
Comprehensive Working Memory Activation in Soar

Andrew Nuxoll (anuxoll@umich.edu)
University of Michigan, 1101 Beal Ave.

Ann Arbor MI 48109-2110 USA

John E. Laird (laird@umich.edu)
University of Michigan, 1101 Beal Ave.

Ann Arbor MI 48109-2110 USA

Michael R. James (mrjames@umich.edu)
University of Michigan, 1101 Beal Ave.

Ann Arbor MI 48109-2110 USA

Abstract

Memory activation has been modeled in symbolic
architectures in the past, but usually at the level of individual
chunks or productions in long term memory. Recent research
(Chong 2003) has demonstrated activation at the level of
individual elements of working memory. In this paper, we
present a comprehensive implementation of working memory
activation in Soar that takes advantage of the unique
characteristic of Soar's working memory structure, namely
persistence. We also explore modifications to activation so
that the activation of new working memory elements is not a
fixed level, but is based on the activation of the working
memory elements tested in its creation. We demonstrate our
model in terms of how it aids the selection of features relevant
to learning.

Introduction
Since its inception, the Soar architecture (Newell 1990) has
focused on symbolic reasoning to the exclusion of numeric
processing. Even the learning mechanism, chunking,
collected conditions and actions for new production rules
through an analytic method that did not require any numeric
processing. One can think of these earlier versions of Soar
as experiments in the sufficiency of purely symbolic
reasoning.

In recent years, we have looked to expand the types of
knowledge that Soar can learn that has involved moving
beyond a single architectural learning mechanism, to
incorporate an episodic memory (Nuxoll & Laird, 2004) in
Soar. A critical part of episodic memory is determining
which stored episode is the best match for the current
situation. Using a purely symbolic match is inadequate
because of the large number of irrelevant features in the
episode. Thus, we needed some way of biasing the match to
the most relevant features. One possible bias is the
“activation” of the features. Activation of the contents of
working memory was pioneered by the ACT family of
architectures (Anderson & Labiere, 1998) and was initially
implemented in Soar by Ron Chong (2003) to support
forgetting in working memory.

In this paper we describe extensions to that original
implementation that include a more comprehensive
implementation (Chong’s implementation supported
activation only in a subpart of working memory), a more
efficient implementation, and an implementation that takes
advantage of the unique structure of Soar’s working
memory and distinguishes it from ACT-R’s activation
scheme. Furthermore, we present results of using this
activation-based memory to improve the retrieval of
episodic memories.

Overview of the Soar Architecture

Soar is a production rule-based cognitive architecture. Like
most other architectures of this type, Soar has two types of
knowledge: working memory (short term, declarative) and
production rules (long-term, procedural). Working memory
consists of a collection of attribute-value pairs. The agent’s
current state, including both external sensing and internal
inferences, is stored in working memory. Production rules
consist of actions and conditions. If the conditions of a
production match the contents of working memory then that
production fires its actions which create (or remove) one or
more elements in working memory. These changes may
cause the agent to take an action in its environment, which
can result in additional changes to working memory via its
sensory input. These changes to working memory may in
turn trigger the firing (or retraction) of additional
productions so that this “match-fire” cycle repeats
indefinitely.

The Soar architecture has several unique characteristics.
We describe here only the characteristics that are relevant to
this research:
� Simultaneous Production Firing: Many production

systems allow only one production to fire at a time.
Soar allows all productions whose conditions match
working memory to fire in parallel.

� Operators: To avoid the conflicting behavior that might
result from simultaneous production firing, Soar
supports a special knowledge structure called an

operator. A Soar production may propose an operator
by creating it in working memory. Multiple operators
may be proposed in a given situation but only one can
be selected. Selection is controlled by the creation of
preferences: structures created by production rules that
test for proposed operators and details of the current
situation. The selection of an operator can trigger
additional productions to fire apply the operator,
making changes to working memory.

� Decision Cycles: Soar operators extend the traditional
match-fire cycle of Soar to a three-phase decision cycle:
propose, select and apply.

� Persistent working memory: Soar distinguishes between
two types of persistence in working memory. Working
memory elements (WMEs) that are created as part of an
application of an operator persist indefinitely; they
remain in working memory until they are explicitly
removed. These are called o-supported WMEs. The
remaining WMEs are removed as soon as the
instantiation of the production that created them ceases
to match working memory. (An instantiation is the
collection of WMEs that match a production). These
are known as i-supported WMEs. The advantage of i-
support is that it automatically removes WMEs that are
no longer relevant to the current situation. For example,
an operator is proposed based on specific features of the
situation, when one of these features change, the
operator is automatically retracted. The same is true for
elaborations of the state, such as the calculation that a
block is clear based on the fact that no blocks are above
it. This is a simple inference that is automatically
retracted when a block is placed on top of it, so that it is
no longer clear.

