentor: a color
Agent: I don't see the red object. Please teach me to recognize one
Mentor: this is red [learns 'red']
Agent: What kind of attribute is purple?
Mentor: a color
Agent: I don't see the purple object. Please teach me to recognize one
Mentor: this is purple [learns 'purple']
Agent: OK [learns 'on']
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: place the purple object on the table
Agent: This is a new task for me. What is the goal of this task?
Mentor: the goal is the purple object on the table
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: pick up the purple object
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: put the purple object on the table
Agent: I cannot figure it out.
Agent: How do I proceed?
Mentor: place the green object right of the purple object [learns task]

Figure 7.5: Human-agent interaction trace for agent-controlled teaching strategy (simpli-

fied).
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the instructor-controlled strategy in which the instructor teaches the basic concepts and

then combines them to teach the set the table task. The dialog trace in Figure 7.5 shows

the agent-controlled strategy where while learning set the table task, Rosie guides the

interactions to basic concepts.

In the instructor-controlled strategy, the instructor is required to predict what con-

cepts (such as the meaning of words red, green, on) will be useful in teaching the task and

introduce these concepts early on. In the agent-controlled strategy, the instructor dives

into teaching the task itself. Rosie focuses the dialog on different aspects of the task based

on the state of its knowledge. Interaction in both teaching strategies encodes the same

information and results in acquisition of same concepts.

7.5 Summary and Discussion

In this chapter, we described how Rosie maintains a mixed-initiative interaction with a

humans instructor. The interaction model is based on Grosz and Sidner's 1986 collabora-

tive discourse theory that posits that all discourse occurs in pursuit of intentional goals.

The interaction model is impasse-driven - whenever the Rosie is unable to make progress

on a task, it can ask relevant questions and change the state of interaction. This tai-

lors the human-agent interaction to what is required by Rosie to successfully execute a

task (D7). The discourse segments organize human-agent dialog in contiguous chunks

of events that are aligned with task subgoals and information gathering acts. The state

space of interactions is defined over joint space of utterances, actions, and learning. The

interaction model incorporates non-linguistic actions and learning for reasoning about

the interaction state. The model is integrated with comprehension and learning. Both

processes influence how human-agent interaction progresses. The interaction provides

useful information for effective reasoning in both processes (D8).

Both the instructor or Rosie can initiate a segment on the interaction, focusing the
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conversation on various aspects of the task (D9). The instructor does so by asking ques-

tions from Rosie or asking it to perform a task. The instructor can also provide examples

(this is red while pointing to the object) without any prompts from Rosie. Rosie initiates

new segments to gather information about the task in order to make progress on it. The

interaction model and the learning paradigm used does not impose strict order on how

instructional dialog progresses. The model allows the instructor to have varying degrees

of control over learning.

The interaction model proposed here makes several simplifying assumptions. Every

utterance (except questions) from the instructor is interpreted and treated as a training

example which eventually results in a change in Rosie's knowledge state. In more natural

interactions, this assumption may not hold true. Participants may converse to understand

how other agents interpret the situation, to model how their collaborators think, to alle-

viate perceptual difficulties, and for several other reasons. Reasoning about these aspects

of collaborative interaction is not incorporated in our model but will inform our future

efforts. Another assumption is that the instructor is always correct. An ideal learner

should be critical of the input it receives and analyze the correctness of instructor's ut-

terance using its own knowledge of the task. In situations where the instructor is naive,

cannot model how Rosie learns, or cannot completely observe the environment, the qual-

ity of instruction may decrease. Rosie should detect these situations and take initiative in

exposing its knowledge state or describing the scene. This requires research into a more

expressive interaction state representation and conversational heuristics. The model does

not incorporate non-linguistic actions from the instructor. Although, this may be true for

most SII scenarios, this assumption may not hold in collaborative task execution where

both participants can manipulate the shared environment and learn from each other.
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Chapter 8

Learning Goal-Oriented Tasks

The task-oriented analysis in Chapter 5 suggests that several tasks undertaken in domestic

or kitchen environments can be characterized as achieving a goal state through execution

of a sequence of actions. For example, for a task such as set the table the agent must

instantiate a goal of achieving a set of spatial predicates (including fork is on the right of

the plate) and execute a series of object manipulation actions to achieve it. Several of these

tasks (such as serve dinner) can be hierarchically decomposed into subtasks (make dinner,

set the table, etc). To learn these tasks, the agent must not only learn the goal definition

and how to recognize goal achievement from sensory data, but also learn an execution

policy defined over subtasks and actions that achieves the goal in the environment.

Learning from demonstration (LfD) approaches (Argall et al., 2009; Chernova and

Thomaz, 2014) have recently gained prominence in the robotics community as a way of

allowing naive human users to teach new tasks and actions to a robot. Common LfD

approaches rely on traces obtained through teleoperation or kinesthetic training. Using

regression-based methods, these traces can be used to directly approximate policy. Al-

though kinesthetic training is useful in learning primitive action-control policies (such as

for object manipulation), it is unsuitable for learning complex tasks such as those char-

acterized earlier. It does not capture abstractions such as subtasks and the corresponding

transition models that are required for reasoning about and learning goal-oriented tasks

(Grollman and Jenkins, 2010). It usually requires many examples in order to induce the

intended hierarchical control structure (Allen et al., 2007). Moreover, the representations
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are task-specific and are not amenable to transfer to structurally similar tasks (Chao et al.,

2011).

In this chapter, we explore an alternative and complimentary approach for interac-

tively learning new tasks (Mohan and J. Laird, 2014) based on explanation-based meth-

ods for learning and generalization (EBG: Mitchell et al., 1986; EBL: DeJong and Mooney,

1986; Chunking: J. Laird et al., 1986). In the following sections, we give an overview

of explanation-based learning methods (Section 8.1), formulate the problem of learning

goal-oriented tasks from explanation-based methods (Section 8.3), describe our approach

(Section 8.4), present empirical results (Section 8.5) and analyze the degree to which our

approach satisfies the SII interactive learning desiderata (Section 8.6).

8.1 Explanation-based Generalization

Explanation-based methods provide a principled way to exploit domain-knowledge for

supervised learning. EBL methods offer several advantages over regression-based learn-

ing methods. They work over relational representations that not only allow the agent to

reason about the structure of the goal and how to achieve it but are also useful in linguis-

tic communication making them a suitable learning paradigm for SII. These methods are

knowledge-intensive and exploit the agent's domain knowledge to deduce generally ap-

plicable knowledge from very sparse data examples (D14). The learning efficiency results

from a key insight that it is possible to form a justified generalization of a single positive

training example if the agent can explain why this is a positive example. Explanation-

based methods elegantly combine analytic evidence provided by inference over domain

knowledge with empirical evidence provided by the training data. Mitchell et al. (1986)

formulate the explanation-based generalization (EBG) problem as:

Given:

• Target concept. A definition of the concept to be learned.
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• Training example. An example instance that satisfies the definition of the target

concept.

• Domain theory. A set of domain knowledge rules.

• Operationality criterion. A set of predicates specifying the form in which the learned

concept definition must be expressed.

Determine:

• A generalization of the training example that is sufficient for the definition of the

target concept and that satisfies the operationality criterion.

The EBG method accomplishes this goal in two steps.

• Explain. Construct an explanation using a general inference engine and the rules of

domain theory to prove how the training example satisfies the goal concept.

• Generalize. Determine a set of sufficient conditions under which the explanation

structure holds, expressed in terms of the operationally criterion.

8.2 Our Approach

Prior approaches in interactive learning such as LfD and interactive reinforcement learn-

ing address acquisition of execution policy. However, learning a new task from scratch

requires acquiring other kinds of knowledge including goal definition and recognition,

task pre-conditions, and task models. Previous methods assume that this knowledge is

pre-encoded in the agent. In this chapter, we propose an interactive task learning method

based on EBL that learns various aspects of task knowledge from interactions. The pro-

posed method satisfies several desiderata for SII identified previously.
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• Multi-method(D10). In order to learn various aspects of task representation, the

proposed approach not only uses examples explicitly provided by the instructor but

also deduces some task aspects. The method also relies on data-driven learning to

associate values to implicit task parameters.

