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Abstract 

Memory activation has been modeled in symbolic 
architectures in the past, but usually at the level of individual 
chunks or productions in long term memory. Recent research 
(Chong 2003) has demonstrated activation at the level of 
individual elements of working memory. In this paper, we 
present a comprehensive implementation of working memory 
activation in Soar that takes advantage of the unique 
characteristic of Soar's working memory structure, namely 
persistence. We also explore modifications to activation so 
that the activation of new working memory elements is not a 
fixed level, but is based on the activation of the working 
memory elements tested in its creation. We demonstrate our 
model in terms of how it aids the selection of features relevant 
to learning. 

Introduction  
Since its inception, the Soar architecture (Newell 1990) has 
focused on symbolic reasoning to the exclusion of numeric 
processing. Even the learning mechanism, chunking, 
collected conditions and actions for new production rules 
through an analytic method that did not require any numeric 
processing. One can think of these earlier versions of Soar 
as experiments in the sufficiency of purely symbolic 
reasoning.  

In recent years, we have looked to expand the types of 
knowledge that Soar can learn that has involved moving 
beyond a single architectural learning mechanism, to 
incorporate an episodic memory (Nuxoll & Laird, 2004) in 
Soar. A critical part of episodic memory is determining 
which stored episode is the best match for the current 
situation. Using a purely symbolic match is inadequate 
because of the large number of irrelevant features in the 
episode. Thus, we needed some way of biasing the match to 
the most relevant features. One possible bias is the 
“activation” of the features. Activation of the contents of 
working memory was pioneered by the ACT family of 
architectures (Anderson & Labiere, 1998) and was initially 
implemented in Soar by Ron Chong (2003) to support 
forgetting in working memory.  

In this paper we describe extensions to that original 
implementation that include a more comprehensive 
implementation (Chong’s implementation supported 
activation only in a subpart of working memory), a more 
efficient implementation, and an implementation that takes 
advantage of the unique structure of Soar’s working 
memory and distinguishes it from ACT-R’s activation 
scheme. Furthermore, we present results of using this 
activation-based memory to improve the retrieval of 
episodic memories.  

Overview of the Soar Architecture 

Soar is a production rule-based cognitive architecture. Like 
most other architectures of this type, Soar has two types of 
knowledge: working memory (short term, declarative) and 
production rules (long-term, procedural). Working memory 
consists of a collection of attribute-value pairs. The agent’s 
current state, including both external sensing and internal 
inferences, is stored in working memory. Production rules 
consist of actions and conditions. If the conditions of a 
production match the contents of working memory then that 
production fires its actions which create (or remove) one or 
more elements in working memory. These changes may 
cause the agent to take an action in its environment, which 
can result in additional changes to working memory via its 
sensory input. These changes to working memory may in 
turn trigger the firing (or retraction) of additional 
productions so that this “match-fire” cycle repeats 
indefinitely. 

The Soar architecture has several unique characteristics. 
We describe here only the characteristics that are relevant to 
this research: 
� Simultaneous Production Firing: Many production 

systems allow only one production to fire at a time. 
Soar allows all productions whose conditions match 
working memory to fire in parallel.  

� Operators: To avoid the conflicting behavior that might 
result from simultaneous production firing, Soar 
supports a special knowledge structure called an 



operator. A Soar production may propose an operator 
by creating it in working memory. Multiple operators 
may be proposed in a given situation but only one can 
be selected. Selection is controlled by the creation of 
preferences: structures created by production rules that 
test for proposed operators and details of the current 
situation. The selection of an operator can trigger 
additional productions to fire apply the operator, 
making changes to working memory.  

� Decision Cycles: Soar operators extend the traditional 
match-fire cycle of Soar to a three-phase decision cycle: 
propose, select and apply. 

� Persistent working memory: Soar distinguishes between 
two types of persistence in working memory. Working 
memory elements (WMEs) that are created as part of an 
application of an operator persist indefinitely; they 
remain in working memory until they are explicitly 
removed. These are called o-supported WMEs. The 
remaining WMEs are removed as soon as the 
instantiation of the production that created them ceases 
to match working memory. (An instantiation is the 
collection of WMEs that match a production). These 
are known as i-supported WMEs. The advantage of i-
support is that it automatically removes WMEs that are 
no longer relevant to the current situation. For example, 
an operator is proposed based on specific features of the 
situation, when one of these features change, the 
operator is automatically retracted. The same is true for 
elaborations of the state, such as the calculation that a 
block is clear based on the fact that no blocks are above 
it. This is a simple inference that is automatically 
retracted when a block is placed on top of it, so that it is 
no longer clear.  

