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ABSTRACT

This paper provides an overview of a variety oflmagions of knowledge-based systems and inteltigeyents to
modeling and simulation for special operationsniraj. There are a number of ways in which inteligagents can
support training; including modeling special-op&nas individuals, other members of the blue foraes,well as
opponent forces. The paper presents examples abf eathese and provides a description of the kadggé
acquisition and engineering efforts we have dewadopo build such systems. Applying intelligent @igeto
simulation-based training provides new opportusitie develop training exercises that are more et less
expensive, and more portable. These all provigmudpnities for special operations members to tiadtividually
when they have time, rather than needing to sckddtje-scale events.
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Knowledge-rich agents are distinguished as beiflg fu
INTRODUCTION autonomous successors to Semi-Automated Forces
(SAFs) to model human behavior in military simudati
There is increasing interest in providing improvedSystems we have developed include TacAir-Soar,lwhic
access to effective military training through theewf controls fixed-wing aircraft flying a large varietyf
computer simulations. This is becoming particylarl missions; SOF-Soar, a model of ground forces that
important for training personnel in the use of izt perform reconnaissance, sniper, forward observer,
decision-making skills necessary for success impatrol, and cordon/assault missions; Helo-Soar, an
conventional, asymmetric, and non-kinetic warfare.intelligent controller for rotary-wing aircraft figg
When it comes to training, the US Department ofassault, reconnaissance, and close-air supporiomsss
Defense (DOD) faces the following challenges: and IF-Soar, which provides an indirect fire team t
e There is a limited supply of qualified instructors. assist in training of forward observers for cloge-a
New instructors must be experts, who are expertsive support missions.
train and retain.
» There are a decreasing number of opportunities to

train. THE ARCHITECTURE
» The current environment of continuous operations is

stressing the effectiveness of training. All of these systems use the same overall software
« Training costs continue to rise. architecture, which has evolved along with itemativ

refinements of the intelligent agents. An initi@rsion
As a result, the number of “critical training Of the architecture is described by Schwamb, Késs,

experiences” that a warfighter can be exposed to iKeirsey (1994). For context, we provide here afbrie
increasingly limited. This in turn translates inhe risk ~ overview of the current version of the architectarel

of an overall decrease in mission effectiveness, tu its components. Figure 1 illustrates the interfaces
insufficient or inconsistent training. between the simulation engine, the Soar cognitive
architecture (Laird, Newell, & Rosenbloom, 198Hda

One approach to addressing this problem is to eduche intelligent behaviors built into a particulageat
the costs and increase the capabilities and efeewtss  (TacAir-Soar, in the example figure). The composent
of modeling and simulation solutions for traininghis ~ are described individually below.

paper addresses a portion of that approach, fooused

providing “anytime/anywhere training”. This can be Simulation Engine

achieved in part by providing knowledge-rich ingint

agents that replace human role-players and opsrator We have integrated our agent systems with a vaciety
training simulations, thereby reducing manpowertsos Simulation platforms, including JSAF, VR-Forcesdan
and requirements. It can also be achieved by th®NeSAF, leading us to the development of a plug-in
portable design of intelligent agents, which alstra model for behavior model integration. We add a
tactical reasoning processes from simulation-sjpecif Simulation Abstraction Adapter to each simulator,
implementations. We have developed a variety ohsu Which provides a uniform interface to the intellge
agents for systems focused on training and®9ents for sensing and control. The simulationireng
experimentation with SOF skills in particular. Fhi provides terrain information, information about eth
paper provides an overview of a subset of thesatage entities, sensor and weapons models, as well as the
together with a description of our general approaoth ~ Physical models controlled by Soar agents. By

some of the technical advantages of using suchtegen Providing a uniform interface to behavior models w
are able to move a model from one simulation
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Figure 1. Architecture and integration of smulation componentsfor intelligent agents.