• Assimilative(D11). The proposed learning approach is impasse-driven. The failures

in accessing relevant knowledge during task execution results in meta-cognitive

analysis, interaction, and learning. Consequently, the learning is tailored to what

Rosie needs for task execution. The impasses and the subsequent analysis provides

context to how the next instruction should be processed and be incorporated in a

comprehensive representation.

• Multi-task(D12). We show that our approach can learn different types of tasks as

characterized in Chapter 5.

• Fast(D14)Generalization(D13). The reliance on relational representations and EBG

for learning guarantees quick generalization of learning. We show that with few

examples, Rosie can learn a task representation that applies to entire task variation

in our domain.

• Transferable(D15). The hierarchical representationwhen combinedwith EBG lends

itself to transfer of structural and policy information across similar tasks.

• Active(D16) andOnline(D17). Rosie takes initiative in its own learning and actively

asks for information when it lacks knowledge to progress further. The learning is

online and occurs during performance. Consequently, Rosie can be taught several

tasks without having to stop it in order to expand its knowledge as is common with

other data-driven task learning approaches Tellex et al. (2011).
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8.3 Formulating Task Learning as EBG

We now formally construct the problem of learning tasks with situated instruction. Our

implementation is based on chunking in the Soar architecture (J. Laird et al., 1986) which

is closely related to Mitchell et al. (1986).

8.3.1 Assumptions

As explained earlier in Section 4.2.2.3, Rosie's beliefs about its current state s ∈ S are en-

coded as a set of relational predicates P defined over the set of objectsO. We assume that

Rosie is pre-encoded with a set of primitive behaviors or actions A that can be executed

in the environment and with action models that predict the effects of their execution.

8.3.2 Formulation

We formulate the task learning problem by specifying the components of EBG as follows.

• Target concepts. The elements of task representation (identified in Section 5.3.4 and

reproduced below) are the target concepts that have to be learned. Although our

representation bears similarities with HTNs (Erol et al., 1992) and MAXQ (Diet-

terich, 2000) hierarchies, there are important differences. Control knowledge in

HTNs is encoded as conditional actions whereas in our representation it is encoded

as a state-sensitive policy. Encoding it as a policy allows Rosie to robustly oper-

ate in dynamic environments where the state may change independent of agent's

actions without extra planning. In contrast to our representation, typical MAXQ

hierarchies operate in propositional domains.

• Training examples. Examples to the learning algorithm are either obtained from

the instructor or deduced by Rosie. Concepts such as goal elaboration are learned

from examples by the instructor. Examples for concepts such as availability condi-
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tions are deduced by Rosie. Examples for policy are either obtained from exploring

the possible solution paths or by prompting the instructor for situated examples.

By generating and deducing examples for EBL, Rosie takes some onus for its own

learning (D16).

• Domain theory. The domain theory for task learning consists of the pre-encoded

and acquired task models in addition to domain general rules that assert or verify

truth-values of domain predicates.

• Operationality criterion. All concepts learned contain environmental state pred-

icates or task operators. The environmental predicates are directly grounded in

Rosie's sensory data. The task operators can be hierarchically decomposed to prim-

itive action operators grounded in robot's control policies and functional manipu-

lation of the environment.

8.4 Interactive Task Learning

Our design tightly couples execution of the task with exploratory and instructional ac-

quisition through impasse-driven learning. When Rosie is give a task command, it uses

all its knowledge (syntactic, structural, and procedural) to generate a grounded task op-

erator and to instantiate a policy that can be executed in the environment. While trying

to interpret and execute a novel task, it often reaches impasses or knowledge-retrieval

failures and cannot progress further. When an impasse arises in Soar, it automatically

creates a substate. The goal of the substate is to analyze and resolve an impasse. This

allows Rosie to reason about why the impasse occurred and generate a relevant strategy

for resolution. In some impasses, it formulates a question for the instructor and in oth-

ers, it explores possible solutions using its domain models. Often in human-controlled

interactive learning, such as learning by demonstration, the onus is on the human user to

provide good examples so that the agent can acquire general hypotheses. In contrast, with
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our approach, the instructor can rely on Rosie to initiate interactions when needed. This

learning paradigm biases acquisition towards knowledge that is required by Rosie for task

performance and it can speed up learning. The tight coupling of task performance with

knowledge acquisition makes our learning paradigm online (D17). Substate reasoning in

response to failures allows Rosie to monitor its knowledge state and guide its learning

(D16) by asking relevant questions.

In the following sections, first, we describe how known tasks are executed and then

how new tasks are learned. We use the task verb store as an example for our explanations

and refer to Figure 8.1. For this task, we assume that the goal of store(o) is to place

any object o in the implicit location pantry regardless of its perceptual attributes. Later

in Section 8.4.3, we explain how associative default values for implicit parameters are

learned and applied for task execution.

8.4.1 Executing a Known Task

On receiving a task command such as store the red cylinder, Rosie grounds it (explained in

Chapter 6) to generate a task instantiation. Let this task instantiation be t. Once the task

operator has been instantiated, it is processed in the following steps (as in Algorithm 3).

1. Elaborate goal predicates. If the goal elaboration operator for task t exists, it appends

the instantiated goal predicates to the task operator (line 2, Algorithm 3). For the

task store(o), the goal predicates consist of predicate(o, k2, o2)∧ closed(o2)where

k2 is the spatial composition that corresponding to preposition in, and o2 is the

location pantry.

2. Propose and select task operator. If the availability conditions of the task operator

match the current state description, the task operator t is proposed and is selected

for execution. For store(o), the availability conditions include predicates block(o),

location(o2), not-predicate(o, k2, o2), not-closed(o2).
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Figure 8.1: Semantic representation of store.

Algorithm 3 Executing a task.

1: procedure execute(state s, task t)
2: if d← P tG then
3: if (P tA ⊆ s) then
4: while ((d ⊆ s) ̸= true) do
5: C ← c|available(s, c) & c ∈ subtasks(t)
6: if (π(s)→ c ∈ C) then execute(s, c)
7: else
8: if search(s, d, C, π) = false then subtask-query(t)
9: else

10: g ← retrieve(type goal, task t)
11: if exists(g) then
12: d← instantiate(g, {o1, o2, ...})
13: else goal-query(t)
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3. Apply the task operator. The subtask availability conditions determine if the prim-

itive actions or subtasks can be applied in a state while executing t (Algorithm 3:

line 5). Given the current state and the set of actions/subtasks that can be executed

in that state, the policy suggests an action or subtask, which is then applied (Algo-

rithm 3: line 6). The task execution is terminated when the desired state is reached

(Algorithm 3: line 4). For store(o), the subtasks are open(o2), place(o1, k2, o2),

close(o2).

If the task command contains a verb that is novel to Rosie, it attempts to learn the

verb in the following stages. Assume that the verb store in store the red cylinder is a new

verb.

8.4.1.1 Initialize TCN template

While grounding the command to generate a task instantiation, Rosie tries to find a TCN

associated with store in its semantic memory. This results in a failure which indicates

that store is a new verb. This is an opportunity to learn a new task and ground the verb

store. First, Rosie extracts the general syntax used in the task command. From store the

red cylinder, it extracts verb:store object:<o>. This is stored in the semantic mem-

ory (subgraph at L2 in Figure 8.1). It, then, stores a new map node M2, connects it to L2,

and creates the subtasks (S2), goal(G2), and procedural(P2) nodes. These nodes will be

populated as the learning progresses. After the TCN template has been stored in mem-

ory, Rosie appends to the procedural node a new task operator op_store that has one

argument arg1 with a constraint on its instantiation to values in the slot A3. After this

new task operator is stored in semantic memory, the grounding function gt successfully

generates a task instantiation.
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1.  Instructor: Store the red cylinder.
2.  Agent: What is the goal of the task?
3.  Instructor: The red cylinder is in the     
    pantry and the pantry is closed.
4.  Agent: What action should I take next?
5.  Instructor: Open the pantry.
6.  Agent: What action should I take next?
7.  Instructor: Place the red cylinder in 
    the pantry.
8.  Agent: What action should I take next?
9.  Instructor: Close the pantry.
10. retrospective explanation.

