
Synthetic Adversaries for Urban Combat Training

Robert E. Wray

Soar Technology, Inc.
3600 Green Court Suite 600

Ann Arbor MI 48105
wray@soartech.com

John E. Laird, Andrew Nuxoll, Devvan Stokes, Alex Kerfoot

University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
laird, anuxoll, dstokes, akerfoot@umich.edu

Abstract

This paper describes requirements for synthetic adversaries
for urban combat training and MOUTBots, a prototype
application. The MOUTBots use a commercial computer
game to define, implement and test basic behavior
representation requirements and the Soar architecture as the
engine for knowledge representation and execution. We
describe how these components aided the development of
the prototype and present an initial evaluation against
competence, taskability, fidelity, variability, transparency,
and efficiency requirements.

Introduction
Offensive urban combat is one of the most difficult tasks
soldiers perform. Urban combat is characterized by
building-to-building, room-to-room fighting. Frequent
training is an essential element in reducing casualties.
However, training in urban environments is costly and
restricted to physical mockups of buildings and small
towns. The Office of Naval Research’s Virtual Training &
Environments (VIRTE) program is developing immersive
virtual trainers for military operations on urbanized terrain
(MOUT). In this trainer, four-person fire teams of U.S.
Marines will be situated in a virtual urban environment and
tasked to clear a building, possibly containing enemy
soldiers. Virtual opponents are required to populate the
environment and challenge the trainees.

This paper describes the general requirements for opponents
and our development of synthetic adversaries to meet them.
The agents are built using the Soar cognitive architecture
and they interface to a commercial game engine that served
as an initial development environment. In order to simplify
the behaviors that needed to be encoded in the prototype, we
have initially focused on MOUT behaviors within a
building.

Requirements for Synthetic Adversaries
This application has six major high-level requirements:
1. Competence: The adversaries must perform the tactics

and missions humans perform in this domain. For this
application, the adversaries’ goal is to defend a small
multi-storied building in teams of 2-5 using assault
weapons and grenades. The agents must move through

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

the environment, identify tactically relevant features
(such as escape routes), and communicate and
coordinate with other agents.

2. Taskability: The agents must be able to be assigned new
missions for different training scenarios and they must
change their objectives during an exercise.

3. Observational fidelity: The agents do not have to model
accurately all aspects of human behavior. Instead, they
must model those aspects of human behavior that are
observable and relevant to training.

4. Behavior variability: The agents must not be predictable
so that the trainees are exposed to many diverse
experiences. By experiencing many different situations
and opponent behaviors, unexpected situations will be
minimized in real life.

5. Transparency: To allow “after action review,”
opponents should be able to explain why they went into
a particular room, or retreated at some juncture in the
scenario. Explanations are much easier to generate in
systems that use transparent representations that map
directly to understood terms.

6. Minimal computational footprint: This application is
targeted for personal computers, with a majority of the
computational processing reserved for graphics and
physics modeling. Thus, synthetic adversaries will be
allocated only a small time slice in system execution.

Related Work
Possibly the most advanced examples of embedding
synthetic agents in military simulations are TacAir-Soar and
RWA-Soar. These systems emulate the behavior of military
personnel performing missions in fixed-wing and rotary-
wing aircraft and have been used in large-scale military
training exercises (Jones et al., 1999; Tambe et al., 1995).
TacAir-Soar and RWA-Soar agents are completely
autonomous, making decisions based on their awareness of
the surrounding environment, commands received from
other entities, and their extensive knowledge of military
doctrine and tactics. They have the ability to pursue mission
objects alone, or they can participate in larger groups made
up of other synthetic agents or even human teammates
participating via simulators (Laird, Jones, & Nielsen,
1998). The research described here builds on that prior
research and extends it to the specific requirements of the
creating adversaries for MOUT training. The four most
important areas of differentiation are:

Figure 1. The MOUTBot System Architecture

1. Compressed time scale : In TacAir-Soar and RWA-Soar,

the decision cycle could vary from .25 to .5 seconds
without significant degradation in observable behavior.
For MOUT, reaction times must be on the order of .1
seconds to support realistic behavior (e.g., avoid
running into walls). Missions in TacAir-Soar and
RWA-Soar were on the order of an hour, while for the
MOUT domain, scenarios transpire in minutes.