environment to another with no changes to the modethe agents repeatedly sense the environment, iaterp

aside from its particular interface to the simutato new information to update the current representatio
situational understanding, use the current undedlstg
Soar of the world to activate particular goals, and tketect

deliberate actions to achieve those goals (sead-Rju
Soar is both a theory of human cognition and an
embodiment of that theory in a programming Agent/Simulation Abstraction
architecture. Originally developed in 1982 at Cagiee
Mellon University by Allan Newell and his students We have defined a plug-in architecture that abtsrde
John Laird and Paul Rosenbloom, Soar has serveebmmon interactions between simulations and
worldwide as the basis of research in cognitiversog, intelligent agents, implementing them into an insgd
psychology and artificial intelligence, as well #®e  set of reusable software components. The colleaifo
reasoning engine for some commercial applicatibns. components and interfaces constitute a PortablentAge
more details Soar’s history and architecture, sgiedl.  Framework (PAF). PAF provides the interface
Newell, and Rosenbloom (1987). components for the translation layer that existsvben

the simulation environment and the intelligent d@gen
Soar encodes an associative memory model witlPAF provides a plug-in environment that facilitates
stimulus-response pattern-matchipgoduction rules  standardized communications between simulation
The rules are organized to frame decision-makindp@s components, including a simulation engine, agent
selection and application of operators to achiesalyy systems (based on Soar or some other agent
The production rules represent long-term knowleidge architecture), and associated tools, such as missio
the form ofif...thenstatements whosé patterns match editors, graphical user interfaces, and speecifactes.
against a representation of the environment and thBAF enforcesSimulation Abstractiorthat captures the
agent’s own internal state. Actions serve to preposny  most common types of interactions between agerts an
operators, dynamically decompose more abstracimulators, and is easily extensible to support new
operators, or send motor-control commands to theimulator or agent capabilities. The Simulation
underlying simulation. Soar supports both goaleted  Abstraction Adapter converts information about the
and reactive behavior, which makes it an ideal @hoi world into a form the agent can reason about, and
for implementing agents that must act in complexconverts agent actions into observable effectshan t
environments and realistic timeframes. The pradaoct environment.
rules implement an Abstract Decision Cycle, in whic
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Figure 2. The Abstract Reasoning Cycle providesthe context in which intelligent agents create situational
under standing, activate task goals, and initiate actionsto achieve those goals.

and coordinating with other agents (including hug)an
maintaining situational awareness, and accepting ne
EXAMPLE AGENT APPLICATIONS orders while in flight.

The following sections provide an overview of four TacAir-Soar relies on mature intelligent systems
different agent systems that are relevant to SORechnology, including a rule-based, hierarchical
training. This includes the systems mentioned abov representation of goals and situation descriptions.

TacAir-Soar, SOF-Soar, Helo-Soar and IF-Soar. Unlike many SAFs, the system does not just model a
small set of tasks pertinent to military fixed-wing
TacAir-Soar missions; it generates appropriate behavior foroadb