1.  Instructor: Store the red cylinder.
2.  Agent: What is the goal of the task?
3.  Instructor: The red cylinder is in the     
    pantry and the pantry is closed.
4.  Agent: What action should I take next?
5.  Instructor: Open the pantry.
6.  Agent: What action should I take next?
7.  Instructor: Place the red cylinder in 
    the pantry.
8.  retrospective explanation.

Figure 8.2: (left) Interactions for learning store with exploration depth K = 0. (right)

Interactions for learning store with exploration depth K = 2.

8.4.2 Learning a New Task

8.4.2.1 Learn declarative goal definition

After instantiating the task operator, Rosie attempts to execute it (Figure 8.3: line 1).

However, it is unable to generate the goal predicates (Algorithm 3: line 2, Figure 8.3: line

4) because it has not learned the goal elaboration rule yet. This results in a state-no-

change impasse (Figure 8.3: state S3) in which Rosie queries its semantic memory for a

description of the task goal (Algorithm 3: line 9). This is the first time Rosie is executing

this task, therefore, the memory does not have a description of the goal. To learn the goal

definition, Rosie asks a goal question (Figure 8.2(left): line 2, Algorithm 3: line 5, Figure

8.3: line 5).

The instructor replies with a description of the goal state for the ongoing task (Figure

8.2 (left): line 3). Rosie uses a grounding function gG to generate an interpretation of

the goal. The goal definition contains two predicates: a relation predicate between the

objects referred to by NPs the red cylinder and the pantry; and a functional state predicate

indicating that the object referred to by the pantry must be closed. Two goal predicate

definitions (rooted at nodes D3 and D4 in Figure 8.1) are created in memory. The NP the

red cylinder is common to both the task command and the goal definition. This indicates
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1.  S1: execute-task[store (o1)]
2.     S2: operator-no-change
3.         S3: state-no-change (elaborate-goal [store(o1)] -> failure)
4.             retrieve-goal[store(o1)] -> failure
5..................................................................(ask goal-query)
6.             g = retrieve-goal[store(o1)]
7.             store(o1).desired = instantiate-goal[g, o1, o2, ..]
8.         learn-termination[store (o1)]                            
9.         S4: operator-no-change

10.            generate-hypothetical-goal-state[S2 U desired]
11.            apply-task-operator [store(o1)]
12.            S6: state-no-change (terminate-task [store(o1)] -> failure)
13.                verify-goal-predicates[S2]: achieved-goal[4]
14.        S7: state-no-change (propose[store(o1)]-> failure)
15.            apply-task-operator [store(o1)]
16.            S8: operator-no-change
17.                 propose-all-subtask-operators
18.                 S9: operator-tie (policy[s6] -> failure)
19.                     explore -> failure                     
20...................................................................(ask subtask query)
21.                 propose-all-subtask-operators
22.                 S10: operator-tie (policy[s6] -> failure)                     
23.                      explore -> failure
24...................................................................(ask subtask query)
25.                 propose-all-subtask-operators
26.                 S11: operator-tie (policy[s6] -> failure)
27.                      choose[close(o2)]
28.                      S12: evaluate[close(o2)]
29.                           copy-state[s8]
30.                           apply[close(o2)]
31.                           achieved-goal(S11) -> terminate-task[store(o1)]
32.                           evaluation-success                                           
33.                 policy[s8] -> apply[close(o2)]
34.             achieved-goal(S5) -> terminate-task[store(o1)]                           

learn 
goal-elaboration

learn 
termination

learn policy

Figure 8.3: Simplified Soar trace for interactive task execution.
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a constraint that arg1 of the relation predicate should be instantiated with the explicit

parameter in the task command. This constraint is stored as the edge arg1 between D3

and the slot node A3. Other elements of the goal definition - the relation referred to by

the preposition in and the object referred to by the NP pantry are implicit task parameters

and are stored as default values of slots R3 and A4.

An alternative approach is to not describe the goal explicitly but let the agent induce

the goal from an instance of task execution. In this case, the agent cannot take initiative

in exploring potential solutions while learning task execution.

8.4.2.2 Learn goal elaboration rule

After storing the definition of the goal in semantic memory, Rosie operationalizes it. In

S3 (Figure 8.3), it queries its memory for a goal definition and instantiates it to task pa-

rameters. The instantiated goal is appended to the task operator (Figure 8.3: line 7) and

chunking compiles a goal elaboration rule of the form:

(8.1)if executing(t, s) then t.d← P tG

Example for store:

if state s: location o2
o2: name pantry
task: t

task t: name op_store
arg1 o1

then
t: desired d
d: predicate p1

predicate p2
p1: arg1 o1

relation k2
arg2 o2

p2: arg1 o2
state closed
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8.4.2.3 Learn termination rule

Next, Rosie learns the termination rule (line 8, Figure 8.3). It imagines the state sh in

working memory that will result on executing the task in the current state by adding

the grounded goal predicates to the current state description (Figure 8.3, line 8). Rosie

then uses a set of domain-general rules to verify that every predicate in the goal is true

in sh and that sh is a valid instance of the task's terminal state. Chunking complies this

verification into a termination rule that is of the form:

(8.2)if executing(t, s)
∧ (∀p1, p1 ∈ t.d→ ∃p2, equivalent(p1, p2) ∧ p2 ∈ s) then achieved-goal(s)

The termination rule for the store task is:

if task t: name op_store
arg1 o1
desired d

d: predicate p1
predicate p2

p1: arg1 o1
relation k2
arg2 o2

p2: arg1 o2
state closed

state s: predicate p3
predicate p4

p3: arg1 o1
relation k2
arg2 o2

p4: arg1 o2
state closed

then
s: achieved-goal s

A general rule terminates the task in any state that is marked a terminal state (Figure 8.3:

line 31, 34).
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8.4.2.4 Learn policy from exploration

The task policy is learned during two different stages. A part of the policy is learned during

execution of a task through immediate explanation. If the task policy does not suggest any

subtask/action at state s (Algorithm 3: line 5, Figure 8.3: lines 18, 22, 26), Rosie performs

a recursive iterative-deepening search for the desired state to depthK (Algorithm 4). For

the exploratory search in state s, the agent iterates through all available subtasks/actions

by applying their models and analyzing the resulting states (Algorithm 4: line 8). During

this search, if an action a is found to be useful in making progress towards the desired

state (Figure 8.3: lines 27-32), chunking compiles a policy rule. Chunking collects all the

predicates that were tested to apply the models and the termination rule (Algorithm 4:

line 8). The left-hand side of the policy rule contains these predicates and the right-hand

side contains the action a. This rule is added to the task policy.

Algorithm 4 Exploring the action space

1: procedure search(state s, desired d, actions C , policy π)
2: for (k = 0, k < K , k ++) do
3: a← explore(s, d, k)
4: if a ̸= false then return true

5: return false

6: procedure explore(state s, desired d, depth n = k)
7: if n = 0 then return false

8: for each (a|a ∈ C ∧ available(s, a)) do
9: s′ ←Ma(s)

10: while (π(s′)→ c ∈ C) do s′ ←M c(s′)

11: if (d ⊆ s′) then
12: F ← collect-tested-predicates
13: add(π(s|F ⊆ s)→ a) return true
14: else
15: if (explore(s′, d, n− 1) ̸= false) then goto 10

16: return false

If the desired state is not found at depth K or earlier (Figure 8.3: lines 19, 23), Rosie

abandons exploration and asks the instructor for an action that it should take. The in-
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structor replies with a subtask/action command (Figure 8.2: line 5) which is grounded

and executed in the environment. Such exploration and interactions continue until the

agent achieves the goal state in the environment. Rosie's episodic memory automatically

stores the state (environmental and interactive) of Rosie for each step. This history is

available for later inspection and learning the remainder of the policy.