2. Loose mission structure, teamwork and coordination:
Missions could be very complex in the air domain with
multiple phases to each mission. In addition, a complex
hierarchical command structure, set by military
doctrine, coordinated teamwork. For some missions,
over 30 aircraft could be flying together. In the MOUT
domain, the missions consist mostly of defending
specific rooms, with some individual missions. Only
small numbers of agents work together and there is
little or no time for complex communication and
preplanned coordination. In fact, one surprise was that
the types of coordination required of the adversaries
was so minimal, that using the coordination schemes
developed for the air agents (Tambe, 1997) was
unnecessary.

3. Indoor spatial reasoning: In the air domain, fine-grained
spatial reasoning about terrain is unnecessary. For
indoor combat, agents must understand room geometry
of as well as the total topology of a building in order to
set up attacks, ambushes, and retreats.

4. Behavior variability: In the air domain, the overall
complexity of the virtual environment provided
sufficient variability so that the behavior of TacAir-
Soar agents was not predictable. However, this
application requires a training environment where the
trainees can be exposed to the same general situation

many times. As a result, variability in behavior is much
more important than in TacAir-Soar.

Another implementation of synthetic adversaries has been
developed using ACT-R (Best, Lebiere, & Scarpinnatto,
2002). Their emphasis was to demonstrate the feasibility of
using ACT-R for controlling synthetic characters and fine-
grained spatial representations; our application was directly
geared to the requirements of deployment.

Many commercial computer games simulate military
combat (America’s Army, Operation Flashpoint, Full
Spectrum Warrior). The adversaries in these games are
usually scripted or based on simple finite-state machines.
Thus, they have limited autonomy, little ability to reason on
the spatial aspects of tactical situations, and can be too
predictable, possibly leading to negative training. However,
more autonomous individual adversaries have also been
developed for first-person perspective interactive computer
games (Adobbati, Marshall, et al 2001; Laird, 2001a).
These “bots” play “deathmatches”, where the rules and
weapons are significantly different than MOUT
engagements. They do not meet the list of requirements
listed above (no individual missions, limited coordination,
behavior not constrained by real-world military doctrine and
tactics). However, there is significant overlap in some of
the underlying capabilities, enough so that the system
described here was based in part on a bot developed in Soar
to play Quake (Laird, 2001a, 2001b).

Overall System Design

This section introduces MOUTBots, the autonomous,
intelligent opponents developed to meet the requirements.

Unreal
Tournament /

Infiltration

movement physics
perception terrain
graphics sounds

networking

Soar/UT
Interface

Perceptual &
Physiological

models
Motor control

language
Physics

output

SGIO

input

input

SGIO

output

Soar

long-term memory
skills, doctrine, tactics
encoded as ~800 rules

short-term memory
situation, mission, objectives

Here, we briefly review supporting technologies and describe the overall system architecture.

Figure 2. Internal spatial representation in the MOUTBots

Simulation Environment: Unreal Tournament
Figure 1 presents the system architecture. The simulation
environment is realized in an extension of the commercial
computer game Unreal Tournament (UT) called
Infiltration1. The UT-Soar-Interface simulates the
perception and motor actions of our agents in the
environment and is connected to Soar via Soar General
Input/Output (SGIO). Each agent is run as an independent
copy of Soar, the cognitive component of a MOUTBot.
Soar knowledge is encoded as rules. All of the agents are
run on a single computer, with the human players running
on their own computers, networked together.

Unreal Tournament is an off-the-shelf extendable 3D game
engine that supports networked play. Infiltration provides
graphics and models of modern weapons (e.g., M-16 rifles),
more sophisticated models of the impact of wounds, and
representations of modern army uniforms and equipment.
All game physics and the game interface are coded in an
internal scripting language. Using UT’s environment editor,
we created a synthetic training environment (a 3 story
building with a variety of rooms and hallways) that
presented the breadth of training situations as recommended
by our subject matter experts.

Perception and Motor Control Module
We extended Infiltration to include more complete models
of perception and motor actions. Visual perception is

1 Unreal Tournament was developed by Epic Games. Infiltration was
developed by Sentry Studios.

challenging because of the difficulty of sensing walls (and
doors) in simulation environments. Processing the internal
Unreal data structures to detect walls, doors and other
environmental features would be computationally
prohibitive. To circumvent these challenges, we introduced
a number of simplifications based on an annotated map.

