
Exploring Reinforcement Learning for Mobile Percussive
Collaboration

Nate Derbinsky
Computer Science & Engineering Division

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
nlderbin@umich.edu

Georg Essl
Electrical Engineering & Computer Science and

Music
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

gessl@eecs.umich.edu

ABSTRACT
This paper presents a system for mobile percussive collabo-
ration. We show that reinforcement learning can incremen-
tally learn percussive beat patterns played by humans and
supports real-time collaborative performance in the absence
of one or more performers. This work leverages an existing
integration between urMus and Soar and addresses multiple
challenges involved in the deployment of machine-learning
algorithms for mobile music expression, including tradeoffs
between learning speed & quality; interface design for hu-
man collaborators; and real-time performance and improvi-
sation.

Keywords
Mobile music, machine learning, cognitive architecture

1. INTRODUCTION
Our research goal is to develop systems that support real-
time, collaborative musical expression on mobile devices.
In this paper, we focus on percussion, and how machine-
learning techniques can facilitate a collaborative performance,
learning beat patterns from multiple sources in a local net-
work.

Drum circles and other collaborative drum performances
need a certain number to keep the rhythm going. Yet new
participants may join or have to leave. When mobile de-
vices are used as drumming interfaces we gain the potential
to learn from a performer who is currently participating
in the performance, or recall prior performance patterns of
the performer. Hence we can construct a drum-circle per-
formance where humans can play, but as needed have learn-
ing agents substitute for them should they not be present.
Thus we arrive at a seamless transition between networked
all-human to all-machine performance, where the machines
learn to reproduce the performance of their human mentors.

As a first step, we are exploring reinforcement learning
(RL) [14] as a technique by which to incrementally learn
beat patterns of individual performers in an online fashion
for real-time response. Over time, RL learns what actions
a system should take in an environment such as to maxi-
mize the expected receipt of future reward. In this prob-
lem domain, an action is either to issue a beat, or not, at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’12, May 21 – 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

each point in time and the environment consists of a beat
sequence being produced by a single performer. If RL suc-
ceeds in learning individual percussive policies, we can then
apply this learned knowledge to facilitate collaborative per-
formance in the absence of one or more human performers.

As with many machine-learning algorithms, however, there
are numerous considerations when applying RL. The first is
feature selection: what are the aspects of the performance
upon which the system should condition as it learns action
utility. The full space of relevant features is likely vast,
such as time-series information, performance style, human
error, etc. and it may take significant experimentation to
identify features that lead to fast learning and interesting
performance. Another important consideration is the re-
ward signal : how, when, and to what degree is the system
provided feedback about its learned policy relative to the
performance. The exploration policy is another important
factor: under what conditions and to what degree should
the system deviate from its learned policy, such as to po-
tentially improve its future performance. In context of a
musical domain, exploration is closely related to the sys-
tem’s ability and tendency to improvise. A closely related
concept is the learning rate: to what extent should the sys-
tem expect a stochastic input signal, which relates to its
ability to remain robust to performance errors, but also
to encode acceptable forms of performer improvisation and
quickly adapt to rhythm changes.

While traversing this design space of reinforcement-learning
factors, there are additional implementation and evaluation
challenges that stem from collaborative musical expression
on mobile devices. First, there are issues of interface de-
sign: the system should make it easy for human performers
to collaborate on musical pieces, but also to understand
their interactions with an adaptive learning system. Sec-
ond, there are tradeoffs in the space of automated perfor-
mance quality and improvisation. It is desirable that the
learning system quickly adapts to a performer’s beat pat-
terns, and can reproduce it with high fidelity, but there may
also be a desire for controlled deviation, to avoid a “robotic”
quality. Finally, for the system to be useful for interactive
performance, all processing in the system, including learn-
ing, communication between devices, and sound processing,
must execute in real time.