8.4.2.5 Learn policy from instruction

After the instructor indicates or Rosie deduces that the instructed task execution is over

and the goal state is achieved, the agent attempts to learn the remainder of the policy. It is

learned through simulating task execution and retrospectively explaining the instructions

(in Algorithm 5, Figure 8.4). To simulate the task execution, Rosie queries its episodic

memory for the environmental state s when it asked for the first instruction. It begins

by instantiating the task goal definitions in state s to generate the desired state d. Next,

it proposes all the subtask/actions that were used in the instructed execution and ex-

ploration of the task. Rosie then recursively analyzes why the next instructed action a

(obtained by looking up episodic memory) is useful in approaching the desired goal state.

In each recursion, Rosie applies the model of the instructed action Ma on the state s to

generate the subsequent state s′ (Algorithm 5: line 8). If Rosie has learned policy for s′

through its exploration, it is applied (Algorithm 5: line 9, Figure 8.4, line 54). If the goal

is achieved in any subsequent state s′ desired, a policy rule and a subtask proposal rule is

learned (Algorithm 5: line 11,12, Figure 8.4: lines 55, 59) through chunking. It collects all

the predicates that were tested to apply the models and the termination rule (Algorithm

5: line 10). The left-hand side of the policy rule contains these predicates F and the right-

hand side contains the action a. This rule is added to the task policy. If the goal is not

achieved, it recurses further (Algorithm 5: lines 14, 15, Figure 8.4: lines 42, 48) by looking

up episodic memory for the next instructed action. The policy rule is of the form:

(8.3)if executing(t, s) ∧ (∀p1, p1 ∈ F → ∃p2, equivalent(p1, p2) ∧ p2 ∈ s) then a
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Algorithm 5 Explaining instructions retrospectively

1: procedure explain-instructions(time n, task t)
2: s← query(n)
3: d← P tG

4: C ← c|available(s, c), c ∈ subtasks(t)
5: a← retrieve-first-action
6: procedure exploit(s, a)
7: s′ ←Ma(s)
8: while (π(s′)→ c ∈ C) do s′ ←M c(s′)

9: if (d ⊆ s′) then
10: F ← collect-tested−predicates
11: add(π(s|F ⊆ s)→ a) return
12: else
13: if a′ ← retrieve-next-action then
14: if (exploit(s′, a′) ̸= false) then goto: 8
15: return false

A policy rule of the task store is below.

if task t: name op_store
arg1 o1
desired d

d: predicate p1
predicate p2

p1: arg1 o1
relation k2
arg2 o2

p2: arg1 o2
state closed

task t2: name op_close
arg1 o2

state s: predicate p3
predicate p4
task t2
task t

p3: arg1 o1
relation k2
arg2 o2

p2: arg1 o2
state open

then
s: prefer t2
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34. S10: retrospective-explanation
35.      S11: operator-no-change
36.           recreate[S1]
37.           execute-task[store(o1)]           
38.           S13: state-no-change (propose [store(o1)] -> failure)
39.                 apply-task-operator [store(o1)]
40.                 S14: operator-no-change
41.                      propose-all-subtask-operators
42.                      S15: operator-tie
43.                           retrieve-first-action -> open(o2)
44.                           S16: evaluate[open(o2)]
45.                                copy-state[s14]
46.                                apply-model[open(o2)]
47.                                propose-all-subtask-operators
48.                                S17: operator-tie
49.                                     retrieve-next-action -> place(o1, k2, o2) 
50.                                     S18: evaluate[place(o1, k2, o2)]
51.                                          copy-state[s16]
52.                                          apply-model[place(o1, k2, o2)
53.                                          propose-all-subtask-operators
54.                                          policy[S18] -> close(o2)
55.                                          apply-model[close(o2)]
55.                                          achieved-goal[s18] -> terminate-task[store(o1)]
56.                                          evaluation-success
57.                                policy[S16] -> place(o1, k2, o2)
56.                                apply-model[place(o1, k2, o2)]
58.                                policy[S16] -> close(o2)
59.                                apply-model[close(o2)]
60.                                achieved-goal[s16] -> terminate-task[store(o1)]
61.                                evaluation-success
62.                      policy[S14] -> apply[open(o1)]
63.                      apply-model[open(o2)]
64.                      policy[S14] -> apply[place(o1, k2, o2)]
65.                      apply-model[place(o1, k2, o2)]
66.                      policy[S14] -> apply [close(o2)]
67.                      apply-model[close(o2)]
68.                      achieved-goal[s14] -> terminate-task[store(o1)]
69.                 propose [store(o1)]                            

learn 
proposal learn 

policy
(open)

learn 
policy
(place)

Figure 8.4: Simplified Soar trace for retrospective instruction-aided learning.
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8.4.2.6 Learn proposal rule

The task proposal rule (that encodes the availability conditions) is learned at the end of

policy learning. State S11 (in Figure 8.4) is a state in which the store task can be success-

fully executed and therefore is an example instance of a state where store should proposed.

Chunking complies a proposal rule of the form:

(8.4)if(∃p1, p1 ∈ F t ∧ (∃p2, equivalent(p1,−p2) ∧ p2 ∈ s)) then available(s, t)

where F t is the set of predicates that were tested to successfully execute the task t in

the initial state. For the task store, Rosie learns this proposal rule.

if state s: not-predicate p3
predicate p4
task-command t
block (o1)
location (o2)

t: name op_store
desired d
arg1 o1

d: predicate p1
predicate p2

p1: arg1 o1
relation k2
arg2 o2

p2: arg1 o2
state closed

p3: arg1 o1
relation k2
arg2 o2

p4: arg1 o2
state closed

then
s: task t

8.4.2.7 Notes

The model for a task t is a critical component of the domain theory for learning a parent

task. It is used for explaining why the sequence of actions either discovered through

exploration or given by the instructor lead to goal achievement. In our formulation, an
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explicit representation of the model is not required. The effects of task t in a state s can

be predicted by simulating the execution of t in s through applying its policy. This is

sufficient for learning a novel parent task. Similarly, the application rules for various

tasks are not learned but implemented by hierarchically executing the subtasks.

8.4.3 Learn Associative Default Values

In the previous sections, we described an interactive explanation-based formulation of

learning hierarchical goal-oriented tasks. For the store(o) task, we assumed that the im-

plicit location pantry applies to any object o. However, this assumption leads to incorrect

behavior. Consider as an example the verb put in the chores dataset. It is used in the fol-

lowing two alternations:

1. Put the utensils in the dishwasher.

2. Put away the books.

In the second alternation, the thematic role of location is left unexpressed and is an

implicit parameter of the put task. Presumably, the implicit location for books is the shelf.

Using this implicit location generally with any object will result in incorrect execution

of the task command put away the groceries for which the implicit location is unlikely to

be the shelf. This suggests that the generalization strategy adopted in previous sections

is aggressive. This results from only considering object state and affordances (available

through proposal and application rules of actions and subtasks) in constructing expla-

nations. Although this information is useful in learning what tasks are afforded in the

current state and how they can be executed, it is insufficient to learn correct generaliza-

tions for tasks with implicit arguments.

In addition to physical affordances of a state and objects, a critical aspect of domestic

environments is the semantic organization of a home or a kitchen. Even though grocery

items afford to be placed on the shelf, they are not usually placed there in typical human

homes. To align task representations with what human users intend and expect, such
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semantics should be incorporated in the task structure. A key insight from the chores

dataset is the selection and assignment of implicit parameters of verbs critically depends

on the perceptual or semantic attributes (or classification) of the explicit parameters. For

the verb put above, the semantic category of the explicit theme determines what location

(book:shelf ) it should be moved to. For the verb load in load the dishwasher and load the

washing machine, the location determines what theme (dishwasher :utensil) applies.

Even though it is critical to task representation and learning, the issue of implicit task

parameters has not been addressed in the prior work. The following sections propose a

simple inductive concept learning approach to acquiring implicit task parameters.

