Comprehensive Working Memory Activation in Soar

Andrew Nuxoll (anuxoll@umich.edu)
University of Michigan, 1101 Beal Ave.
Ann Arbor M| 48109-2110 USA

John E. Laird (laird@umich.edu)
University of Michigan, 1101 Beal Ave.
Ann Arbor M1 48109-2110 USA

Michael R. James (mrjames@umich.edu)
University of Michigan, 1101 Beal Ave.
Ann Arbor Ml 48109-2110 USA

Abstract In this paper we describe extensions to that cagin
o . ~ implementation that include a more comprehensive
Memory activation has been modeled in symbolic jmplementation (Chong’s implementation supported
architectures in the past, but usually at the lefehdividual activation only in a subpart of working memory)mere
chunks or productions in long term memory. Recesearch ogciant implementation, and an implementationt tizkes
(Chong 2003) has demonstrated activation at thel le¥ advantage of the unique structure of Soar's working

individual elements of working memory. In this papee . . . , L
present a comprehensive implementation of workirgnory memory and distinguishes it from ACT-R’s activation

activation in Soar that takes advantage of the umiq Scheme. Furthermore, we present results of using th
characteristic of Soar's working memory structuramely activation-based memory to improve the retrieval of
persistence. We also explore modifications to atiim so episodic memories.

that the activation of new working memory elemestaot a

fixed level, but is based on the activation of therking

memory elements tested in its creation. We dematestsur Overview of the Soar Architecture
model in terms of how it aids the selection of fiees relevant
to learning. Soar is a production rule-based cognitive architectLike
most other architectures of this type, Soar hastipes of
Introduction knowledge:working memory (short term, declarative) and

production rules (long-term, procedural). Working memory
consists of a collection of attribute-value paifhe agent’s

urrent state, including both external sensing aaternal
hferences, is stored in working memory. Productioles
consist of actions and conditions. If the condisioof a
production match the contents of working memonnttieat
productionfires its actions which create (or remove) one or
more elements in working memory. These changes may
cause the agent to take an action in its environnvamch
can result in additional changes to working memaayits
{Sensory input. These changes to working memory may
turn trigger the firing (or retraction) of additiain
productions so that this “match-fire” cycle repeats
indefinitely.

The Soar architecture has several unique charsiitsri
We describe here only the characteristics thatedexant to
this research:

Simultaneous Production Firing: Many production
systems allow only one production to fire at a time
Soar allows all productions whose conditions match
working memory to fire in parallel.

Operators: To avoid the conflicting behavior thagyim
result from simultaneous production firing, Soar
supports a special knowledge structure called an

Since its inception, the Soar architecture (Ne@8B0) has
focused on symbolic reasoning to the exclusionwheric
processing. Even the learning mechanism, chunkin
collected conditions and actions for new productiates
through an analytic method that did not require anmeric
processing. One can think of these earlier versainSoar
as experiments in the sufficiency of purely symboli
reasoning.

In recent years, we have looked to expand the tgbes
knowledge that Soar can learn that has involved imgov
beyond a single architectural learning mechanism,
incorporate an episodic memory (Nuxoll & Laird, 2Q0n
Soar. A critical part of episodic memory is detarimg
which stored episode is the best match for the ectirr
situation. Using a purely symbolic match is inadsqu
because of the large number of irrelevant featimethe
episode. Thus, we needed some way of biasing thehna
the most relevant features. One possible bias & th”
“activation” of the features. Activation of the dents of
working memory was pioneered by the ACT family of
architectures (Anderson & Labiere, 1998) and waitially
implemented in Soar by Ron Chong (2003) to support’
forgetting in working memory.

operator. A Soar production mapropose an operator
by creating it in working memory. Multiple operagor
may be proposed in a given situation but only oae c
be selected. Selection is controlled by the creation of

referenced for the jth time. d is a learning radeameter
which we set at the same default as in previousares
(0.8).¢ is a noise component. We set this value to zero
for our experiments.

preferences: structures created by production rules thatThroughout this paper we will use the term “refesnto
test for proposed operators and details of theeotrr Tefer to an incident that led to an activation tiope., a
situation. The selection of an operator can triggeMVME is tested or recreated).

additional productions to fireapply the operator,
making changes to working memory.