To explore systems that contend with these challenges, we
leveraged prior work that integrated urMus, a mobile-music
meta-environment, with Soar, a functional cognitive archi-
tecture [2]. Soar [10] provides a highly optimized, integrated
framework of machine-learning mechanisms, including rein-
forcement learning. It is also sufficiently general, such that
we can easily develop agents for our percussive collabora-
tion task, and highly configurable, such that we can explore



many parts of the RL design space. urMus provides the
ability to quickly develop and experiment with music gen-
eration, performer communication, and interface design, all
on a cross-platform environment for mobile devices [4, 6].
The integration supports an arbitrary number of agents to
enhance any urMus interface element with real-time learn-
ing and decision-making.

In this paper, we present work on applying the urMus/Soar
integration to the problem of mobile percussive collabora-
tion. We describe our system design, which includes a Soar
agent that interactively learns percussive rhythms using RL
as well as novel urMus user-interface elements that assist
performers to interact with and understand the adaptive
process. We also present results of how a small space of fea-
ture representations, learning rates, and exploration policies
affect learning and performance of a data set of drum-solo
patterns. The system is implemented on networked iOS de-
vices utilizing zeroconf addressing for automating connec-
tivity [5].

2. RELATED WORK
Machine-driven rhythm and collaborative performance has
seen extensive interest. Pachet presented a GUI based rhythm
generator in which agents would drive individual rhyth-
mic voices [13] taking a pre-defined rule-based approach.
Brown [1] explored cellular automata (CA) for the same
purpose. Live collaborative drumming was developed by
Weinberg and his students [16, 9]. An autonomous drum-
ming robot plays with human performers and the emphasis
was the learning of joint improvisation. François et al [8]
discuss visualization to support joint improvisation between
human and machine. Levisohn and Pasquier proposed the
use of subsumption architecture in the autonomous gener-
ation of rhythm, using simple layered rules to allow rapid
rhythm generation. The Kinetic Engine [3] by Eigenfeldt
explored networking and distributed agent-based systems to
immitate collaborative drumming using fuzzy rules. Mar-
tins and Miranda use neural-network based agents to study
emergence and evolution of rhythms [11]. Tidemann [15]
developed a detailed learning scheme that takes arm mo-
tions of the drummer into account to allow detailed immi-
ation of a non-human drummer using echo-state networks.
The benefit of learning in live musical interactions has been
demonstrated by Fiebrink [7].

Our work differs from previous works in multiple ways.
For one we do not seek to generate rhythms or to make
a machine collaborate with humans, but rather we seek to
support on-the-fly-learning of rhythmic performance from a
live performer and have the agent serve as a substitute for
human players. The second is the use of mobile commodity
devices for this purpose. Our reinforcement learning ap-
proach makes minimal assumption about musical structure
while introducing parametric control of performance of the
agent. In this work, we are motivated to understand how
simple yet powerful machine learning techniques can facili-
tate live music performance.

3. SYSTEM DESIGN
We have implemented a Soar agent that learns and performs
percussive patterns and integrated it within an urMus in-
terface.

3.1 Soar Agent
The Soar agent assumes that time is discretized and cat-
egorized: unit-length time steps are spent either learning
or performing. During a learning time step, the agent first
brings to bear its current performance knowledge, as in-

formed by the features that represent its current state. This
knowledge will encode a utility policy of issuing a beat, or
not. For instance, “given that in the last time step a beat
occurred, the value of issuing a beat in the next time step is
0.54 and not issuing a beat is 0.2.” The current exploration
policy takes as input this utility information and decides
whether the system should beat or not. Finally, the agent
self-rewards based upon whether its decision matched the
action of the human performer. We supply a -1 reward for
incorrect action, and +1 for correct.