8.4.3.1 Inductive Concept Learning for Goal Elaboration

We formulate the problem of associating correct implicit arguments with the task oper-

ator based on how explicit values are characterized as a concept learning problem. The

implicit parameters are elaborated by the goal elaboration rule (Section 8.4.2.2) which is

learned through chunking by deliberately instantiating the declarative definition of the

goal (in semantic memory; Figure 8.1, subgraph rooted at G2). The declarative goal def-

inition contains constraints on how predicates (D3, D4) and their arguments (A3, A4, R3)

are instantiated given a grounded task command. To learn associations between explicit

and implicit arguments, additional constraints are learned. Consider Figure 8.5. Node C2

suggests a default value for slot node A4 in case when values for A4 are not explicit in

the grounded task command. It encodes that if arg1 (explicit argument) of task oper-

ator op_store contains perceptual attributes color:red, volume:closed, shape:arch,

size:small then any object on the scene that has the perceptual attributes name:pantry

and volume:container should be used as a value for slot A4. Similarly, the default value

of the relation node R1 is constrained by the perceptual classifications of objects in arg1

and arg2 in the instantiation of predicate D3. In our formulation, these constraints are

incrementally learned from instructions using the find-S algorithm for learning version
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Figure 8.5: Associative default values for store.

spaces as described below.

Assume that a novel store(o) task has two variations. If the object o is of type arch,

then it has to be put in (r1) the location pantry (l1) and if it is of type cube, it has to be

put on (r2) the table (l2). If the implicit location is pantry, it has to be closed as well.

Assume that the training environment has two arches - red (object o1) and blue (object

o2), and two cubes - purple (o3) and green (o4).

8.4.3.2 Learning the most specific hypothesis

When Rosie is asked to execute store(o1), it fails as it does not knowwhat the task goal is.

It asks a goal question. The instructor replies the goal is the red object is in the pantry and

the pantry is closed. After grounding the goal description, Rosie extracts the most specific

hypothesis about what the goal description could be. The goal consists of two predicates:

a spatial relation predicate p1 = (o1, r1, l1) and a state predicate p2 = (l1, closed). o1 is

the explicit parameter, whereas r1, l1, and closed are implicit.

The hypothesis about predicate arguments are stored in semantic memory as follows:
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• relation predicate. Relationships are expressed as a ternary predicate (obj1, relation, obj2).

If obj1 or obj2 are identified as implicit arguments, associative default values are

added to their slot nodes. Associative default values for obj1, obj2 consist of a value

node that captures their perceptual attributes (V2 in Figure 8.5) and a constraint

node that captures all the perceptual attributes of the explicit argument of the task

operator (X3 in Figure 8.5). The associative default values for relation contain one

value node that contains the relevant spatial composition (V2 in Figure 8.5) and two

constraint nodes that contain all perceptual attributes of obj1 (X1 in Figure 8.5) and

obj2 (X2 in Figure 8.5).

• state predicate: State predicates are expressed as binary predicates (obj1, state).

As in a relation predicate, if obj1 is an implicit argument, then the corresponding

slot has a value node (V2 in Figure 8.5) and a constraint node (X3 in Figure 8.5).

The associative default for state contains a value node (closed in Figure 8.5) and a

constraint node (X4 in Figure 8.5)

Once these constraints are stored, Rosie learns a goal elaboration rule:

if state s: location o2
o2: name pantry

volume container
task: t

task t: name op_store
arg1 o1

o1: color red
shape arch
volume closed
size medium

then
t: desired d
d: predicate p1

predicate p2
p1: arg1 o1

relation k2
arg2 o2

p2: arg1 o2
state closed
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which contains the appropriate constraints over objects. This rule represents the most

specific hypothesis about the goal. After this, Rosie attempts to learn the task policy as

described previously.

8.4.3.3 Detecting mismatch

When Rosie is asked to store the blue arch or store the green cube, the goal elaboration

rule above does not fire because the perceptual attributes of the object corresponding to

the blue object (o2) or the green cube (o4) do not match the constraints in the rule. Rosie

cannot progress without a goal, therefore, it tries to deliberately instantiate a goal using

the declarative goal definition and associative default values in its semantic memory. This

attempt fails as the explicit argument (o2 or o4) here does not satisfy the constraints for

default values of slot R3, A4, and A5. This failure indicates that associative default values

are over-constrained and should be revised. To gather more information about how the

goal should be revised, Rosie asks a goal question again.

8.4.3.4 Revising the hypothesis

On getting a new goal description, Rosie merges it with the declarative definition of the

goal in its semantic memory as follows:

• Relax constraints. In our example, an arch is stored in the pantry. For the task com-

mand, store the blue arch, the goal description is the goal is the blue arch in the pantry

and the pantry closed. This description aligns with the goal definition in semantic

memory except that the associative default value is over-constrained. In order to

merge the provided goal description, the constraints are relaxed by removing the

perceptual attributes that are not common with o2 from associative default values

for A4 and A3. Updated constraints are shown in Figure 8.6.

After relaxing constraints in semantic memory, Rosie learns a new goal elaboration
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rule.

if state s: location o2
o2: name pantry

volume container
task: t

task t: name op_store
arg1 o1

o1: shape arch
volume closed

then
t: desired d
d: predicate p1

predicate p2
p1: arg1 o1

relation k2
arg2 o2

p2: arg1 o2
state closed

This rule represents the most specific consistent hypothesis about the task goal

given two examples.

• Add new default value. For the task command, store the green cube, the goal descrip-

tion provided is the goal is the green cube on the table. This description identifies

a new implicit location and a new spatial relationship between the object and the

location. Therefore, new default associative values (C3 and C4) are added to R3 and
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A4 (shown in Figure 8.7).

A corresponding goal elaboration rule (below) is learned.

if state s: location o2
o2: name table

volume flat
task: t

task t: name op_store
arg1 o1

o1: shape cube
volume closed
size small
color green

then
t: desired d
d: predicate p1

predicate p2
p1: arg1 o1

relation k2
arg2 o2

p2: arg1 o2
state closed

On getting further examples new default values are added or current constrains are re-

laxed based on how goals are described.
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8.4.3.5 Notes

In our representation, the perceptual constraints only appear in the goal elaboration rule.

Other rules - availability, policy, and termination - are dependent on how the goal is

instantiated. Consequently, as soon as a new goal elaboration is learned, other rules gen-

eralize implicitly without needing any more examples or instructions.

8.5 Evaluation

8.5.1 Comprehensiveness

Rosie can learn goal achievement tasks, where it acts to achieve a composition of goal

predicates in the environment. A summary of the seven tasks taught to Rosie is in Table

8.1. The goals are composed of state and spatial predicates that eventually ground out

to the functional and continuous state of the environment. The policy space for all tasks

eventually grounds out to a set of primitive actions (including closed loop motor-control

for object manipulation) that can be executed in the environment and an internal wait-

until action that polls the environment for a state change (such as cooked(o)). It can learn

both organizational (place, stack) and functional (cook) tasks.

8.5.1.1 Hierarchical learning

The policy learned for task execution is flat if the instructions consist only of primitive

actions or hierarchical if the instructions decompose the task into subtasks. For example,

serve(o) can be decomposed into cook(o) and place(o, on, table). cook(o) can be further

decomposed into its constituent tasks and actions. If Rosie does not know the subtasks,

it attempts to learn it before learning the parent task. Examples of learned hierarchical

policy are in Figure 8.8.
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Explicit parameters Primitive policy space Goal description

place (obj,rel,loc) pick-up, put-down rel(obj,loc)

move (obj,loc) pick-up, put-down on/in(obj,loc)

discard (obj) pick-up, put-down in(obj,garbage)

store (obj) open, pick-up, put-down,

close

(in(obj,pantry) closed(pantry))

or on(obj,table)

cook (obj) activate, pick-up, put-

down, stop, wait-until

in(obj,stove) cooked(obj)

stack (obj1, obj2, obj3) pick-up, put-down on(obj1,obj2) on(obj2,obj3)

serve (obj) activate, pick-up, put-

down, stop, wait-until

in(obj,stove) cooked(obj)

set (table) pick-up, put-down on(obj1,table),

right-of(obj2,obj1)

Table 8.1: Learned tasks, parameters, policy space, and goals

8.5.1.2 Implicit parameters

Rosie can learn tasks with explicit and implicit parameters. The learned place task is

represented such that it can be used to achieve any known arbitrary spatial relationship

between two objects and takes three arguments. These arguments explicitly identify all

the information required to perform this task. A similar task move is defined for a specific

spatial relationship on between two arguments if the second argument is not a container.