variety of such missions routinely used by the U8\
TacAir-Soar is the first and largest agent systeen wAir Force, and Marines; the UK Royal Air Force; and
have developed. It is an intelligent, rule-basgstesn  opponent forces in full-scale exercises. In additio
that generates believable “human-like” behavior forreasoning about complex sets of goals, the system
fixed-wing aircraft simulations. The application coordinates and communicates with humans and other
implements a number of innovations, including tbales  automated entities. The system must generate its
of reasoning capabilities, integration with a rishd behavior in real time (and sometimes faster). Ulisim
complex simulated environment, representation oflso integrate seamlessly into current militaryinirey
human-like coordination and communication, andch ri  exercises, and be able to cover unanticipatedtising
implementation of situational understanding to @riv so it does not interrupt the flow of training. &ily, all
agent reasoning. The system is capable of executirof the task requirements are set by existing mjlita
most of the airborne missions that the United Stateneeds, and we were thus not able to tailor or siynpl
military flies in fixed-wing aircraft. It accomghes this the domain to suit our purposes.
by integrating a wide variety of intelligent capilas,
including reasoning about interacting goals, reacto  TacAir-Soar initially saw use in the Synthetic aher
rapid changes in real time (or faster), communicati Of War 1997 (STOW-97)/United Endeavor Advanced
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Concept Technology Demonstration, an operationabther roles, including the Fire Direction Cented dhe
training exercise consisting of 48 straight hoursl a artillery batteries.
approximately 700 fixed-wing aircraft flights, dlbwn
by instances of the TacAir-Soar system. In STOW-97The use of a training simulation can alleviate mahy
the emphasis was on providing tactical air-to-aid a these cost factors. Space constraints are redoctikt
air-to-ground behaviors. physical size of the simulation system, while \attu
munitions that explode only on a computer screen
TacAir-Soar played important roles in exercises anctliminate the waste and danger associated with live
demonstrations such as Roadrunner'98 andounds, and also the additional live persons reguio
COYOTE'98 (Nielsen et al., 2000). TacAir-Soar wasfire them. However, such a system does not elirinat
also indispensable in the Joint Forces Commandig Jo the requirement for other interactive participarisr
Experiment ‘99 and Attack Operations ‘00, as wall a example, a Fire Direction Center (FDC) must be gmes
many of the Navy's Fleet Battle Experiments.to handle the radio calls for fire from the FO.the
Additionally, TacAir-Soar was fielded as part ofeth work on IF-Soar, we have developed an automated FDC
Battle Force Tactical Trainer (BFTT) delivered teet that is capable of the following:
Navy. Continued development of TacAir-Soar in recen
years has adapted the system to support SOF wainin Understanding and processing incoming Call For Fire
for close-air support missions and to support Sitea (CFF) requests
experimentation with new UAV models. TacAir-Soar’s « Producing doctrinally correct CFF acknowledgements
inclusion in these projects has demonstrated ortheof  and other required messages
advantages Soar-based systems have shown oveReacting to errors or omissions in CFFs and
conventional SAFs—autonomy. A single operator can interacting with the FO to identify them
control hundreds of Soar agents, with intervention. |mplementing received CFFs in a simulated
required only when the operator wants to change the environment by tasking artillery batteries to fire
mission details (Jones et al., 1999).
The primary emphasis of IF-Soar’'s design is on the
One of the most recent development emphases fQ{ppropriate spoken-word interactions between the IF
TacAir-Soar has been on behaviors to support igini team and the forward observer (FO). In training
Forward Observers (FOs) and Terminal Air Contrsller systems that employ IF-Soar agents, a human tréaree
(TACs) in Close Air Support (CAS) missions. Forsthi gperator) plays the role of the FO in charge of
application, the TacAir-Soar agents must includgopr  submitting CFFs. These calls are made over a voice
behaviors for flying all the CAS-supporting airdrah  jnterface and converted into a machine-readable for
all phaseS of the miSSion, inClUding Communicaﬁod using a Speech_recognition engine and grammar rparse
coordination  knowledge for following  proper The |F-Soar agent receiving these calls will then
procedures in interpreting the guidance of the TACprocess the message, make any necessary modifgatio
This includes the ability to communicate usingor additions to the fire mission, then generate a
doctrinally correct speech, facilitated by off-tsieelf  goctrinally correct spoken response to the FO. eCmc
speech interface software. The trainee is resplenkib  cEfE is completed, IF-Soar agents will carry out the
identifying targets, communicating CAS mission firing order within the simulation environment.. & FO
information to the aircraft, and following throufgv re-  can then use the observed results of those firesate
attacks or release of the aircraft, all using aespe adjustment fires based off previous CFFs.
interface.

Helo-Soar
| F-Soar

Helo-Soar agents are designed to fly simulatedryeta
IF-Soar is another system we have built with thal@  \ing aircraft. The initial knowledge base for H&Soar
improving training for FOs and TACs performing equipped the agents to fly Air Assault and
indirect fire missions. Training Forward Observiers Reconnaissance missionsy as well as to partici'pate
live environment presents a wide range of logisticajmpromptu, on-call Medevac missions. From a user
prOblemS. Indirect fire missions involve a |arQQ$lbal perspective, the primary emphasis on Helo-Soar’s
area, as munitions are typically fired at targe#gdmd  design was to provide an automated wingman
visual range. More importantly, there is a higlstad  capability, so that the agents would fly in groupat
these exercises, as they require not only a gestaf  \ere led by a human flying a virtual simulator. cEa
materiel per mission but also other participantplty  synthetic wingman understands its role within tight
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group and can reconfigure its position and rolehiwit that uses a speech-recognition system to translate
the group as circumstances change. For example, @mmands. The group on the left is under the obntr
member of the group might run out of weapons or bef another intelligent agent that knows how to spot
destroyed, necessitating reconfiguration of theugi® targets and call in CAS strikes. This TAC agent is
roles and command structure. described further in the following section.