Original Implementation of Activation in Soar

The original addition of working memory activation to Soar
by Chong (2003) allowed persistent working memory
elements (o-supported WMEs) to decay from working
memory over time in a manner very similar to the decay of
chunks in ACT-R. The implementation reserved a section of
Soar’s working memory for activated WMEs. The
activation level of these WMEs changed as follows:
� WMEs received an initial, fixed activation when they

were first created.
� Any time that a WME was tested by a production that

fired, it received an activation boost.
� Any time an action would attempt to add an existing

WME, the existing WME would receive an activation
boost.

� WME activation levels decayed over time using an
exponential decay formula identical to that used by
Chong:

εβ +

+= ∑

=

−
n

j

d
ji tA

1

ln

A i is the activation of a WME at time i. β is a base level
constant. tj is the number of cycles since the WME was

referenced for the jth time. d is a learning rate parameter
which we set at the same default as in previous research
(0.8). ε is a noise component. We set this value to zero
for our experiments.

Throughout this paper we will use the term “reference” to
refer to an incident that led to an activation boost (i.e., a
WME is tested or recreated).

Extensions to Chong’s Activation
Implementation

Although Chong’s work established the possibility of using
activation in Soar, several extensions are possible.
� Extend activation to all of working memory, not just a

subset.
� Improve the efficiency. Calculating activation values can

be computationally expensive. We improved the
efficiciency by not updating the activations every cycle,
and only calculating the activation values when they
were used. Other optimizations included using a
bounded approximation of each WME’s complete
history (an optimization also used by Chong) and pre-
calculating commonly used activation values. To
evaluate these improvements, we ran ten iterations of a
moderately complex task in Soar with three types of
memory activation: a) no memory activation (i.e., the
original, unmodified Soar) b) a memory activation
mechanism without the efficiency enhancements and c)
the enhanced memory activation system. Although the
unoptimized activation implementation is significantly
slower than Soar without activation, the optimized
implementation is not (see Figure 1).

Figure 1: Demonstration of Efficiency Improvements

� Apply activation differentially to i-supported and o-
supported working memory elements. This is the major
conceptual change and is described in detail below.

� Base the activation of newly created WMEs on the
activation of the WMEs matched in the conditions of the
rules. This is a departure from both the ACT and Chong
approach to activation, where newly created WMEs get
a fixed boost. The impact of this change is demonstrated
in the results section.

Memory Activation Implementation

Like Chong, our original implementation ignored i-
supported WMEs because even without activation, i-
supported WMEs are automatically removed when the
WMEs they are based on are removed. Thus, the o-
supported WMEs are the persistent structures in working
memory that the i-supported structures are entailments of. If
we correctly maintain the o-supported structures, the i-
supported structures will take care of themselves. The
activation of an o-supported WME is based on a decay
function of all prior references to that WME – each of these
references are decayed individually, with the activation
being the sum of all of the current values of those
references. Therefore, in our implementation, all WMEs
have an associated history of prior references (see Figure 2).

The conceptually simplest approach to maintaining
activations is to update the activation values of every WME
every cycle. However, the majority of WMEs are not
accessed on a given cycle, so that the calculated activations
are never used. An alternative approach is to only update the
activation when a WME is accessed or when it needs to be
removed. But how do we know when a WME must be
removed? We can “predict” which cycle a WME should be
removed by using the reference history and decay function,
and then store that cycle on a “timelist.” Then on each cycle
we check the timelist to see which elements need to be
removed. If a WME is referenced on a cycle, its removal
time will be updated on the timelist. As shown in Figure 2,
the timelist is an array indexed by removal time and treated
as a large circular queue. Each entry in the array is a future
cycle that contains a list of WMEs that will be removed on
that cycle if they are not referenced again before that cycle.

Figure 2: Activation Data Structures

The decay data structure does not maintain an actual
numerical activation level for the WME. This value is
calculated only when the WME is referenced and it is
necessary to determine the WME's new position in the
decay timelist

The “activation life cycle” of a WME has three stages:
Creation: When a new WME has been created.,a decay

data structure is created and attached to the WME. The
WME is assigned an initial reference history.