Figure 2 illustrates an example map. Each agent receives an
annotated map with nodes that define the boundaries of
each room. This allows an agent to determine the room in
which it is located. Nodes are also placed in the map at
connections (doors, windows) between areas. The
MOUTBots use the nodes to build up a topological map of
the building. The interface supports the motor actions
required by adversaries, including walking, running,
shooting (aiming, firing, reloading), grenade throwing, as
well as postures other than standing (crouching, kneeling).

Cognitive Architecture: Soar
The cognitive component of the synthetic adversaries is
implemented in the Soar cognitive architecture (Laird,
Newell, & Rosenbloom, 1987; Newell, 1990). In Soar, all
long-term knowledge is encoded as production rules, while
the current situation (perception, situational awareness,
mission information, and goals) is encoded in declarative
data structures comprising its state. The rules in Soar match
against the state and propose operators to apply to the
current situation. Primitive operators send commands to the
motor system. Complex operators are dynamically
converted to subgoals that are then pursued by once again
having rules select and apply operators in the subgoals,
eventually resulting in operators that execute primitive

actions. Recent versions of Soar now also include belief
and goal maintenance mechanisms (Wray & Laird, 2003a).
These mechanisms improve robustness and simplify
knowledge development, contributing to our ability to
encode a complex behavior system quickly.

Meeting the Requirements
The MOUTBot consists of over 25 major data structures
and 800 production rules (which implement 120 operators).
This section outlines some of the knowledge encoded in the
MOUTBots and how this knowledge is applied to generate
behavior, addressing each of the above requirements.

Competence
To create competent adversaries for MOUT training, we
studied available literature (field manuals and historical
accounts) and interviewed experts. We discovered there is
little written doctrine for urban combat defense, so we
relied heavily on human subject matter experts (SMEs). We
developed synthetic adversaries that could play many
different roles: defending a room, acting as a sentry (by
watching through a window), defending a hallway, and
acting as the leader of the group – giving commands to
reposition, retreat or attack. As the project progressed, the
training application began to focus on scenarios of only a
single fire team of four trainees. Because attackers prefer at
least a 3-to-1 force ratio for urban attack, these scenarios
require only two adversaries working together to provide an
appropriate training experience. However, our implemented
system also supports larger scenarios with teams of five to
eight adversaries defending a building.

In order to perform the required missions, the MOUTBots
required the following capabilities:
4Situational awareness

4 Categorize situation: available weapons, ammo,
enemy, health, level of incoming fire, etc.

4 Record/manage information about threats and
friendly units

4 Identify tactically relevant topology of building
4Movement

4 Move within room, to door ways, and through
doorways (run and walk)

4 Compute paths between rooms; determine visibility
between rooms, note types of rooms, exits, etc.

4 Explore buildings and create an internal map
4Weapons handling & management

4 Reload, unjam weapon
4 Choose weapon based on situation

4Perform specific mission
4 Change mission on command from leader
4 Abandon mission

4Appropriate tactical and mission response
4 Atack with gun and grenade (and rocks)
4 Retreat/Hide and pop out
4 Defend a room

4 Roam
4 Watch for enemy entry (sentry)
4 Surrender

4Communication & coordination via realistic messages
This knowledge is represented as elaborated objects in
memory and operators (implemented via production rules).
Objects. The agent uses object data structures to maintain
situation awareness during execution of a scenario. For
example, the threat data structure is used to maintain
awareness about enemy (i.e., trainee) contacts. The threat
structure includes information about the status of the threat
and current or last known location. Additional situation-
specific information may also be elaborated. For example,
for a visible threat, the threat’s body position, its direction
of movement, whether or not it is firing, its egocentric
location with respect to the agent (near, far; left, right; etc.)
will be asserted. In some situations when the agent cannot
directly observe a known threat, it may make (simple)
predictions about the possible movement of the enemy
which are stored with the threat information.

The building map is the most complex object maintained by
the MOUTBot. The MOUTBot creates its map by exploring
the building before an engagement. It uses map nodes to
build an internal representation of the location and extent of
rooms, doors, and windows. Figure 2 shows a visualization
of the MOUTBot’s internal representation of the map. The
bot is in the lower right corner facing northeast. The semi-
circle shows the bots potential visible areas (it can not see
through walls). Nodes (represented as asterisks) are
embedded in the map. The agent uses these nodes to define
walls (black lines) and connections between rooms. The
agent determines navigable areas within rooms (gray lines).
During exploration, the MOUTBot also analyzes the map to
determine paths between rooms, which are critical for some
of its tactical analysis of threats and safe retreat paths. The
MOUTBot can engage an enemy without a full map;
however, because many of the tactics are dependent on map
information, its behavior will be severely degraded without
it. Thus, the image in Figure 2 is built up by the agent from
its own exploration of the building environment.