Decision Cycles: Soar operators extend the trawitio
match-fire cycle of Soar to a three-phdseision cycle:
propose, select and apply.

Persistent working memory: Soar distinguishes betwe
two types of persistence in working memory. Working N
memory elements (WMES) that are created as pam of
application of an operator persist indefinitely;eyh
remain in working memory until they are explicitly
removed. These are callegtsupported WMEs. The
remaining WMEs are removed as soon as the
instantiation of the production that created them ceases
to match working memory. (An instantiation is the
collection of WMEs that match a production). These
are known as-supported WMEs. The advantage of i-
support is that it automatically removes WMEs thiat
no longer relevant to the current situation. Faragle,
an operator is proposed based on specific featiriwe
situation, when one of these features change,
operator is automatically retracted. The sameuis for
elaborations of the state, such as the calculaliaha
block is clear based on the fact that no blocksahreve
it. This is a simple inference that is automaticall
retracted when a block is placed on top of it,hed it is
no longer clear.

the

Original Implementation of Activation in Soar

The original addition of working memory activatitm Soar
by Chong (2003) allowed persistent working memory
elements (o-supported WMEs) to decay from working
memory over time in a manner very similar to theajeof
chunks in ACT-R. The implementation reserved aicaaif

Soar's working memory for

activated WMEs. The

activation level of these WMESs changed as follows:

»

»

»

WMESs received an initial, fixed activation when yhe
were first created.

Any time that a WME was tested by a production that
fired, it received an activation boost.

Any time an action would attempt to add an existing
WME, the existing WME would receive an activation
boost.

WME activation levels decayed over time using an
exponential decay formula identical to that used by
Chong:

n
A=BHn >t |+e
=1

A is the activation of a WME at timef.is a base level
constant. jtis the number of cycles since the WME was

Extensions to Chong’s Activation
Implementation

Although Chong’s work established the possibilifyusing
activation in Soar, several extensions are possible

Extend activation to all of working memory, nottjus
subset.

Improve the efficiency. Calculating activation vegucan
be computationally expensive. We improved
efficiciency by not updating the activations eveggle,
and only calculating the activation values whenythe
were used. Other optimizations included using a
bounded approximation of each WME's complete
history (an optimization also used by Chong) ane- pr
calculating commonly used activation values. To
evaluate these improvements, we ran ten iteratibres
moderately complex task in Soar with three types of
memory activation: a) no memory activation (i.det
original, unmodified Soar) b) a memory activation
mechanism without the efficiency enhancements gnd c
the enhanced memory activation system. Although the
unoptimized activation implementation is signifidgn
slower than Soar without activation, the optimized
implementation is not (see Figute

the

Soar Kernel Times for Agents with Memory Activation

o~

—

w
[S IS I SRS, I VRS T S S
,

Kernel Time (seconds)
N

o

o

Agent

‘EI No Activation O Original Activation B Fast Activation ‘

Figure 1: Demonstration of Efficiency Improvements

Apply activation differentially to i-supported anoh
supported working memory elements. This is the majo
conceptual change and is described in detail below.
Base the activation of newly created WMEs on the
activation of the WMESs matched in the conditiongef
rules. This is a departure from both the ACT andrh
approach to activation, where newly created WMBEs ge
a fixed boost. The impact of this change is demated

in the results section.