Activation: At the conclusion of each decision cycle all
referenced WMEs have their boost histories updated and
their position in the decay timelist adjusted appropriately.
This step is by far the most computationally intensive. As
discussed previously, we were able to reduce the time
required by making some efficiency improvements. As a
result, the time required for this step is now linear in the
number of WMEs that were referenced during the cycle.

Removal: Once all the WMEs in the decay timelist have
been adjusted, any WMEs that remain at the current position
in the timelist are removed from working memory.

Evaluation of Activation Implementation
Although one use of activation is to decay and possibly
remove WMEs, it is difficult to evaluate the direct impact of
the activation scheme on behavior. Our initial
implementations of activation and decay schemes closely
model both ACT-R and Chong’s Soar implementation, so
there is little to be gained by running any new simulations
of decay and removal. Instead, we have chosen to focus on
the role activation can play in aiding learning, specifically in
selecting relevant features for retrieving past experiences
from an episodic memory we are implementing in Soar
(Nuxoll & Laird, 2004).

Our initial research on episodic memory is being carried
out in a simple interactive domain called Eaters, which
consists of a 16x16 gridworld. An agent (i.e., eater) in the
world can sense the contents of the cells around it and must
make decisions about what direction to move in that world.
To aid in its decision, the eater has approximately 30
sensory inputs from the outside world. Most of these inputs
consist of the contents of the cells that surround the eater.
Cells can contain normal food (), bonus food () or a wall.
If an eater has already visited a cell it will be empty. Figure
3 depicts the sensory input of an eater.

Figure 3: The Eaters World

An important feature of the Eaters world is that different
sensory inputs have varying levels of significance. If an
eater is considering moving west, the content of the cell just
west of it can have a dramatic impact on the results of its
decision whereas the content of cells in other directions are
less important.

Initial Results
For our experiments, an eater was created that used an
episodic memory to record its past situations and recall
them to aid in future decisions. The eater would evaluation
each action it was considering by attempting to recall a
similar situation in its past. The results of that past action
were used to evaluate the action the eater was currently
considering. As a result, the quality of the eater’s action
depended heavily upon its ability to select the memory that
best matched the current situation and proposed action.

We began initially with an eater that selected the best
episodic memory via an unbiased partial match. We then
added an activation-bias to the partial matching algorithm.
When episodes were recorded, the activation level of the
WMEs in the episode were also recorded. Rather than
calculate the exact activation level of each WME (a time
intensive process), we used its position in the decay timelist
as a discretized measure of activation. When a partial match
was being performed, WMEs with a higher recorded
activation added more weight to the match than those with
lower activation. (i.e., The match score was equal to the sum
of the activation levels of the matching WMEs.)

We ran both eaters for five iterations of 7500 decision
cycles and averaged the results. During a single iteration the
eater took more than 2200 actions in the world. (The
episodic retrievals and comparisons require multiple
decision cycles.) After every 1500 decision cycles the
contents of the gridworld would be randomly refilled and
rearranged so as to present a variety of situations to the eater
rather than a sparse grid.

Figure 4 shows a comparison of these two eaters. The
ordinal is a measure of the fraction of retrievals the eater
made which were correct (i.e., led to an accurate evaluation
of the proposed action). A perfect eater would create a
horizontal line across the top of the graph. In this graph, the
eater with an activation-biased match is showing about a
30% improvement over the unbiased eater.

Figure 4: Effectiveness of Activation-Bias

Modifications to the Activation System
During the course of this research, we made two
observations about the design of activation system that led
us to believe we could improve its ability to predict salient
features of an agent’s environment. As mentioned above,
the original implementation does not activate i-supported
WMEs..However, the i-supported WMEs can “block” the
activation of the underlying o-supported WMEs responsible
for the creation of the i-supported WMES. Consider the case
where a production tests an i-supported WME. That WME
does not receive any activation boost since it is not
activated. However, the o-supported WME(s) that were
tested in order to create that WME also do not receive a
boost. Thus i-supported WMEs are masking o-supported
WMEs from activation.

This phenomenon is shown in Figure 5, where six o-
supported WMEs (A-F) are depicted along with five
production rule instantiations that create i-supported WMEs
(1-5). As mentioned earlier, i-supported WMEs do not
directly receive activation, but instead exist “at the pleasure”
of the o-supported elements they are based on. Thus, if D is
removed, that will cause 4 to be retracted, which in turn will
lead to 5 being removed.