Other important objects include mission, a description of
the current mission and the achievement of objectives; and
self, the current assessment of the agent’s capabilities
including health, available weapons, as well as any
customizations that differentiate this agent from others.
Operators. Operators are used to take action in the world,
establish goals, and record persistent facts about the current
situation. For example, the reload operator performs an
action in the environment. The MOUTBots do not count
rounds as they are expended (in contrast to Dirty Harry, but
in agreement with our experts). Reload is proposed after
the agent attempts to fire and receives an error message
from the simulator. This error message corresponds to the
“click” of a trigger to an empty chamber. When reload is
selected, a rule sends the reload command to the simulator.
The simulator will respond by playing an animation

representing the reloading of the weapon and providing
additional rounds to the weapon (assuming the agent has
additional rounds available). During this time, the agent can
do additional reasoning, but it cannot perform any other
actions in the world. The reload error message can trigger
other actions beside reload. For example, if a threat is near,
other operators will be proposed so that the agent might
choose to seek cover before reloading.

Record-threat is an example of an operator that maintains
situation awareness by internally recording information, in
this case, about other agents it has observed. It is invoked
whenever a threat is encountered that the agent has not
previously encountered, when it is loses contact with an
agent (e.g., if the agent passes by a doorway), and when it
encounters an agent it has encountered previously. The
action of the record-threat operator is to add to or update
the threat object with information about the enemy agent.
In the current MOUTBot, the agent discriminates between
individual enemies and makes no mistakes due to
misclassification of a threat (e.g. fratricide), although
introducing human error would require relatively simple
elaborations of the model.

The Retreat operator requires many primitive actions
spread out over time. When retreat is selected, a subgoal is
automatically created (because there are not rules to directly
apply it). In the subgoal, there are additional operators that
perform the necessary actions, including determining where
the greatest threat is (shown as the red line in Figure 2),
picking a door to retreat through (away from the threat),
abandoning the current objective, moving to a new room
and then determining what objective should be pursued in
that room (such as defending the room or further
retreating). Some of these actions require subgoals as well
(such as moving to a new room), and a subgoal stack is
dynamically created. The dynamic context switching
required by the MOUTBots did not require elaborate
knowledge representations because Soar now includes
mechanisms that dynamically capture dependencies between
goals and performs the context switching via architectural
mechanisms (Wray & Laird, 2003a).

Taskability
All agent knowledge (and consequently behavior) is
independent of the specific mission and scenario; the same
set of rules is used for all scenarios and all agents. In order
to define specific scenario with unique roles for different
MOUTBots, a user creates explicit mission tasking within a
single “mission specification” production rule. This
mission specification allows the user to indicate teammates,
fire teams, and a commander(s), the type of mission
(defensive/offensive), each MOUTBot’s role in the mission

(defend area/roam/sentry), initial areas to defend, places to
which to retreat, and the type and direction of expected
threats. Moreover, the leader MOUTBot can issue a limited
set of commands to change the missions of other bots. For
example, if there is an agent performing the sentry mission,
once it sights an enemy approaching the building and
informs others of the approaching threat, it might be
instructed to move to another area and defend that area,
causing it to terminate the sentry objective and initiate a
defend objective.

Observational Fidelity
We did not attempt to make the MOUTBots as realistic as
possible. The MOUT environment has many behavioral
elements to consider for representation, among them
doctrine and tactical knowledge, spatial and temporal
knowledge, coordination and communication with other
entities, courage and cowardice, indecision, leadership,
startle responses, reaction to light, noise, smoke, debris,
emotion, mood, physiological moderators, etc. The
observational fidelity requirement provided a critical guide
for determining what to represent among this imposing list.
We concentrated on those elements observable to trainees
as well as fundamental behaviors such as tactically
appropriate movement, weapons handling, and
communication. This focus allowed us to simplify non-
observable behaviors. For example, trainees should not
generally be able to observe opponents at-ease in a MOUT
situation; thus, MOUTBots “at-ease” simply stand without
moving, fidgeting, etc. Observational fidelity also allowed
us to avoid detailed internal models when the behavioral
role of the model is minimal. For example, although we
implemented a fairly sophisticated ray-tracing model of
peripheral vision, a plane-based model of visual perception
was indistinguishable at the level of behavior from the ray-
tracing model. Although it did not fully represent the
complexities of human peripheral vision, the simpler model
required significantly less computational resources.