For this agent, Soar implements the SARSA online TD-
learning algorithm [14]:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

At a high level, this algorithm updates its expectation of
the value (Q) of taking action a in state s with a proportion
(α) of the difference between its prediction and experienced
reward, where experienced reward is defined as the sum
of immediate reward, rt+1, and the discounted expectation
(by γ) of the next selected action, Q(st+1, at+1). For this
work, we use a static discount rate (γ = 0.9), whereas we
experiment with the learning rate (α).

During a performance step, the agent makes use of the
same action-utility information and exploration policy, but
no reward is supplied and no updates are made to the
agent’s encoding of action utility. Note that the agent’s
perception of time is maintained independently for each
category, and thus learning can either take place in batch
before/after performance, or can be intermixed with perfor-
mance (as would be useful during interactive collaboration).

Soar represents action-utility information as if-then rules:
the conditions dictate the features of state as well as the in-
tention to beat/not beat, while the rule action captures a
numeric preference, indicating an expectation of future dis-
counted reward [12]. This representation supports a flexi-
ble, non-tabular characterization of state-action utility es-
timation (i.e. different states need not use the same set of
features). Furthermore, because multiple rules can fire in
parallel, we experiment with coarse-coding representations,
where we distribute utility information over multiple levels
of generality.

As is common in RL systems, Soar draws from a Boltz-
mann distribution in order to select actions [14]. Boltzmann
is an example of a softmax rule, where the greedy action is
given highest selection probability, but all other possibilities
are ranked and weighted according to their value estimates.
The distribution chooses an action a, from amongst all n
possible actions in state s at time t, with probability

eQ(st,at)/τPn
b=1 e

Q(st,bt)/τ

where the temperature parameter (τ) influences the rela-
tive weighting between alternatives: a high value weights
towards random selection, whereas a low value weights to-
wards greedy. We experiment with different values of the
temperature parameter, which influences the likelihood of
beating/not beating, given identical prior experience.

3.2 urMus Interface
The urMus application (see Figure 1) supports a number
of UI elements to make it easier for human performers to
produce percussive rhythms; train the Soar agent and in-
terpret learning progress; and collaborate with other human
performers and Soar agents.

3.2.1 Performance UI
The performance interface’s central feature is a simple drum
button. It is used to both perform live drumming as well



Figure 1: The urMus interface for the agent-
learning collaborative drumming instrument.

as serve as the training input. The performance region is
marked as an elevated button in the center of the screen
labeled “Hit Me!”.

In order to satisfy Soar’s assumption regarding time dis-
cretization, this input is buffered and encoded within the
nearest 125 msec, though this quantization granularity can
be controlled by a slider in the bottom part of the interface.

Hence there is a minimum temporal quantization hap-
pening with respect to training. We experimented both
with synchronizing the button’s responsiveness with these
quanta, and with allowing free performance of the drum
button while quantizing its effect into training bins. Through
empirical use, we found that delaying auditory feedback in-
troduced user confusion and was interpreted as unrespon-
siveness due to unintentional system lag. Hence we do not
tie the training quantization to the button responsiveness.
However, this quantization is important. Hence we offer two
main forms of feedback. One is a learned pattern display at
the top of the device with an arrow indicating the currently
active learning bin. Furthermore, the arrow will change
color in sync with an auditory metronome beat, which ticks
4 times per repeating cycles.

3.2.2 Learning UI
Our first implementation of the system had the Soar agent
learn at each discretized time step. A difficulty in this for-
mulation is that if the performer stops playing, for even
a short period of time, the agent overwrites prior pattern
knowledge with null beats. To address this problem, we
introduced a learning-control switch that has two forms of
interaction. For short sequences, the control supports a
tap-and-hold input, where the agent learns only as long as
contact is maintained with the switch. For longer sequences,

the control supports a double-tap input to toggle learning.
This control allows the performer to apply top-down con-
trol, focusing learning during important beat sequences. We
buffer beats to the nearest 16 time steps in order to syn-
chronize knowledge between learning sessions.