After receiving the mission brief, Helo-Soar aggpitn

and execute their missions using appropriate deetri SOF-Soar

and tactics. They react to environmental changes,

reforming to continue the mission on their ownhét The final example agent system we describe is SOF-
lead is disabled. The competence level of the ageniSoar, which has a slightly different emphasis fribhm@
increases the effectiveness of trade studies amirtg  previous two systems. Where TacAir-Soar and IF-Soa
simulations. This version of Helo-Soar may beare intended to fill non-SOF roles in the trainofgSOF
configured for a single wingman or multi-aircraft personnel, SOF-Soar agents actually take the méce
formation flight behind a human lead in a syntheticSOF elements within the simulation. This can be to
cockpit. The lead re-directs the aircraft in flighging  populate a training environment with a rich set of
voice commands, and receives replies and statusements to complete an exercise scenario, oruldco
updates over a radio headset. The agents are driefbe to provide teammates with which human SOF
with the same information as the human pilot, aadeh trainees can interact. SOF-Soar operates in dasimi
demonstrated the ability to continue the missiothia  manner to previously described Soar systems in that

event that the lead aircraft is lost. each agent represents a single SOF operator who can
observe the environment, pursue mission-relevaalsgo
& D1 (actie) ol and respond to threats. In the case of SOF-Saag th
fiers =] 11smusctonsgss an added focus on multi-agent teams where eacht agen

can have a specific role within the team. Furtheemo
differences lie in the kinds of missions and bebesvi
implemented, such as reconnaissance (shown imeigu
4), urban patrol, and forward observer missions.

u Observation

| plightStalleer40
’%Rebe\:u 3.

Dragon34 Jaguar3t
L] L)

‘a . z ' Target Pickup

0 CrP 0
0

Ohservation

Assembly @

Figure3. Two Helo-Soar agentsflying CAS

missions. Theoneon the rlght is bei ng controlled by Figure4_ SOF-Soar agents perfor m|ng a |0ng_range
a SOF-Soar agent performingasa TAC. r econnaissance mission.

Extensions to Helo-Soar have added the ability tqn forward observer missions, SOF-Soar agents geovi
perform close-air support missions. These cap@sili the role of forward observers in a simulated
were added in the context of the close-air supporgnvironment. These agents provide the complementary
training system that also included TacAir-Soar #d  role to the TacAir-Soar and Helo-Soar agents deedri
Soar agents. Figure 3 shows a snapshot of twopgrou earlier, where the SOF-Soar entities identify ratev

of Helo-Soar agents performing a CAS mission. Theargets, communicate target information using
group on the left is under the control of a hum#CT  doctrinally correct radio calls to the aircraftdaiollow
gU|d|ng the Helo-Soar missions with a simulatediaad through with requests for re-attack or release haf t
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Figure5. Sample communication interaction for a CAS mission flown by Helo-Soar, with TAC function
provided by SOF-Soar.

aircraft. Combined with TacAir-Soar and Helo-Soaragents (Nielsen et al., 2000). For most applicatiour
agents, these SOF-Soar observers allow for a fullySoar-based agents use simulated radios as theianyri
automated CAS capability into a simulation form of communication. Each radio is assigned a
environment, for analysis or experimentation. Hogvev particular frequency, and all agents that have diora
because the SOF-Soar agents are using doctrinaltyned to that frequency, within the range of that
correct communications, they could similarly intdra transmitter, can “hear” the broadcast. The ageats c
with human pilots, facilitating the training of pts for  direct their messages to individual recipients by
CAS missions. Figure 5 provides a sample dialogafo prefacing each message with the name of the intende
CAS mission flown by Helo-Soar under the control ofrecipient. It is up to the receiver to process isredjard
SOF-Soar. the message based on the named recipient.