Observational fidelity also mandates that any behavior that
is observable should be represented. Thus, agents must not
“cheat” (as in common in commercial computer games).
Agents are limited by the terrain; they do not transport to
other locations, disappear in firefights, etc. Additionally,
they must coordinate as actual human combatants do, by
shared, common knowledge, observation, and
communication when necessary. This requirement also
means that their behavior can be disrupted in the same way
human behavior is and it means that the agents will make
mistakes. For example, if one member of a MOUTBot fire
team decides to exit after observing an enemy, it is possible
that his partner may have not sighted the enemy and may
miss his retreat, unless these events are communicated.

Figure 3. An example of variability in the MOUTBots: Choosing a location from which to defend

Behavior Variability
A difference in observed behavior when entities are placed
in essentially the same situations is the essence of behavior
variability. Capturing variability in synthetic entities is
important because it prepares the trainee for the variability
inherent in human behavior in the real world. As project
SMEs stressed, it is critical to expose trainees to the breadth
of skill levels in the opponent forces. Untrained forces may
behave in ways that are non-optimal and even dangerous for
themselves; however trainees must be prepared to quickly
respond to such behavior with appropriate tactics, even if
they would not use them against a highly trained opponent.

For this project, we focused on behavior variability in
individual agents. If a single agent has little or no variability
in its behavior, it becomes predictable, and a trainee may
attempt to “game” an opponent inappropriately. Rather than
modeling detailed knowledge differences that lead to
different choices or potential sources of variability, our
goal was to create mechanisms that better support
variability in decision making within the agent architecture.
Our hypothesis is that, long-term, it will be less expensive
to introduce factors that influence the decision making
process that can be generalized over many applications
rather than attempting to program (or have an agent learn)
knowledge differences. These variability parameters can be
used to generate within-subject and across-subject
variability without having to model the sources of
variability explicitly. This hypothesis assumes that there are
human behavior moderators that lead to variability, even
when the knowledge of human participants is (more or less)
the same.

Normally, we would encode the best or good choices for a
specific situation. For example, one might only use a

grenade at dynamic tactical junctures, or when faced with
overwhelming firepower. Following this approach, multiple
agents in the simulation and across multiple runs of the
simulation all would exhibit similar behaviors. They would
not use grenades until tactically appropriate situations. In
reality, soldiers make different choices.

We extended Soar’s basic knowledge representation and
modified the Soar decision process to support more varied
option selection. Productions that propose and prefer
operators now include a numeric value, indicating a
“probability” of selection when compared to other, equally
preferable choices. When the options available are all
equally preferable, the values for each option are averaged
and then a random choice made from the normalized
probability distribution of the averaged values.

This new selection mechanism requires a broader
knowledge base than is strictly necessary. When variability
is desired, the knowledge engineer must identify a range of
options rather than one. For example, in the MOUTBots,
target selection was initially based on proximity, which is a
valid, realistic algorithm for selecting targets. To improve
variability, we need to encode multiple target selection
strategies and define simple probability distributions among
these different strategies. In the long-term, agent
development may focus on much more comprehensive
efforts to describe and codify behaviors across many classes
of subjects.

We implemented this simple within-subject approach to
greater variation in decision making. Figure 3 shows an
example of the resulting variability in the MOUTBots. In
this scenario, two MOUTBots move to corner positions in
the room. Agents also choose a body position (standing,
crouched, prone) appropriate for the position. For example,

at positions near the covered doors, agents will stand or
crouch, but not go prone. The figure shows some of the
possible positions that the agents will take, given repeated
execution of the identical scenario. Variability also plays a
role in more dynamic decision making. For example, the
agents have knowledge to recognize some tactically
appropriate situations in which to use a grenade. The
grenade selection knowledge was also encoded for regular
engagements with a low probability. Thus, the user can be
surprised when the MOUTBots unexpectedly throw a
grenade, increasing unpredictability in the user experience.

This new mechanism is still being evaluated and, at this
point, we can not claim that this design for variability in
decision making provides human-like decision making. This
is an empirical question and will require both data on
human variability as well as experimentation to determine
how it provides/fails to provide human-like variability.