Original Implementation of Activation in Soar 

The original addition of working memory activation to Soar 
by Chong (2003) allowed persistent working memory 
elements (o-supported WMEs) to decay from working 
memory over time in a manner very similar to the decay of 
chunks in ACT-R. The implementation reserved a section of 
Soar’s working memory for activated WMEs. The 
activation level of these WMEs changed as follows: 
� WMEs received an initial, fixed activation when they 

were first created. 
� Any time that a WME was tested by a production that 

fired, it received an activation boost.  
� Any time an action would attempt to add an existing 

WME, the existing WME would receive an activation 
boost. 

� WME activation levels decayed over time using an 
exponential decay formula identical to that used by 
Chong: 

 
εβ +









+= ∑

=

−
n

j

d
ji tA

1

ln  
 
A i is the activation of a WME at time i. β is a base level 
constant. tj is the number of cycles since the WME was 

referenced for the jth time. d is a learning rate parameter 
which we set at the same default as in previous research 
(0.8). ε is a noise component. We set this value to zero 
for our experiments. 

Throughout this paper we will use the term “reference” to 
refer to an incident that led to an activation boost (i.e., a 
WME is tested or recreated). 

Extensions to Chong’s Activation 
Implementation 

Although Chong’s work established the possibility of using 
activation in Soar, several extensions are possible.  
� Extend activation to all of working memory, not just a 

subset.  
� Improve the efficiency. Calculating activation values can 

be computationally expensive. We improved the 
efficiciency by not updating the activations every cycle, 
and only calculating the activation values when they 
were used. Other optimizations included using a 
bounded approximation of each WME’s complete 
history (an optimization also used by Chong) and pre-
calculating commonly used activation values.  To 
evaluate these improvements, we ran ten iterations of a 
moderately complex task in Soar with three types of 
memory activation: a) no memory activation (i.e., the 
original, unmodified Soar) b) a memory activation 
mechanism without the efficiency enhancements and c) 
the enhanced memory activation system. Although the 
unoptimized activation implementation is significantly 
slower than Soar without activation, the optimized 
implementation is not (see Figure 1). 

 

Figure 1: Demonstration of Efficiency Improvements 

�  Apply activation differentially to i-supported and o-
supported working memory elements. This is the major 
conceptual change and is described in detail below. 

� Base the activation of newly created WMEs on the 
activation of the WMEs matched in the conditions of the 
rules. This is a departure from both the ACT and Chong 
approach to activation, where newly created WMEs get 
a fixed boost. The impact of this change is demonstrated 
in the results section.  



Memory Activation Implementation 

Like Chong, our original implementation ignored i-
supported WMEs because even without activation, i-
supported WMEs are automatically removed when the 
WMEs they are based on are removed. Thus, the o-
supported WMEs are the persistent structures in working 
memory that the i-supported structures are entailments of. If 
we correctly maintain the o-supported structures, the i-
supported structures will take care of themselves. The 
activation of an o-supported WME is based on a decay 
function of all prior references to that WME – each of these 
references are decayed individually, with the activation 
being the sum of all of the current values of those 
references. Therefore, in our implementation, all WMEs 
have an associated history of prior references (see Figure 2). 

The conceptually simplest approach to maintaining 
activations is to update the activation values of every WME 
every cycle. However, the majority of WMEs are not 
accessed on a given cycle, so that the calculated activations 
are never used. An alternative approach is to only update the 
activation when a WME is accessed or when it needs to be 
removed. But how do we know when a WME must be 
removed? We can “predict” which cycle a WME should be 
removed by using the reference history and decay function, 
and then store that cycle on a “timelist.” Then on each cycle 
we check the timelist to see which elements need to be 
removed. If a WME is referenced on a cycle, its removal 
time will be updated on the timelist. As shown in Figure 2, 
the timelist is an array indexed by removal time and treated 
as a large circular queue. Each entry in the array is a future 
cycle that contains a list of WMEs that will be removed on 
that cycle if they are not referenced again before that cycle. 

 

Figure 2: Activation Data Structures 

The decay data structure does not maintain an actual 
numerical activation level for the WME. This value is 
calculated only when the WME is referenced and it is 
necessary to determine the WME's new position in the 
decay timelist  

The “activation life cycle” of a WME has three stages: 
Creation: When a new WME has been created.,a decay 

data structure is created and attached to the WME. The 
WME is assigned an initial reference history. 