As with human-human interactions, human-agent
AGENT-HUMAN COMMUNICATION interactions can take place via different modes of

communication. Sometimes there are formal inteidac
A key advantage to intelligent agents over comgetin and channels of communicate (such as fixed-format
simulation technologies is the ability to commutéca mission briefs), and in other cases humans takkatth
and coordinate naturally with humans participating other using natural language, but constrained by
the simulation (whether the humans are operatots, r doctrinal military grammars. In addition to theeat
players, trainees, etc.). Communication in paldicis  systems described above, we have built associatds! t
important because it enables agents to coordihaie t that support various modes of interaction. Here we
actions verbally with humans and other intelligent
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describe three of these tools: the communicatiamglp The Soar-based agents use grammar-based recognition

exercise editors, and speech recognition. to recognize, understand, and respond to utterances
spoken by human participants in the simulationhsas
Communications Panel the forward observer, AWACS controllers, or

simulation operators. The result of an accepted
For the purposes of running exercises, we allowdum utterance (one that is grammatically correct) is a
simulation operators to communicate directly with semantic parsé a text-based XML format that assigns
individual agents. A tool called the Communicationssemantic value to the contents of the utterancer F
Panel (or Comm Panel) enables an operator tohtell t example, the messad&lpha 3 romeo 5 1 this is
agents to change their mission parameters duringopper, over”would result in the following semantic
mission execution. The agents receive the commasds parse that would be passed into an agent:
human-readable text messages on their radios. The
Comm Panel provides templates to construct alhef t <you-this-is-me>
message types that the intelligent agents undekstan <msg-type> introduction </msg-type>

and it serves as an inexpensive and reliable replant <you> A3R51 </you>
to speech-recognition systems, when such systees ar <me>hopper </me>
not available or not suitable. </you-this-is-me>

Exer cise Editors

SITUATIONAL AWARENESS
For rapid exercise development, we have developed
mission specification tools for each type agente ¢8Il A key distinction between intelligent agents andFSA
these tools exercise editors, because they spakif  agents is the matter of situational awareness and
the exercise-relevant information that an agentisée  understanding.  While all of these systems are
know to complete its mission. For humans, this ldiou engineered to produce particular responses incpéati
be the information they receive in their missiorefs;  situations, there is a significant difference ine th
combined with information about standard operatingunderlying representations and approaches used to
procedures, rules of engagement, etc. The exerciggenerate the responses. The intelligent agentsawe
editors allow users to specify all the pre-briefeddescribed to not try to do anything until they hdivet
information the agents expect or require, faciligithe  interpreted and understood the situation they are
generation of large exercises in short periodsimét sensing. This includes maintaining a record oft pas
As the number of missions performed by the agentsignificant events and goals. The Soar-based sgent
grows, we similarly expand the associated exercisebtain information about the environment from sesiso
editors to accommodate the new mission types. Bsecaucommunications, and the pre-briefed mission
the agents are fully autonomous, the informationspecification. When they become aware of an eitity
provided by the exercise editor is all they needdrtow  the simulation, they can deliberately seek more

to perform their missions. information by focusing their attention on that cfie
Speech recognition and dialog management target. If the entity has gone out of the rangethef

model’s sensors, information about that entity rasia
The most sophisticated form of human-agent intemact in attentional memory for a set amount of time befo
relies of spoken voice communication. For the &gen being dropped; the agent will completely forget @bo
we have described hear, we support human speeche entity unless the agent has deliberately ddctde
recognition using the SoarSpeak appliance, firstemember it. (This same forgetting mechanism hfads
introduced by Jones, Nielsen, and Taylor (2000)communication as well.) Similarly, if an agent Hast
SoarSpeak is a collection of systems that prowidét contact with an entity it is aware of, the agenij@cts
to-speech (TTS) and speech-to-text (STT) suppart fothe location of the agent while it is not direcsignsed.
Soar agents that operate within HLA or DIS-comglian If the agent has lost contact with the entity far a
simulation environments. SoarSpeak generically srapextended period of time, the agent deliberatelgdts
commercial off-the-shelf STT and TTS systems toabout it.
provide a consistent interface for including speiecan
application. In the case of grammar-based recagniti We have developed a tool called the Situational
SoarSpeak also is capable of generating a semantiowareness Panel to provide graphical visualizatiohs
parse of an accepted utterance, rather than jastaiit  the understanding of the intelligent agents (Joh@99;
utterance string. Taylor et al.,, 2002). This tools presents informati