Transparency
Because Soar is a symbolic architecture, its knowledge can
be readily understood by non-technical users. For example,
a MOUTBot goal might be to defend a room; a user could
find a “defend-room” goal among the Soar agent’s active
goals. Although this representation facilitates transparency,
alone it does not achieve it because some knowledge of the
run-time aspects of the architecture is needed to extract this
information. For the MOUTBot development, we used an
application specific visualization tool that provides users
the ability to see an agent’s map of its terrain, where it
believes other friendly and enemy agents are located, its
desired movement and targeting goals, and a fine-grained
view of its near-field environment (e.g., whether it was
adjacent to a wall). Figure 2 showed a representation of the
map portion of the tool. For a fielded application, we could
couple the Soar agents with a tool specifically designed to
bridge the gap between the transparency of Soar’s
representation and the extraction of this information from
the agents themselves (Taylor et al, 2002), making it much
easier for non-technical users to understand the decisions
and behavior of Soar agents.

Minimal Computational Footprint
A significant direction Soar development over the past
decade has been improving its performance and it has run as
many as twenty simple bots in UT while maintaining the
game’s frame rate.(Laird et al., 2002). For the MOUTBot
application, as mentioned previously, we used observational
fidelity as a criterion for simplifying the models of
perceptions and actions that would increase computational
overhead. Another significant element of the MOUTBot’s
efficiency is the SGIO interface. SGIO provides both a
socket interface for development and an option to compile
Soar directly into other applications. Using the compiled
connection, we were able to run 5 independent agents while
maintaining a game frame rate of 20 Hz on a 1GHz
Pentium III laptop with ½ GB RAM. While we did not

perform more specific stress tests, this performance was
more than acceptable for the target application, because
only 1 or 2 MOUTBots were needed.

Limitations and Future Work
The MOUTBot is a prototype, a first approximation of the
tremendous behavior space of this domain. It has a number
of limitations, four of which are outlined below.
1. Integration with higher-fidelity simulations: Some

behavior simplifications were dictated by Unreal
Tournament’s simulation limitations, rather than
fundamental limits in the approach. For example, UT
represents entity bodies as cylinders, rather than as
articulating components. While there are some
animations that show specific body movements
(aiming, reloading, walking), it was not feasible to
simulate realistically ones that were not (such as
turning the head or communicating with gestures).
When MOUTBots are integrated with a simulator that
provides more fine-grained representations of the body,
they will need to be extended or combined with other,
existing technologies to capture the kinematics of body
movement and to make control decisions over these
features.

2. Robust models of spatial reasoning: The MOUTBots
are dependent on the nodes embedded in the Unreal
Tournament maps. As described previously, the agents
need representations of walls and doors. In simulators
where these representations are available, more general
models of space and the ability to comprehend and
predict concealment and cover locations will be
required.

3. Fault tolerant execution: Extensions to the agent are
needed so that it can better handle failures itself. In
particular, the current agent lacks common sense
knowledge that would allow it to reflect about its
situation when it found itself unable to execute its
desired task. Such models exist (e.g., Nielsen et al,
2002), so this problem is more of a knowledge
integration challenge than a basic research problem.

4. Requirements analysis & behavior validation: Even
with the behavior variability solutions described above,
competent behavior covers only a narrow part of the
overall behavior space. Fanaticism, “less” competent
behaviors (possibly representing poorly trained
guerillas or novices), additional errors in judgment and
perception, etc. all could be modeled. In order to justify
their cost, these extensions require a thorough
understanding of user requirements in specific training
applications. We attempted to obtain some of this
information by presenting the MOUTBots at various
stages during development to subject matter experts.
These demonstrations resulted in valuable feedback
(e.g., early demos led us to concentrate on variability as
an overall requirement). However, we recognize the
need for more formal validation techniques that would
allow knowledge engineers to evaluate agent behaviors

more directly and quickly. Some recent progress has
been made towards this goal, using the current
MOUTBot prototype as a testbed (Wallace & Laird,
2002).