Activation:  At the conclusion of each decision cycle all 
referenced WMEs have their boost histories updated and 
their position in the decay timelist adjusted appropriately. 
This step is by far the most computationally intensive. As 
discussed previously, we were able to reduce the time 
required by making some efficiency improvements. As a 
result, the time required for this step is now linear in the 
number of WMEs that were referenced during the cycle. 

Removal: Once all the WMEs in the decay timelist have 
been adjusted, any WMEs that remain at the current position 
in the timelist are removed from working memory.  

Evaluation of Activation Implementation 
Although one use of activation is to decay and possibly 
remove WMEs, it is difficult to evaluate the direct impact of 
the activation scheme on behavior. Our initial 
implementations of activation and decay schemes closely 
model both ACT-R and Chong’s Soar implementation, so 
there is little to be gained by running any new simulations 
of decay and removal. Instead, we have chosen to focus on 
the role activation can play in aiding learning, specifically in 
selecting relevant features for retrieving past experiences 
from an episodic memory we are implementing in Soar 
(Nuxoll & Laird, 2004).  

Our initial research on episodic memory is being carried 
out in a simple interactive domain called Eaters, which 
consists of a 16x16 gridworld. An agent (i.e., eater) in the 
world can sense the contents of the cells around it and must 
make decisions about what direction to move in that world. 
To aid in its decision, the eater has approximately 30 
sensory inputs from the outside world. Most of these inputs 
consist of the contents of the cells that surround the eater. 
Cells can contain normal food (), bonus food () or a wall. 
If an eater has already visited a cell it will be empty. Figure 
3 depicts the sensory input of an eater. 

 

Figure 3: The Eaters World 

An important feature of the Eaters world is that different 
sensory inputs have varying levels of significance. If an 
eater is considering moving west, the content of the cell just 
west of it can have a dramatic impact on the results of its 
decision whereas the content of cells in other directions are 
less important. 



Initial Results 
For our experiments, an eater was created that used an 
episodic memory to record its past situations and recall 
them to aid in future decisions. The eater would evaluation 
each action it was considering by attempting to recall a 
similar situation in its past. The results of that past action 
were used to evaluate the action the eater was currently 
considering. As a result, the quality of the eater’s action 
depended heavily upon its ability to select the memory that 
best matched the current situation and proposed action.  

We began initially with an eater that selected the best 
episodic memory via an unbiased partial match. We then 
added an activation-bias to the partial matching algorithm. 
When episodes were recorded, the activation level of the 
WMEs in the episode were also recorded. Rather than 
calculate the exact activation level of each WME (a time 
intensive process), we used its position in the decay timelist 
as a discretized measure of activation. When a partial match 
was being performed, WMEs with a higher recorded 
activation added more weight to the match than those with 
lower activation. (i.e., The match score was equal to the sum 
of the activation levels of the matching WMEs.)  

We ran both eaters for five iterations of 7500 decision 
cycles and averaged the results. During a single iteration the 
eater took more than 2200 actions in the world. (The 
episodic retrievals and comparisons require multiple 
decision cycles.) After every 1500 decision cycles the 
contents of the gridworld would be randomly refilled and 
rearranged so as to present a variety of situations to the eater 
rather than a sparse grid.  

Figure 4 shows a comparison of these two eaters. The 
ordinal is a measure of the fraction of retrievals the eater 
made which were correct (i.e., led to an accurate evaluation 
of the proposed action). A perfect eater would create a 
horizontal line across the top of the graph. In this graph, the 
eater with an activation-biased match is showing about a 
30% improvement over the unbiased eater. 

 

Figure 4: Effectiveness of Activation-Bias 

Modifications to the Activation System 
During the course of this research, we made two 
observations about the design of activation system that led 
us to believe we could improve its ability to predict salient 
features of an agent’s environment. As mentioned above, 
the original implementation does not activate i-supported 
WMEs..However, the i-supported WMEs can “block” the 
activation of the underlying o-supported WMEs responsible 
for the creation of the i-supported WMES. Consider the case 
where a production tests an i-supported WME. That WME 
does not receive any activation boost since it is not 
activated. However, the o-supported WME(s) that were 
tested in order to create that WME also do not receive a 
boost. Thus i-supported WMEs are masking o-supported 
WMEs from activation. 