We also found that it was useful for the performer to have
some indication of learning progress, and so we devised a vi-
sualization of the action-utility policy (see Figure 2). Each
bar represents a discrete time step and the vertical bar indi-
cates the greedy policy decision at that time step: direction
indicates action decision (up=beat, down=no beat) and the
height indicates the degree of bias towards that decision
(bigger = greater expected utility difference between deci-
sions). During empirical usage, we have found this visual-
ization to be useful feedback for assessing learning progress
as well as detecting human errors in beat timing.

Figure 2: Visualization of the action-utility policy
learned by the system for a 16-beat pattern.

3.2.3 Collaboration UI
We utilize zeroconf networking to connect to other perform-
ers using the same application in a local wireless network.
Details of the implementation of zeroconf networking in ur-
Mus are described in earlier work [5]. Performers can simply
join and leave a present networked performance by starting
and exiting the applicaton within the network. The first ap-
plication will advertise the performance if it fails to discover
one that is already present (see Figure 3). The instrument
can be used solo. In this case the soar agent can serve as a
duo partner. The performer can train the agent for a cer-
tain type of rhythm and them, while it is performing play
another rhythm juxtaposing it. In general a performer can
train its local agent. In order for the performer to have
access to a range of trained patterns a number of memory
banks can be used and recalled. These can be loaded by lo-
cal performance, or alternatively loaded from a networked
performer.

The interface displays collaborator bars. The number of
these bars scales, but at least one is always present for the
local agent. The bar displays if a user or an agent is cur-

Figure 3: Network topology of the zeroconf discov-
ery. The first device advertises, the rest discover.



rently playing. Human and agent performers have different
color schemes, with humans using plain red and blue while
agents using pastel versions of these colors. A network par-
ticipant can send a pattern to another network participant
by clicking on their network representation bars on the in-
terface after a action-utility pattern memory has been se-
lected. The recipient will be alerted to this and can either
capture the pattern in their local memory by selecting a
memory button, or dismiss it by clicking the network par-
ticipant button from whom the pattern was sent. Hence
performers can share learned patterns they find interesting
or worthwhile.

In principle, sounds used can be picked at random from
sample files. We however tend to use clap sound for self-
performance and base-drum sounds for agent-based perfor-
mance to distinguish between the two cases. The metronome
is a closed hi-hat sound.

Each performer can record up to eight action-utility pat-
terns in memory cells by selecting them while recording.
Alternatively such patterns can be received from other net-
work performers and stored.

4. EVALUATION
Our evaluation consisted of three research directions: (1)
what effect would generalization in the feature representa-
tion have on learning performance? (2) what combination
of learning rate and exploration rate would best tradeoff
learning speed/quality and improvisation? and (3) was our
system capable of learning and performing in real time? Be-
fore presenting results, we discuss the data sets, as well as
experimental methodology and conditions.

4.1 Data Sets
To evaluate learning, we used the first 16 beats of five drum
patterns1: “The Wanton Song” by Led Zeppelin, “Chuckin
Sixteenths,” “I Got the Feeling” by James Brown, “The
Solid,” and “Ticked.” These are the base-drum patterns and
a verification training run of 16 repetitions at 0.6 learning
rate for each is shown in Figure 4.

4.2 Experimental Methodology
We performed all experimentation on an iPad 2 that was at-
tached to a power source. We provided the learning system
10 sequential training trials, during which we evaluated 16-
beat performance output in 10 independent episodes. We
defined the accuracy of a performance as the proportion
of beats produced that matched the input beat pattern.
Therefore, each of the experimental conditions has 50 data
points per trial. In addition to performance accuracy, we
measured the maximum time it took the Soar agent to make
a decision, which is a measure of the reactivity of the system
for real-time performance.