about what the agent senses, as well as its ihtstaia
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information, the current goals the agent is puigguamd  structure, weapon loadouts, and radio frequenciés.
important milestones achieved during the coursthef have encapsulated these abstractions into the isgerc
mission. The graphical display of this information editors for each agent type (e.g., Coulter & Laird,
allows human inspection of the agent's reasonindl996). Current work focuses on formalizing these
process, so users can understand why the agents aiestractions into an XML-based, platform-neutral
making the decision they are making, and what theepresentation of knowledge, missions, and behavior
agents believe about the state of the environment. The combination of a portable representation fo-CG
behaviors and a portable data format for mission
parameters should provide a future cost-effectiath p
PORTABLE BEHAVIORS AND DATA for adoption of intelligent agents across a variefy
simulation environments.
A final key aspect of our approach to intelligegeat
design is the focus on the portability of behaviansl
knowledge representation. Most SAF systems are CONCLUSION
intimately integrated with a particular simulatiengine
and technology. This means, for example, thatetli@er We have described an intelligent agent technolbgy t
no cost-effective way to port a behavior model fromhas the potential to increase the cost effectiverds
JSAF into OneSAF, because the implementation of th&OF training in modeling and simulation, as weltas
model is so closely tied to the implementation loé t provide new training capabilities, such as struedur
simulator. Our approach has been to abstract thdoctrinal grammars using speech-recognition systems
“minds” of the intelligent agents from the physical The increases in cost effectiveness, along a yadbt
platforms and environment with which the agentsdimensions, should in turn increase the number of
interact. Although JSAF and OneSAF (just to take t mission-critical experiences that SOF warfighteas ¢
examples) each have their own implementations ef thbe exposed to, ultimately leading to a more eféecti
world and the task environment, they are concefytual fighting force.
trying to represent the same military domains, ioiss
and tasks. Thus, at least to a large extent, mtag We have additionally described four examples of
model for one simulator should be performing theesa intelligent agent applications we have developeat th
types of reasoning as it would for the other sinorla are relevant to SOF training. We intend these gkasn
Our approach is to implement the “mind” of eachto highlight the types of capabilities that intgdint
intelligent agent just once, and then account foy a agents can provide to the training environment. We
simulator-specific assumption in the Simulationhave emphasized three keys to the strengths of
Abstraction Adapters required by the ATE plug-inintelligent agents for SOF training:
environment.
« Intelligent agents base their decision making on
Using this approach, we have demonstrated a nuafber situational awareness and understanding. Every
advantages of intelligent agents over standard CGFchoice is made in the context of a doctrinally
technology. Primary among these are: consistent interpretation of the current situation.
Intelligent agents have the capability to coordinat
* A level of intelligent capability that can redudeet and communicate with humans (and each other) using
required number of human operators by two or more doctrinally correct grammars and modes of
orders of magnitude. interaction.  This provides the ability to avoid
» A simulation-neutral design and implementation that negative training by allowing the SOF trainees $e u
allows Soar Technology CGFs to integrate with a the modes of interaction they will actually usetle

variety of simulation platforms. Integrations thvee operational environment.
have produced so far include JSAF, OneSAF, OTBs Intelligent agents are defined in a simulation-
STAGE, and VR-Forces, among others. independent fashion, focusing on the reasoning
required to complete the mission rather than the
Key to the ability to port the intelligent agents & specific aspects of the underlying simulation
variety of platforms is our development of a platfie implementation. In the long run, this will allowone

neutral language for describing mission parameters cost effective deployment of agent systems and
from the exercise level (e.g., rules of engagement, migration to new simulation platforms as they are
weather, and waypoints) through the mission legs.( developed.

commit criteria, routes, and intercept tactics) and

ultimately to the element level (e.g., call sigfsice
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