Example,move the red object to the table. If the second argument is a container, the specific

spatial relationship is in. Example, move the red object to the pantry. The relationships on,

in are implicit parameters, are inherent to the move task, and depend on the explicit

arguments. The learning paradigm can learn the following types of implicit parameters:

• destination. Tasks store and discard have implicit destinations.

• instrument. Task cook has an implicit instrument - stove.
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Figure 8.8: Learned hierarchical policies.

• theme. Task set the table has implicit themes - the objects that have to be arranged

on the table.

8.5.2 Generality

There are the following three types of generalization in our approach.

• Relational abstraction. Our learning paradigm works with relational state represen-

tations which abstract away the positional information in example instances.

• Predicate selection. The causal inference identifies the minimal and sufficient set of

predicates from the complete state description that are required to apply the domain
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theory during learning. Consequently, the rules representing availability, termina-

tion, and policy apply in multiple states even though they have been learned from

specific examples.

• Object variablization. The final type is variablization of objects and relations in task

representations. We use the structure of interactions to inform which objects can

be variablized away and what information should be retained for other objects. The

objects and relations that are used in the task command (explicit parameters) are

variablized away from example instances. For objects, relations, and states that do

not occur in the task command (implicit parameters) but are used in goal description

and task performance, the following strategies were considered.

– Variablize all objects. An aggressive strategy suggests that all objects can be

variablized. This strategy leads to over-generalization and tasks that have im-

plicit parameters cannot be learned correctly and therefore, it was not consid-

ered.

– Learn constants. The implicit parameters were incorporated in the task repre-

sentation as constants.

– Learn associative default values. The implicit parameters were selected during

task performance based on the constraints and values in associative default

values (as described in Section 8.4.3).

We conducted two experiments to evaluate the generality of our proposed method.

The first experimental scenario consisted of four objects, four known spatial relations,

and four locations. We conducted separate trials for learning flat execution for two tasks

place and cook. A task trial consists of a series of episodes in each of which Rosie is

asked to execute the task with randomly generated parameters. Each episode begins in

an initial state obtained by assigning random states to locations open/close(pantry), the

arm (hold/−holds(o)), and arbitrarily placed objects on the workspace. The environment
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Figure 8.9: Procedural generalization during task learning.
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can be in 16 initial states and the objects can be in infinitely many locations. If the agent

asked a child query during a training episode, it is given the relevant primitive action. An

episode terminates when Rosie successfully executes the task in the environment. The

exploration depth was set to 0 for this experiment.

A sample of the results generated from the experiment is shown in Figure 8.9. The

graph shows the median number of interactions that occurred in every episode for ex-

ecuting place and cook over five trials (shown in dotted lines) for two variations of the

learning algorithm. The first variation (red) only generalized through predicate selection.

The second variation (blue) also variablized explicit parameters of the task. As expected,

the majority of interactions occur during the first few episodes during which Rosie is

trying to learn the task from interactions. The interactions drop as the trial progresses

and Rosie learns to execute it without any instructions. The number of interactions for

the second variation (blue) drop sharply after only a few episodes. This establishes that

even though it has been trained on only a very small sample of the possible initial states

(16) and task-command instantiations (112 for place, 4 for cook), it is able to learn rep-

resentations that generalize to the complete space of command instantiations and initial

states. The first variation (red) cannot generalize to the complete space of command in-

stantiations as quickly but does generalize to the complete space of initial states. Both

variations are insensitive to the specific positional information of the objects in the train-

ing instances as both use relational representations and both learn the correct policy. The

data demonstrate that both predicate selection and variablization contribute towards gen-

eral learning.

The second experiment evaluated if the two methods implemented for implicit param-

eters learned correct generalizations. The test environment contained eight objects that

had four colors (red, blue, green, purple), two sizes (medium, small), and two shapes (arch,

cubes). The environment had three locations. Pantry and garbage are containers and table

is a flat surface. Following tasks were evaluated.
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• store [object]. If the explicit object is an arch, it should be put in the pantry and the

pantry should be closed. If the explicit object is a cube, it should be placed on the

table. To teach store, task instantiations were created with every object and Rosie

was asked to perform the instances in random order. If it asked any questions,

appropriate answers were provided.

• move [object, location]. If the explicit location is a container, the explicit object is

placed in the location. If the location is a flat surface, the object is placed on the lo-

cation. To teachmove, task instantiations were created with an object and a location

selected randomly and Rosie was asked to execute them. If it asked any questions,

appropriate answers were provided.

• set the table. A medium size object is placed on the table and a small object is place

on the right of the medium object. To teach set the table, four pairs containing

a small object and a medium object were created. Rosie was presented these pairs

one by one and was asked to perform the task. If it asked any questions, appropriate

answers were provided.

The results for learning implicit parameters with both methods are in Figure 8.10

which shows the number of interactions taken by each to learn these three tasks. Learn-

ing constants for implicit parameters implements an aggressive generalization strategy

that assumes that the first example of the implicit parameter is the correct parameter for

all instances. This results in incorrect task performance for store and move and failure to

perform the set the table task in several instances because they have varying implicit pa-

rameters. Learning associative default values generalizes more carefully, beginningwith a

very specific hypothesis which is relaxed as it is given more examples. This requires more

human-agent interactions in comparison to learning constants, but it is able to learn the

task variations described above.
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8.5.3 Transfer

Tasks in a domain may have similar structure, common subgoals, and overlapping policy.

An ideal learner should be able to exploit the inter-task similarities while learning a new

task. For an interactive learner, the structure of interactions can play an important role

in transfer of knowledge between tasks. Consider the tasks store and cook in our domain.

Both of these tasks involve establishing a specific spatial relationship (in) between their

parameters which is established by a policy over pick-up and put-down. This policy can

be compiled in a place subtask through instructions and can be used to teach both store

and cook, resulting in savings in interactions. This compilation is also useful in intra-task

transfer in tasks such as stack that involves multiple pick-up and put-down compositions.
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Figure 8.11: Instruction assisted transfer during learning.

Figure 8.11 shows how prior learning influences learning a new task. Rosie was taught

seven tasks sequentially with three variations of the learning algorithm. The tasks were

taught hierarchically by decomposing them into subtasks through instructions. In hier-
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archical learning, if the subtasks are known to Rosie, they are executed. If not, Rosie

learns the subtasks before learning the parent task. In the first variation (red), Rosie's

knowledge was reset after teaching each task (no inter-task transfer) and the learning of

subtasks was turned off (no intra-task transfer). For the second variation (blue), learning

of subtasks was turned on (intra-task transfer). Finally, for the third variation (green)

the knowledge acquired for each task was maintained allowing for inter- and intra- task

transfer.

The place task is a policy defined over pick-up and put-down and has no subtasks.

The move, discard, store tasks require a single pick-up & put-down composition along with

other actions. If the place task is known before Rosie begins to learn these tasks, there are

some savings in the number of interactions. There is no possibility of intra-task transfer.

The task stack requires multiple executions of pick-up& put-down composition. Therefore,

intra-task transfer is useful and saves some interactions. If place task is known prior to

learning stack, further savings are achieved as the knowledge transfers from place to stack.

Similar savings are observed in learning the cook and serve tasks when their subtasks are

already known. The ability to transfer knowledge across tasks results in efficient learning

as it significantly reduces the number of interactions required to learn a task.

8.5.4 Mixed-Initiative

Often in human controlled interactive learning, such as learning by demonstration, the

onus of learning is completely on the human user. The human has to provide good demon-

stration traces that will result in learning at appropriate levels on generality. However,

an ideal interactive learner must be active and play a useful role in knowledge acquisition.