In terms of activation, if WME 5 is tested, it will not
receive any activation boost (because it is i-supported).
Moreover, WMEs E and F (and indirectly C and D) also do
not receive any activation boost although they are
responsible for maintaining 5. Once they decay, WME 5
will be removed despite the fact that it has been referenced.

Figure 5: Example of the I-Support Masking Problem

In response to this problem we added a “pay it backward”

approach for passing references from i-supported WMEs to
o-supported ones. The activation system now calculates the
set of o-support for any referenced i-supported WME and
then boosts the activation of WMEs in the o-support set. In
our example, the set of o-support for WME 5 includes

WMEs E and F, which are directly tested by the rule that
creates 5, as well as C and D, which are indirectly tested by
the WMEs that create 5 (via WME 4).

The second observation we made was in regard to initial
activation for newly created WMEs. In the original
implementation, these WMEs receive a fixed initial boost
equivalent to a single reference. (The same approach is used
in ACT-R.) In terms of decay and removal, this may be
sufficient because newly created WMEs will usually
immediately lead to additional rule firing (and receive a
boost in activation) or if they are not relevant to the
situation, will not be tested and be removed after a short
time. However, when using memory activation as a measure
of the importance of features of the agent’s state, this flat
level of initial activation can be misleading. An agent might
test multiple WMEs with high activation and create one new
WME that would have much lower activation. Thus, at
creation time, when this feature will most likely be very
important as a cue for future retrieval, its activation is much
lower than the activation of the features that led to its
creation. This may be a new manifestation of an old
problem. Chong noted that in both his model and some
ACT-R models, newly created WMEs/chunks can decay
rapidly and never have a chance to participate in reasoning.

To ameliorate this problem, the second modification we
implemented was a “pay it forward” approach for setting the
activation level of new WMEs. Thus, the activation of a
new WME is based on the activation levels of the set of o-
support WMEs tested in its conditions, which includes all o-
supported WMEs tested in the conditions, as well as o-
supported WMEs that were precursors to i-supported
WMEs tested in the conditions. Although it is convenient to
think of each WME as having activation, the system never
directly represents a specific activation value. Instead, it
stores a history of all of the activation boosts each WME
has received. Thus, we base the activation of a newly
created WME on the activation levels of the set of o-support
WMES, by averaging the reference histories of those WMEs
and assigning that average history to the new WME.

Final Results
The two improvements described in the previous section
were incrementally added to the activation system and the
experiment was repeated. The results can be seen in Figure
6 along with the results from the previous experiment.
Modifying the system so that the o-support sets received
boosts in activation raised the accuracy because it was more
likely that the correct features (which are o-supported)
would contribute to retrieving an episode. Modifying the
boosting of newly created WMEs had an even bigger impact
because one of the most important features (the proposed
direction of movement) is created just before an episode is
stored. In the original versions, this feature would have
activation that was significantly below others, making it a
marginal feature for biasing retrieval. The modification
boosted the proposed direction of movement feature – its
creation was dependent on highly active features – and

made a marked improvement in the agent’s ability to
retrieve appropriate episodes and select the correct action.

Figure 6: Result of Activation System Modifications

Future Work
We currently see three areas where this work can be
expanded. First, this research demonstrates that a
comprehensive activation system can be an effective
technique for selecting the salient features of an agent’s
working memory. It would be useful to test the effectiveness
of the activation-biased match in other domains and with
other learning mechanisms (e.g., reinforcement learning).

Second, the changes we have made to the activation
system will likely have an impact on the effectiveness of
that system as a memory decay mechanism.

Finally, the use of memory activation as a search control
mechanism (i.e., selecting which matching production will
be selected to fire) has a long tradition in the ACT-R
architecture. What impact might this approach to memory
activation have if it was used to influence operator selection
in Soar?

References
Anderson, J. R. & Lebiere C (1998) The Atomic

Components of Thought. Mahwah, NJ: Lawrence
Erlbaum Associates.

Chong, R. (2003) The addition of an activation and decay
mechanism to the Soar architecture. Proceedings of the
5th International Conference on Cognitive Modeling.
Bamberg, Germany. April, 2003.

Laird, J. E., Newell, A., and Rosenbloom, P. S., (1987)
Soar: An architecture for general intelligence. Artificial
Intelligence, 33(3), 1-64.

Newell, A. (1990) Unified Theories of Cognition. Harvard
University Press, Cambridge, Mass.

Nuxoll, A. & Laird, J. (2004). A Cognitive Model of
Episodic Memory Integrated With a General Cognitive
Architecture. International Conference on Cognitive
Modeling 2004.