4.3 Experimental Conditions
One experimental condition was the degree of noise in the
input signal for the learning system. We utilized 5 condi-
tions in which we introduced noise, during training, into
the data sets. The baseline condition had no noise. For the
remaining conditions, we assumed an independent, uniform
probability of error for each of the 16 beats. The point con-
dition represented a specific time step of difficulty, whereby
error before the time step was 10%, error on a time step
was 35%, and error following the time step was 25%. We
also had three systemic conditions, whereby all time steps
had an equal 10%, 20%, or 30% chance of error, which was

1http://www.onlinedrummer.com

Figure 4: Training set and resulting pattern of
(a)“The Wanton Song,” (b) “Chuckin Sixteenths,”
(c) “I Got the Feeling,” (d) “The Solid,” and (e)
“Ticked” base-drum patterns for 1 training trial
with a 0.6 learning rate.

intended to represent varying experience of human perform-
ers.

Another experimental condition was feature representa-
tion. The simplest representation was simply to associate
the absolute time step with an action (beat/no beat). In
an effort to speed learning, we also experimented with a
coarse-coding representation that represented, in addition
to each absolute time step, the pair-wise neighborhood of
the time step. For example, in a 2-beat example, the valid
states would be (1-Beat, 1-NoBeat, 2-Beat, 2-NoBeat, 1-2-
Beat, 1-2-NoBeat). The intent was for these neighborhoods
to gain experience twice as fast, and speed learning in early
trials, whereas absolute beats would become more accurate
with further experience.

For all experiments, we also performed parameter sweeps
over values of the learning rate (0.1, 0.3, 0.5, 0.7, 0.9) and
temperature (10, 1, 0.1, 0.01, 0.001). In sum, our results
represent 125,000 data points (10 trials x 10 episodes x 5
beat patterns x 5 error models x 2 feature representations
x 5 learning rates x 5 temperatures).

4.4 Results
We now present the results of our experiments.

4.4.1 Feature Representation
When we compared accuracy of learning between the base-
line and neighborhood feature representations, we found
several surprising outcomes. First, of the 1250 distinct tri-
als (controlling for learning rate, temperature, and noise
model), only 57 (4.56%) had a difference in accuracy be-
tween baseline and neighborhood that was greater than one
standard deviation. For 37 (2.96%), there was a bene-
fit to the neighborhood representation (i.e. accuracy was
greater), whereas the remainder actually hurt learning ac-
curacy. The beneficial cases all had very low temperatures
(i.e. more greedy selection, ≤ 0.1), relatively high learning
rates (31/37 :≥ 0.5), and most had systemic error (> 75%).



Furthermore, these benefits came at the end of the training:
32 out of 37 trials (> 86%) were on trial 5 or later. These
results suggest that generalization in the feature represen-
tation is of benefit when the agent has had a good deal of
experience with a noisy input signal (i.e. relatively preva-
lent human error), while the agent is expecting a relatively
clean signal and is not improvising. While not a surprising
outcome in hindsight, this contradicted our intent for the
representation. Since benefit was sparse, and some trials
suffered, we did not make use of the neighborhood repre-
sentation further.

4.4.2 Tradeoffs in Learning and Improvisation
We define an ideal learning and performing system as one
that quickly acclimates to the“spirit”of a human performer’s
beat pattern, such that it is accurate both in reproduction
and variation. Variations from this ideal take several forms.
A slow learner places undue burden on human performers
and a brittle learner cannot make progress in the presence
of human error. A wild performer will vary produced beats
in a way that is not consistent with the human performer
while a robotic performer will only repeat the beat sequences
it has perceived. Thus, in the small design space we per-
formed, we were seeking points that were interesting along
these dimensions.