It should not completely rely on the human instructor, but instead use its knowledge of

the domain to explore available options. Such active learning biases acquisition towards

knowledge that is required by Rosie for task performance and reduces the load on the

instructor. In our approach, Rosie uses its action/task models to explore the space of
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Figure 8.12: Learning store at different depths of exploration.

available actions to depth K to find a path to the desired state. Chunking complies delib-

erate exploration into a policy. If Rosie is unable to discover a path to the desired state,

it abandons exploration and asks for guidance. During retrospection, the learning from

agent-driven exploration and instruction-driven execution is integrated into a compre-

hensive policy.

Figure 8.12 shows the performance of the learning algorithm at different exploration

depths for learning the store task in terms of the time spent in explorations (red bars as

measured in Soar's decision cycles), the time spent in retroactive explanation (blue bars

- decision cycles) and the number of interactions with the instructor (green bars). At

depth 0, Rosie does not perform any exploration and relies completely on instructions.

The entire time used for learning (blue bars) is spent on retrospectively explaining the

instructions. As the exploration depth parameter increases, Rosie is more self-reliant,

requiring fewer interactions, but spending more time exploring. At depth 4, it discovers

the solution and does not ask any child-queries. Thus, the agent can solve simple problems

on its own, only asking for help for difficult problems.

The results presented here illustrate that the proposedmethod can integrate instructor-

driven interactive learning with self-driven exploration into a comprehensive task repre-
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sentation. A question useful from an HRI perspective is the specific value of the depth

parameter d in the agent. Our experiments do not suggest any value the depth parameter

should be assigned. This value should be determined through a HRI study. The claim

we make here that our method can accommodate any d determined suitable for interac-

tive learning through further analysis and studies. A future research direction would be

to extend Rosie so that it can explicitly reason about the expected cost and benefits of

exploration and asking for help.

8.6 Summary and Discussion

In this chapter, we proposed an interactive variation of explanation-based generalization

that is useful in learning the hierarchical, composable task representation proposed in

Chapter 5 from specific examples of interactive task execution (D13). The task represen-

tations and the interactive learning paradigm allows Rosie to learn various types of tasks

(D12). The learning paradigm is impasse-driven and allows Rosie to tailor the instruc-

tions according to its knowledge state (D16). It can take initiative in exploring different

solutions to the goal. The interaction state (described in detail in Chapter 7) provides con-

text for assimilating incremental instructions in a comprehensive schema (D11). The tasks

we explored can be learned quickly (D14) and the knowledge learned for one task can be

transferred to a structurally similar task (D15). The impasse-driven method proposed here

works in real-time and allows Rosie to learn during task performance (D17).

There are several avenues for future research and exploration. One issue is our as-

sumption that the instructor does not make any instruction errors. This may not hold for

instructions for complex tasks in partially observable domains or novice instructors. A

critical future direction of research is dealing with incorrect instructions. There are two

important aspects to this issue. The first is detecting when the instruction is incorrect.

The current implementation may provide some support for this. A failure to explain a
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sequence of instructions (detected through an impasse) suggests that either the goal was

incorrectly described or the instructor missed actions critical for task performance. Ad-

ditional reasoning, exploration, or verification questions to the instructor in the resulting

substate can provide more information about the type of error. The second aspect is han-

dling incorrect data. In its current formulation, the learning paradigm induces a general

task representation quickly from a single example. This may be dangerous as the one

example may be an anomaly or incorrectly labeled or described. A potential solution is

to gradually build confidence in task representations. The first task execution is guided

through instruction. In a few later executions, the agent verifies if what it has learned is

the correct way of reasoning about the task. Only, after it has built enough confidence in

its task representations, does it perform the task autonomously.

Another issue is the expectation that the instructor is always available to respond to

queries. An ideal learner would model the instructor and reason about the availability of

the instructor and invest more resources in exploration, if the instructor is unavailable

or unwilling. Finally, we are interesting in exploring the integration of instructional and

experiential learning. In a dynamic world, the provided instruction may get outdated.

The instructions should be interpreted as a template for acceptable behavior which guide

agent's exploration of its environment and using its experience to modify and update task

representations.
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Chapter 9

Conclusions

In the previous chapters, we developed an approach to interactive task learning that re-

lies on mixed-initiative human-agent instructional dialog - situated interactive instruc-

tion. In order to design a social learner, several computational challenges have to be met.

This thesis presents an account of three of those challenges - situated comprehension,

mixed-initiative interaction, and interactive task learning. The proposed methods have

been integrated for end-to-end intelligent behavior in Rosie - an interactive task learned

developed in the Soar. Rosie not only maintains an ongoing dialog about its environment

but also reasons about communication and acquires domain knowledge from it.

To develop our approach, we proposed answers to the following questions:

• How can verbs be grounded in task goals and execution knowledge? Answering this

question is critical to the design of interactive agents that not only communicate

about tasks in natural language with their human collaborators but also can learn

from such interactions. This question has been studied from several perspectives.

While the research in vision has looked at labeling actions in videos (Siskind, 2001),

HRI researcher have focused on generating control programs in response to com-

mands (Bailey, 1997; Kollar et al., 2014). However, none has studied the relationship

between verb semantics and task knowledge. This thesis takes initial steps towards

aligning the meaning of verbs with various aspects to task representation. A major

contribution of this thesis is a mixed-modality representation for grounding verbs

in tasks.
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In Chapter 5, we presented a preliminary semantic and task-oriented analysis of

how people use verbs to describe domestic tasks. Motivated by the analysis, we

proposed a mixed-modality representation of task verbs that encompasses their

lexical, structural, and procedural aspects. The proposed representation encodes

several components of verb semantics as described in VerbNet including expressed

and unexpressed objects, semantic and state-driven selectional restrictions, and en-

vironmental predicates. It allows for hierarchical organization of task execution

policies. We show that the proposed representation provides useful information in

the linguistic task of situated comprehension of task commands. We also show how

it can be realized in the memories of a general cognitive architecture. The represen-

tation is learnable and can be acquired from situated interactive instruction.

• How can task commands be understood? The challenge of situated comprehension of

language has recently gained prominence in natural language processing (Liang et

al., 2009; D. Chen and Mooney, 2011) as well as human-robot interaction (Cantrell,

Scheutz, et al., 2010; Tellex et al., 2011; Chai et al., 2014). This thesis takes a signifi-

cant departure from previous approaches that formulate situated comprehension as

a parsing problem. The Indexical model formulates the problem of situated compre-

hension as a search over short and long-term knowledge for referents and compos-

ing them under syntactic and environmental constraints. Themodel integrates with

knowledge acquisition and consequently, expands as Rosie accumulates knowledge

about its world.

Previous approaches have largely been silent on the role of non-linguistic con-

texts and background knowledge on comprehension, however, they play an im-

portant role in human language comprehension and generation. Non-linguistic

contexts have a natural role in the Indexical formulation. They provide useful con-

straints over the search and composition which can reduce semantic ambiguities.

We demonstrated that our model can effectively use perceptual, spatial, and task
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knowledge with attentional contexts to reducing ambiguity in referring expression

resolution. We also demonstrated that the model can exploit knowledge of task

goals to handle commands that incompletely specify task arguments. Although the

model proposed in this thesis is incomplete, it takes important initial steps for more

human-like comprehension capabilities for intelligent agents.

• How can task-oriented linguistic interaction be sustained? Maintaining a task-oriented

interaction is important for a taskable interactive agent and has been a research fo-

cus in the dialog community. Prior work on collaborative discourse theory (Grosz

and Sidner, 1986; Rich and Sidner, 1998) has proposed a computational formalism

for sustaining a task-oriented interaction. This thesis makes a minor contribution

to the prior work by extending the prior formalism to support interactive learn-

ing. Our model is integrated with a comprehension and a learning module allow-

ing Rosie to change the ongoing interaction if it fails to comprehend a sentence

or to execute a task. The information so acquired informs knowledge acquisition.