This phenomenon is shown in Figure 5, where six o-
supported WMEs (A-F) are depicted along with five 
production rule instantiations that create i-supported WMEs 
(1-5). As mentioned earlier, i-supported WMEs do not 
directly receive activation, but instead exist “at the pleasure” 
of the o-supported elements they are based on. Thus, if D is 
removed, that will cause 4 to be retracted, which in turn will 
lead to 5 being removed.  

In terms of activation, if WME 5 is tested, it will not 
receive any activation boost (because it is i-supported). 
Moreover, WMEs E and F (and indirectly C and D) also do 
not receive any activation boost although they are 
responsible for maintaining 5. Once they decay, WME 5 
will be removed despite the fact that it has been referenced. 

 

 

Figure 5: Example of the I-Support Masking Problem 

 
In response to this problem we added a “pay it backward” 

approach for passing references from i-supported WMEs to 
o-supported ones. The activation system now calculates the 
set of o-support for any referenced i-supported WME and 
then boosts the activation of WMEs in the o-support set. In 
our example, the set of o-support for WME 5 includes 



WMEs E and F, which are directly tested by the rule that 
creates 5, as well as C and D, which are indirectly tested by 
the WMEs that create 5 (via WME 4).  

The second observation we made was in regard to initial 
activation for newly created WMEs. In the original 
implementation, these WMEs receive a fixed initial boost 
equivalent to a single reference. (The same approach is used 
in ACT-R.) In terms of decay and removal, this may be 
sufficient because newly created WMEs will usually 
immediately lead to additional rule firing (and receive a 
boost in activation) or if they are not relevant to the 
situation, will not be tested and be removed after a short 
time. However, when using memory activation as a measure 
of the importance of features of the agent’s state, this flat 
level of initial activation can be misleading. An agent might 
test multiple WMEs with high activation and create one new 
WME that would have much lower activation. Thus, at 
creation time, when this feature will most likely be very 
important as a cue for future retrieval, its activation is much 
lower than the activation of the features that led to its 
creation. This may be a new manifestation of an old 
problem. Chong noted that in both his model and some 
ACT-R models, newly created WMEs/chunks can decay 
rapidly and never have a chance to participate in reasoning.   

To ameliorate this problem, the second modification we 
implemented was a “pay it forward” approach for setting the 
activation level of new WMEs. Thus, the activation of a 
new WME is based on the activation levels of the set of o-
support WMEs tested in its conditions, which includes all o-
supported WMEs tested in the conditions, as well as o-
supported WMEs that were precursors to i-supported 
WMEs tested in the conditions. Although it is convenient to 
think of each WME as having activation, the system never 
directly represents a specific activation value. Instead, it 
stores a history of all of the activation boosts each WME 
has received. Thus, we base the activation of a newly 
created WME on the activation levels of the set of o-support 
WMES, by averaging the reference histories of those WMEs 
and assigning that average history to the new WME. 

Final Results 
The two improvements described in the previous section 
were incrementally added to the activation system and the 
experiment was repeated. The results can be seen in Figure 
6 along with the results from the previous experiment. 
Modifying the system so that the o-support sets received 
boosts in activation raised the accuracy because it was more 
likely that the correct features (which are o-supported) 
would contribute to retrieving an episode. Modifying the 
boosting of newly created WMEs had an even bigger impact 
because one of the most important features (the proposed 
direction of movement) is created just before an episode is 
stored. In the original versions, this feature would have 
activation that was significantly below others, making it a 
marginal feature for biasing retrieval. The modification 
boosted the proposed direction of movement feature – its 
creation was dependent on highly active features – and 

made a marked improvement in the agent’s ability to 
retrieve appropriate episodes and select the correct action.  

 

 

Figure 6: Result of Activation System Modifications 

Future Work 
We currently see three areas where this work can be 
expanded. First, this research demonstrates that a 
comprehensive activation system can be an effective 
technique for selecting the salient features of an agent’s 
working memory. It would be useful to test the effectiveness 
of the activation-biased match in other domains and with 
other learning mechanisms (e.g., reinforcement learning). 

Second, the changes we have made to the activation 
system will likely have an impact on the effectiveness of 
that system as a memory decay mechanism.  

Finally, the use of memory activation as a search control 
mechanism (i.e., selecting which matching production will 
be selected to fire) has a long tradition in the ACT-R 
architecture. What impact might this approach to memory 
activation have if it was used to influence operator selection 
in Soar? 
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