As a starting point, we considered the point error model,
whereby the human performer is adept for most beats, but
makes a reliable, but infrequent, mistake (for reference, this
error model leads to approximately 95% expected accu-
racy). Figures 5, 6, and 7 summarize data for this model
and illustrate how interactions between learning rate and
exploration policy manifest. These charts present average
learning accuracy versus trials, aggregated by learning rate,
for temperatures of 10 (Figure 5), 1 (Figure 6), and 0.1
(Figure 7). For intuition, large temperatures tend towards
random decisions, independent of experience, while small
temperatures tend towards greedy decisions, exploiting ex-
perience. Figure 5 shows how unchecked exploration will
ignore learning and lead to wild performance (note that
0.5 accuracy is tantamount to random percussion). Figure
7 shows that greedy decisions (temperature ≤ 0.1), given
this error model, will lead to identical, often robotic perfor-
mance, independent of learning rate. Finally, Figure 6 illus-
trates how accuracy over time, given moderate exploration,
depends upon the learning rate (i.e. the degree to which the
learner incorporates feedback from learning, which relates
to the learner’s expectation of signal noise).

Given the results in Figure 6, we explored the degree to
which very high learning rates (i.e. expectation of clean in-
put signals) could adapt to systemic errors given moderate
exploration rate. We found that for learning rates of 0.7
and 0.9 and all systemic-error models (10− 30%), learning
was accurate (i.e. achieved accuracy equivalent to [1-error
rate]) and fast (within one trial), as compared to other rates.
This provides evidence that, at least for this simple model
of error, RL can quickly and accurately adapt to percussive
beats while performing with moderate, non-robotic varia-
tion.

4.4.3 Reactivity
Across all experimental conditions, we found that Soar re-
quired no longer than 9.84 milliseconds per decision and re-
quired 9 decisions to learn a beat or produce a beat. While
this data suggests a maximum of more than 170 milliseconds
per time step, which is too slow for real-time use, there are
mitigating factors. First, the time for most decision was
10-100x faster than this maximum. Second, the most ex-
pensive computational operation, as revealed by sampled

Figure 5: Point error-model learning (“wild”): tem-
perature=10, L refers to learning rate (α).

Figure 6: Point error-model learning: tempera-
ture=1, L refers to learning rate (α).

Figure 7: Point error-model learning (“robotic”):
temperature=0.1, L refers to learning rate (α).



time profiling, was high-performance timers (thus, to mea-
sure reactivity, we actually reduced reactivity). Finally, in
empirical usage, the system was highly responsive, allowing
human performers to play, hear, and see beats in real time.

5. CONCLUSIONS
In this paper we discussed the use of reinforcement learning
in online collaborative mobile drumming. The paradigm
we explored is that of a mobile agent on the fly learning
from a human performer to then be able to serve as a sub-
stitute, stand-in, or performance partner in a networked
mobile drum circle performance. Hence we use human per-
formers as live trainers and avoid explicit rule-based con-
struction.

The system is implemented in urMus with Soar integra-
tion. Hence it is easy to experiment with a range of learning
parameters and rule sets. We initially experimented with
hierarchical rules but found them to not offer any bene-
fits over individual bin learning. However should a differ-
ent rule set form a different aesthetic it can be readily im-
plemented without changing the core functionality of the
interface. Hence we have an online learning system with
good properties for experimentation and adaptation with-
out requiring the implementation of learning algorithms in
low-level languages.

We have shown that parameters natural to reinforcement
learning can have useful performance interpretations. The
Boltzmann temperature has a natural interpretation of im-
provisational freedom on top of a trained pattern. If the
temperature is low a trained pattern will likely be repro-
duced as trained, while if the temperature increases, so
does the likelihood of variation from that pattern, while
respecting the given weights as starting point for the vari-
ation. Hence strongly reinforced positive or negative beat
events prevail even under modest temperature, while weakly
learned events will be subject to more randomness leading
to an intuitive notion of how improvisation scales in our
system. Additionally the user has control over the strength
of learning, indicating how much the agent should trust the
teaching examples provided to it.

There is much open work left. For example we have only
begun to explore how to handle imprecise and changing per-
formance by the user. Nor have we dealt with rhythmic
structures that don’t fall into an equally spaced bin setup.
Tempo variations are possibly via the tempo control, but
are not directly driven by the performers speed. While this
is desirable for some kinds of drumming and sets a common
temporal structure for the joint performance, it limits the
stylistic expression.