It captures the dialog context that is useful for constraining hypotheses about the

meaning of task commands. In task learning, the state of ongoing dialog is used for

querying episodic memory during retrospective causal analysis of instructions.

• How can task goals, structure, and execution knowledge be learned interactively? The

challenge of learning new task definitions online has recently been identified as a

challenge problem for integrated intelligent agents (J. Laird, 2014). A variety of ap-

proaches have been developed to address this. Prior work (Chernova and Thomaz,

2014) on learning from demonstration, dialog, and reinforcement has addressed the

interactive task learning problem in parts. Several initiatives have focused on acqui-

sition of control policies from either human generated embodied traces or reward.

However, few if any have studied learning comprehensive representations of tasks

from scratch. This thesis takes important steps towards this challenge.
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We proposed an interactive variation of explanation-based generalization in Chap-

ter 8 that incrementally learns the proposed task representation. The paradigm is

comprehensive it learns availability conditions, task goal definition and recognition,

along with learning a hierarchical policy. It satisfies several criteria identified for

SII. It learns quickly from sparse data, is able to transfer knowledge across struc-

turally similar tasks, and integrates agent-driven exploration with instructional in-

formation. We also demonstrated that the proposed learning paradigm is useful in

learning a various functional and organizational tasks. Earlier work on interactive

learning does not address these criteria.

Apart from proposing answers to these questions, this thesis also studies the prop-

erties of situated interactive instruction and suggests functional characteristics desirable

in agents that can use SII to learn new tasks. The desiderata identified here are incom-

plete and miss some important aspects of communicative agents such as generating the

most useful question or response. However, they serve as design goals for interactive

learners. We expect that our characterization of the problem generates discussion about

what properties are critical to the design of interactive task learners and how they can be

formulated and implemented.

9.1 Future Work

The concluding sections of Chapters 8, 6, 7 discussed focused directions of future research.

Here, we discuss more broad avenues of work.

This thesis has exclusively focused on learning high-level tasks that can be charac-

terized as a sequence of actions taken in pursuit of some goals. Although language is

a suitable modality for learning these tasks, it may be inefficient in some cases. In our

formulation, completely describing the goal situation may be difficult for the human in-

structors as it requires stating several predicates. An easier way is to demonstrate or

157



label instances of the goal state (Chao et al., 2011) and letting the agent take initiative

in generating a goal description and verifying it with the instructor. Another issue is

learning primitive control policies. Our formulation assumes a pre-encoded policy and a

model for every primitive action. However, there may be situations where the agent has

to learn new control policies such as while using a new tool or appliance. The linguistic

modality alone may be insufficient to teach these policies and other teaching strategies

such as learning from demonstration may have to be employed. With the intention to

reduce cognitive load on the instructor, it is worthwhile to investigate methods that al-

low the instructor to flexibly change the modality of instruction (from explicit instruction

to demonstration) or provide mixed-modality instruction (combine demonstration with

language to draw attention to relevant features). This will lead to a more comprehensive

account of interactive task learning.

A different avenue is learning from reading, which does not involve real-time interac-

tion but still has the advantage of learning in a social construct. There are several resource

on the web such as WikiHow that describe how various tasks can be performed. In sit-

uations where direct interaction is infeasible, the agent may look up these resources to

learn task representations. Learning usable task representations from reading requires

substantial advancements in language understanding models. Traditional NLP methods

are not suited for agents and recent situated comprehension methods (such as those pro-

posed in this thesis) require the participants to be co-located. The Indexical approach has

the potential to assist in learning from reading. Through initial interactive experience,

the agent can align its knowledge of the world with natural language. This interactive

experience can build common ground that can be used to understand written text. The

alignment of words with perceptual aspects, semantic categorization, and knowledge of

tasks in the world will be useful in simulating an appropriate situation that provides non-

linguistic context to the written text. The agent can explore various ways of performing a

task and apply instructions on this simulated situation. This experience, then, can be used
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to extract useful task representation. There are several applications where this capability

is useful. Most games (Infinite Mario, Civilization) and equipment (cellphones, comput-

ers) are accompanied by manuals containing information about how to play or operate

them. Agents can learn useful conceptual and procedural knowledge from reading man-

uals and can use this knowledge to play a better game or assist human users in device

operation and debugging. This line of research also finds use in easy extension of virtual

training software (such as those deployed in armed forces) to incorporate new scenarios

by providing their linguistic descriptions.

This thesis has taken an agent-oriented view of interactive task learning and proposes

representations and methods that let an intelligent agent interact with humans to gather

information about new tasks and consequently induce general task representations. The

design of our methods is motivated by observations of human behavior in prior work.

However, these observations do not capture the entire variation and complexity of human

behavior. Therefore, it is essential to evaluate these methods in a human-robot/agent

interaction (HR/AI) scenarios in order to develop truly robust and flexible paradigms.

There are several questions that may be answered through such studies. Our models have

a few parameters (exploration depth for learning, attention strategy, dialog heuristics)

that can be fit to what humans expect from their collaborative partners. Other questions

include the variability in instructions, preference for specific instruction strategy, and

most critically, the errors made in instruction and how those can be remedied by further

interactions.

9.2 Conclusion

Our research aims to develop intelligent collaborators that not only interact naturally

with their human collaborators but also adapt to novel environments and tasks. This dis-

sertation takes step critical to achieving this goal. Language is the primary modality of
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human communication. It is expressive, flexible, and easy to use for humans. It allows

humans to establish shared beliefs about the environment and learn from each other's ex-

periences. However, its expressiveness and contextual flexibility poses significant chal-

lenges in developing a language faculty for intelligent agents. This thesis studies how

exploiting non-linguistic contexts and knowledge of the domain can be useful in resolv-

ing some ambiguities pervasive in language. Being able to sustain a linguistic interaction

allows an intelligent agent to communicate and learn about its environment. As language

can be used to encode a variety of information required for learning new tasks, it can

be used to develop powerful task learning paradigms. This thesis presents an example of

language-driven learning paradigms - situated interactive instruction - that exploits flex-

ible task-oriented dialog to learn a variety of tasks. The learned task representations not

only are useful in producing behavior in the environment but also crucially provide the

means through which language (verbs) are grounded in perceptions and domain knowl-

edge. Consequently, learning new tasks also facilitates communicate about them using

verbs.
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Appendix

Definitions

Identifier. An identifier is a node in the working memory graph.

Working memory element. A working memory element (WME) is a triple of three sym-

bols: an identifier, an attribute, and a value. A template of for a working memory is:

(indentifier ^attribute value)

While the identifier must be an existing node in the working memory graph, the

attribute and the valuemay be either terminal constants or non-terminal graph nodes.

Rule. A rule (or a production) has three components: a name, a set of conditions (also

called the left-hand side or LHS), and a set actions (also called the right-hand side or

RHS). A template of a rule is:

sp {production-name

condition 1

condition 2

...

-->

action 1

action 2

...}

A condition is a pattern for matching on or more WMEs. Each condition consists of
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a test for the identifier, and the tests for augmentations of that identifier - attributes and

values. The test in conditions can be a variable that matches against constants in WMEs

in identifier, attribute, and value positions. An action adds new WMEs in the working

memory.

Long-term Identifier. Long-term identifier (LTI) are identifiers (nodes) that exist in se-

mantic memory graphs. The alpha-numeric string that labels an LTI is permanently as-

sociated with that LTI: any retrievals of the LTI are guaranteed to return the associated

alpha-numeric label.

Semantic memory cue. A semantic memory cue is composed of WMEs that describe the

augmentations of an LTI. A cue-based semantic retrieval performs a search for a long-term

identifier in semanticmemorywhose augmentations exactlymatch an agent-supplied cue,

as well as optional cue modifiers.

Episodic memory cue. An episodic memory cue is composed of WMEs that partially de-

scribe a top-state of working memory in the retrieved episode. Cue-based episodic mem-

ory retrieval commands are used to search for an episode in the store that best matches

an agent-supplied cue.

Episode. An episode captures the entire top-state of working memory at a time instance.

Further details can be found in the Soar Manual (J. E. Laird et al., 2014).
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