Activation: At the conclusion of each decision cycle all
referenced WMEs have their boost histories updated
Like Chong, our original implementation ignored i- their position in the decay timelist adjusted appiately.
supported WMEs because even without activation, iThis step is by far the most computationally inteesAs
supported WMEs are automatically removed when thejiscussed previously, we were able to reduce the ti
WMEs they are based on are removed. Thus, the Qequired by making some efficiency improvements. &s

Memory Activation Implementation

supported WMEs are the persistent structures irkingr
memory that the i-supported structures are entailsnef. If
we correctly maintain the o-supported structuré® I-
supported structures will take care of themselvEle

result, the time required for this step is now dinén the
number of WMEs that were referenced during theecycl

Removal: Once all the WMEs in the decay timelist have

been adjusted, any WMESs that remain at the cupesition

activation of an o-supported WME is based on a ylecain the timelist are removed from working memory.

function of all prior references to that WME — eaxfhthese
references are decayed individually, with the atibn

being the sum of all of the current values of those

references. Therefore, in our implementation, alM®g
have an associated history of prior referenceskgpee?).

Evaluation of Activation Implementation

Although one use of activation is to decay and ibbss
remove WMEs, it is difficult to evaluate the diréctpact of
he activation scheme on behavior. Our

initial

The conceptually simplest approach to maintainin
activations is to update the activation valueswairg WME
every cycle. However, the majority of WMEs are not

mplementations of activation and decay schemesegto
model both ACT-R and Chong’s Soar implementatian, s

accessed on a given cycle, so that the calculatidehtions
are never used. An alternative approach is to opfiate the
activation when a WME is accessed or when it néedse

removed. But how do we know when a WME must be L i AL
from an episodic memory we are implementing in Soar

removed? We can “predict” which cycle a WME shobéd
removed by using the reference history and decagtion,
and then store that cycle on a “timelist.” Theneaich cycle
we check the timelist to see which elements neetheto
removed. If a WME is referenced on a cycle, its oeah
time will be updated on the timelist. As shown igu¥e 2,
the timelist is an array indexed by removal timd &eated
as a large circular queue. Each entry in the asayfuture
cycle that contains a list of WMEs that will be @red on
that cycle if they are not referenced again befloa¢ cycle.

Data Structures Used by the Activation System

Decay Structure
Number of References: 2
Boost History:
Pointer to associated WME: —p

|
Decay
Timelist

Figure 2: Activation Data Structures

Current Cycle
Pointer

The decay data structure domet maintain an actual
numerical activation level for the WME. This value

calculated only when the WME is referenced andsit i

there is little to be gained by running any newdations
of decay and removal. Instead, we have chosenciasfon
the role activation can play in aiding learningeafically in
selecting relevant features for retrieving pastesignces

(Nuxoll & Laird, 2004).

Our initial research on episodic memory is beingied
out in a simple interactive domain called Eatersicv
consists of a 16x16 gridworld. An agent (i.e., Bate the
world can sense the contents of the cells arouaddtmust
make decisions about what direction to move in tatd.
To aid in its decision, the eater has approximatgly
sensory inputs from the outside world. Most of ehagputs
consist of the contents of the cells that surrotired eater.
Cells can contain normal foo#), bonus foods) or a wall.
If an eater has already visited a cell it will bapty. Figure
3 depicts the sensory input of an eater.

™ coters B[l

Wiorld Count = 1016

Score; 200
Moves 104

Figure 3: The Eaters World

An important feature of the Eaters world is thdfedent

necessary to determine the WME's new position @ thsensory inputs have varying levels of significantfean

decay timelist
The “activation life cycle” of a WME has three stag

eater is considering moving west, the content efdll just
west of it can have a dramatic impact on the resoifitits

Creation: When a new WME has been created.,a decaglecision whereas the content of cells in otherctives are

data structure is created and attached to the WMie
WME is assigned an initial reference history.

less important.