6. ACKNOWLEDGMENTS
We gratefully acknowledge the help of Xin Fan with an early
version of the urMus user interface code.

7. REFERENCES
[1] A. Brown. Exploring rhythmic automata. In

F. Rothlauf, J. Branke, S. Cagnoni, D. Corne,
R. Drechsler, Y. Jin, P. Machado, E. Marchiori,
J. Romero, G. Smith, and G. Squillero, editors,
Applications of Evolutionary Computing, volume 3449
of Lecture Notes in Computer Science, pages 551–556.
Springer Berlin / Heidelberg, 2005.

[2] N. Derbinsky and G. Essl. Cognitive architecture in
mobile music interactions. In A. R. Jensenius,
A. Tveit, R. I. Godøy, and D. Overholt, editors,
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 104–107,
Oslo, Norway, 2011.

[3] A. Eigenfeldt. The creation of evolutionary rhythms
within a multi-agent networked drum ensemble. In
Proceedings of International Computer Music
Conference, pages 3–6, 2007.

[4] G. Essl. UrMus — An Environment for Mobile
Instrument Design and Performance. Proceedings of
the International Computer Music Conference, pages
270–273, 2010.

[5] G. Essl. Automated Ad Hoc Networking for Mobile
and Hybrid Music Performance. In Proceedings of
International Computer Music Conference, pages
399–402, 2011.

[6] G. Essl and A. Müller. Designing Mobile Musical
Instruments and Environments with urMus. In
Proceedings of the Conference on New Interfaces for
Musical Expression, pages 182–185, 2010.

[7] R. Fiebrink. Real-time Human Interaction with
Supervised Learning Algorithms for Music
Composition and Performance. PhD thesis, Princeton
University, Princeton, NJ, USA, January 2011.

[8] A. R. J. François, E. Chew, and D. Thurmond. Visual
feedback in performer-machine interaction for musical
improvisation. In Proceedings of the 7th international
conference on New interfaces for musical expression,
NIME ’07, pages 277–280, New York, NY, USA, 2007.
ACM.

[9] G. Hoffman and G. Weinberg. Interactive
improvisation with a robotic marimba player. Auton.
Robots, 31:133–153, October 2011.

[10] Laird, J. E. The Soar Cognitive Architecture. MIT
Press, Cambridge, 2012.

[11] J. M. Martins and E. R. Miranda. A connectionist
architecture for the evolution of rhythms. In
F. Rothlauf, J. Branke, S. Cagnoni, E. Costa,
C. Cotta, R. Drechsler, E. Lutton, P. Machado, J. H.
Moore, J. Romero, G. D. Smith, G. Squillero, and
H. Takagi, editors, EvoWorkshops, volume 3907 of
Lecture Notes in Computer Science, pages 696–706.
Springer, 2006.

[12] Nason, S., and J. E. Laird. Soar-RL: Integrating
reinforcement learning with Soar, Cognitive Systems
Research, vol. 6, no. 1, pp. 51–59, 2004.

[13] F. Pachet. Rhythms as emerging structures. In
Proceedings of 2000 International Computer Music
Conference, Berlin, ICMA, 2000.

[14] R. S. Sutton and A. J. Barton. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
1998.

[15] A. Tidemann, P. Öztürk, and Y. Demiris. A groovy
virtual drumming agent. In Proceedings of the 9th
International Conference on Intelligent Virtual
Agents, IVA ’09, pages 104–117, Berlin, Heidelberg,
2009. Springer-Verlag.

[16] G. Weinberg and S. Driscoll. The design of a robotic
marimba player: introducing pitch into robotic
musicianship. In Proceedings of the 7th international
conference on New interfaces for musical expression,
NIME ’07, pages 228–233, New York, NY, USA, 2007.
ACM.