Conclusions
Achieving intelligent opponents that are fully autonomous,
believable, and interactive, while exhibiting a variety of
behaviors in similar circumstances, will require much
additional research and development. However, we made
significant progress towards these goals. Using computer
game technology allowed us to develop the prototype
MOUTBot entities without a high fidelity simulator. The
Soar cognitive architecture provided efficient execution,
allowing a full complement of opponents to run with the
simulation on standard PC hardware. Soar also facilitated
knowledge reuse, resulting in greater breadth, depth, and
realism in behaviors. We also developed a general
framework for supporting behavioral variability, and
implemented portions of this framework in Soar. Thus, the
MOUTBots, by combining the strengths of human behavior
representation and computer game technology, demonstrate
that realistic, autonomous, embodied intelligent agents can
meet the requirements of interactive, virtual training.

Acknowledgments
This work was sponsored by the Office of Naval Research,
VIRTE Program, contracts N00014-02-C-003 and
N00014-02-1-0009. Kelly McCann and K.C. Pflugler
provided expert opinion about urban combat behaviors.
Portions of this work were reported previously (Wray,
Laird, et al 2002; Wray & Laird 2003). The authors thank
Randolph Jones and Jens Wessling for help in the
development of the MOUTBot and associated software.

References

Adobbati, R., Marshall, A. N., Kaminka, G., Scholer, A., &
Tejada, S. (2001). Gamebots: A 3D Virtual World Test-Bed For
Multi-Agent Research. Paper presented at the 2nd International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS,
Montreal, Canada.
Best, B. J., Lebiere, C., & Scarpinnatto, K. C. (2002). Modeling
Synthetic Opponents in MOUT Training Simulations Using the
ACT-R Cognitive Architecture. Paper presented at the 11th
Conference on Computer Generated Forces and Behavior
Representation, Orlando.
Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P.
G., & Koss, F. V. (1999). Automated Intelligent Pilots for Combat
Flight Simulation. AI Magazine, 20(1), 27-42.
Laird, J. E. (2001a). It Knows What You're Going To Do: Adding
Anticipation to a Quakebot. Paper presented at the Fifth

International Conference on Autonomous Agents (Agents 2001),
Montreal, Canada.
Laird, J. E. (2001b). Using a Computer Game to Develop
Advanced AI. Computer, 34(7), 70-75.
Laird, J. E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S.,
Jones, B., Kerfoot, A., Lauver, C., Magerko, B., Sheiman, J.,
Stokes, D., & Wallace, S. (2002, March). A Test Bed for
Developing Intelligent Synthetic Characters. Paper presented at
the AAAI 2002 Spring Symposium: Artificial Intelligence and
Interactive Entertainment.
Laird, J. E., Jones, R. M., & Nielsen, P. E. (1998). Lessons
learned from TacAir-Soar in STOW-97. Paper presented at the
Seventh Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An
architecture for general intelligence. Artificial Intelligence, 33(3),
1-64.
Newell, A. (1990). Unified Theories of Cognition. Cambridge,
Massachusetts: Harvard University Press.
Nielsen, P., Beard, J., Kiessel, J., & Beisaw, J. (2002). Robust
Behavior Modeling. Paper presented at the 11th Computer
Generated Forces Conference.
Tambe, M. (1997). Towards Flexible Teamwork. Journal of
Artificial Intelligence Research (JAIR), 7, 83-124.
Tambe, M., Johnson, W. L., Jones, R. M., Koss, F. M., Laird, J.
E., Rosenbloom, P. S., & Schwamb, K. B. (1995). Intelligent
Agents for Interactive Simulation Environments. AI Magazine,
16(1), 15-39.
Taylor, G., Jones, R. M., Goldstein, M., Fredericksen, R., &
Wray, R. E. (2002). VISTA: A Generic Toolkit for Agent
Visualization. Paper presented at the 11th Conference on
Computer Generated Forces and Behavioral Representation,
Orlando.
Wallace, S. A., & Laird, J. E. (2002). Toward Automatic
Knowledge Validation. Paper presented at the Eleventh
Conference on Computer Generated Forces and Behavioral
Representation, Orlando, Florida.
Wray, R. E., & Laird, J. E. (2003a). An architectural approach to
consistency in hierarchical execution. Journal of Artificial
Intelligence Research, 19, 355-398.
Wray, R. E., & Laird, J. E. (2003b, May). Variability in Human
Behavior Modeling for Military Simulations. Paper presented at
the Conference on Behavior Representation in Modeling and
Simulation, Scottsdale, AZ.
Wray, R. E., Laird, J. E., Nuxoll, A., & Jones, R. M. (2002).
Intelligent Opponents for Virtual Reality Training. Paper
presented at the Inter-service/Industry Training, Simulation, and
Education Conference (I/ITSEC), Orlando.