Initial Results Modifications to the Activation System

For our experiments, an eater was created that msed During the course of this research, we made two
episodic memory to record its past situations aachlt observations about the design of activation sydteanh led
them to aid in future decisions. The eater wouldleation us to believe we could improve its ability to pidsalient
each action it was considering by attempting toallea features of an agent's environment. As mentioneovep
similar situation in its past. The results of tipaist action the original implementation does not activate ifuped
were used to evaluate the action the eater waertlyr WMEs..However, the i-supported WMEs can “block” the
considering. As a result, the quality of the eateattion activation of the underlying o-supported WMEs resgible
depended heavily upon its ability to select the mgnthat for the creation of the i-supported WMES. Consither case
best matched the current situation and proposéahact where a production tests an i-supported WME. ThaiBNV
We began initially with an eater that selected best does not receive any activation boost since it & n
episodic memory via an unbiased partial match. Went activated. However, the o-supported WME(s) that ewer
added an activation-bias to the partial matchirgpid@thm. tested in order to create that WMiso do not receive a
When episodes were recorded, the activation lefgh® boost. Thus i-supported WMEs are masking o-supgorte
WMEs in the episode were also recorded. Rather thawMEs from activation.
calculate the exact activation level of each WMEtitae This phenomenon is shown in Figube where six o-
intensive process), we used its position in theagédtnelist supported WMEs (A-F) are depicted along with five
as a discretized measure of activation. When aapanatch production rule instantiations that create i-supgMWMES
was being performed, WMEs with a higher recorded1-5). As mentioned earlier, i-supported WMEs da no
activation added more weight to the match thangheith directly receive activation, but instead existtte pleasure”
lower activation. (i.e., The match score was etm#he sum of the o-supported elements they are based on., TfHDss

of the activation levels of the matching WMES.) removed, that will cause 4 to be retracted, whicturn will
We ran both eaters for five iterations of 7500 dieci lead to 5 being removed.
cycles and averaged the results. During a singiatibn the In terms of activation, if WME 5 is tested, it willot

eater took more than 2200 actions in the world.e(Threceive any activation boost (because it is i-sui@gd.
episodic retrievals and comparisons require maltipl Moreover, WMEs E and F (and indirectly C and Dpail®
decision cycles.) After every 1500 decision cyclb® not receive any activation boost although they are
contents of the gridworld would be randomly refilland responsible for maintaining 5. Once they decay, WME
rearranged so as to present a variety of situatimttse eater will be removed despite the fact that it has bedferenced.
rather than a sparse grid.

Figure 4 shows a comparison of these two eaters. Thi Example of -Support Masking Problem
ordinal is a measure of the fraction of retrievils eater
made which were correct (i.e., led to an accurasduation
of the proposed action). A perfect eater would terea
horizontal line across the top of the graph. Is tiviaph, the
eater with an activation-biased match is showinguala
30% improvement over the unbiased eater.

|:| I-Supported WME

O O-Supported WME

Production

Accuracy of Action Evaluation

.
0.9
0.8
0.7
0.6
0:
0.4
0.3
0.2
0.1

0 Figure 5: Example of the I-Support Masking Problem

1 241 481 721 961 1201 1441 1681 1921 2161
action

fraction of correct evaluations

In response to this problem we added a “pay it acH”
Figure 4: Effectiveness of Activation-Bias approach for passing references from i-supportedB&/kb
o-supported ones. The activation system now caksiltne
set of o-support for any referenced i-supported WME and
then boosts the activation of WMESs in the o-suppett In
our example, the set of o-support for WME 5 inckide

WMEs E and F, which are directly tested by the et
creates 5, as well as C and D, which are indirgeiyed by
the WMEs that create 5 (via WME 4).

The second observation we made was in regard tialini

activation for newly created WMESs.
implementation, these WMES receive a fixed initimost
equivalent to a single reference. (The same apprizagsed
in ACT-R.) In terms of decay and removal, this nizsy
sufficient because newly created WMEs will
immediately lead to additional rule firing (and eae a
boost in activation) or if they are not relevant tioe
situation, will not be tested and be removed aéteshort
time. However, when using memory activation as asuee
of the importance of features of the agent’s sttts, flat
level of initial activation can be misleading. Ageat might
test multiple WMEs with high activation and creates new
WME that would have much lower activation. Thus,
creation time, when this feature will most likelg lvery
important as a cue for future retrieval, its adiivais much
lower than the activation of the features that tedits

creation. This may be a new manifestation of an old

In the original

usually

at

problem. Chong noted that in both his model and esom _
ACT-R models, newly created WMEs/chunks can decayVe currently see three areas where this work can be

rapidly and never have a chance to participateasoning.
To ameliorate this problem, the second modificatiza
implemented was a “pay it forward” approach fotiegtthe
activation level of new WMEs. Thus, the activatioha
new WME is based on the activation levels of thieofe-
support WMEs tested in its conditions, which indadll o-
supported WMEs tested in the conditions, as welloas

WMEs tested in the conditions. Although it is conest to
think of each WME as having activation, the systawer
directly represents a specific activation valuestéad, it
stores a history of all of the activation boostshe8VME

made a marked improvement in the agent's ability to

retrieve appropriate episodes and select the daaotion.

Accuracy of Action Evaluation

1
0.9
0.8
0.7
0.6
0.5
0.4
03
02
0.1

0

Forward Boosting
—+— |-Support Boosts O-Support
= Original Activation
—+ Unbiased Match

fraction of correct evaluations

1 283 565 847 1129 1411 1693 1975 2257
action

Figure 6: Result of Activation System Modifications

Future Work

expanded. First, this research demonstrates that

a

comprehensive activation system can be an effective

technique for selecting the salient features ofagent’s
working memory. It would be useful to test the efifieeness
of the activation-biased match in other domains wuiith

other learning mechanisms (e.g., reinforcemenniegj.

Second, the changes we have made to the activation
supported WMEs that were precursors to i-supportegystem will likely have an impact on the effectiges of

that system as a memory decay mechanism.

Finally, the use of memory activation as a seaumftrol
mechanism (i.e., selecting which matching productiall
be selected to fire) has a long tradition in the TAR

has received. Thus, we base the activation of alynew@rchitecture. What impact might this approach tanoey

created WME on the activation levels of the setd-stipport
WMES, by averaging the reference histories of tRo/8¢Es
and assigning that average history to the new WME.

Final Results

The two improvements described in the previousicect

were incrementally added to the activation systewh the
experiment was repeated. The results can be se€igune

6 along with the results from the previous experimen

Modifying the system so that the o-support seteivec
boosts in activation raised the accuracy becausastmore
likely that the correct features (which are o-supgu)
would contribute to retrieving an episode. Modifyithe
boosting of newly created WMEs had an even bigggaict
because one of the most important features (thpoged
direction of movement) is created just before aisagie is
stored. In the original versions, this feature wdohlave
activation that was significantly below others, nmakit a
marginal feature for biasing retrieval. The modifion
boosted the proposed direction of movement featuits
creation was dependent on highly active featureand

activation have if it was used to influence operatlection
in Soar?

References

Anderson, J.
Components of Thought.
Erlbaum Associates.

Chong, R. (2003) The addition of an activation aeday
mechanism to the Soar architecture. Proceedingheof

Mahwah, NJ:

5th International Conference on Cognitive Modeling.

Bamberg, Germany. April, 2003.

Laird, J. E., Newell, A., and Rosenbloom, P. S98()
Soar: An architecture for general intelligence.iffaital
Intelligence, 33(3), 1-64.

Newell, A. (1990) Unified Theories of Cognition. Hard
University Press, Cambridge, Mass.

Nuxoll, A. & Laird, J. (2004). A Cognitive Model of

Episodic Memory Integrated With a General Cognitive
Conference on Cognitive

Architecture. International
Modeling 2004.

R. & Lebiere C (1998) The Atomic
Lawrence

