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Abstract 

This paper describes requirements for synthetic adversaries 
for urban combat training and MOUTBots, a prototype 
application. The MOUTBots use a commercial computer 
game to define, implement and test basic behavior 
representation requirements and the Soar architecture as the 
engine for knowledge representation and execution. We 
describe how these components aided the development of 
the prototype and present an initial evaluation against 
competence, taskability, fidelity, variability, transparency, 
and efficiency requirements. 

Introduction   
Offensive urban combat is one of the most difficult tasks 
soldiers perform. Urban combat is characterized by 
building-to-building, room-to-room fighting. Frequent 
training is an essential element in reducing casualties. 
However, training in urban environments is costly and 
restricted to physical mockups of buildings and small 
towns. The Office of Naval Research’s Virtual Training & 
Environments (VIRTE) program is developing immersive 
virtual trainers for military operations on urbanized terrain 
(MOUT). In this trainer, four-person fire teams of U.S. 
Marines will be situated in a virtual urban environment and 
tasked to clear a building, possibly containing enemy 
soldiers. Virtual opponents are required to populate the 
environment and challenge the trainees.  
 
This paper describes the general requirements for opponents 
and our development of synthetic adversaries to meet them. 
The agents are built using the Soar cognitive architecture 
and they interface to a commercial game engine that served 
as an initial development environment.  In order to simplify 
the behaviors that needed to be encoded in the prototype, we 
have initially focused on MOUT behaviors within a 
building. 

Requirements for Synthetic Adversaries 
This application has six major high-level requirements: 
1. Competence: The adversaries must perform the tactics 

and missions humans perform in this domain. For this 
application, the adversaries’ goal is to defend a small 
multi-storied building in teams of 2-5 using assault 
weapons and grenades. The agents must move through 
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the environment, identify tactically relevant features 
(such as escape routes), and communicate and 
coordinate with other agents.  

2. Taskability: The agents must be able to be assigned new 
missions for different training scenarios and they must 
change their objectives during an exercise. 

3. Observational fidelity: The agents do not have to model 
accurately all aspects of human behavior. Instead, they 
must model those aspects of human behavior that are 
observable and relevant to training. 

4. Behavior variability: The agents must not be predictable 
so that the trainees are exposed to many diverse 
experiences. By experiencing many different situations 
and opponent behaviors, unexpected situations will be 
minimized in real life. 

5. Transparency: To allow “after action review,” 
opponents should be able to explain why they went into 
a particular room, or retreated at some juncture in the 
scenario. Explanations are much easier to generate in 
systems that use transparent representations that map 
directly to understood terms. 

6. Minimal computational footprint: This application is 
targeted for personal computers, with a majority of the 
computational processing reserved for graphics and 
physics modeling. Thus, synthetic adversaries will be 
allocated only a small time slice in system execution.  

Related Work 
Possibly the most advanced examples of embedding 
synthetic agents in military simulations are TacAir-Soar and 
RWA-Soar. These systems emulate the behavior of military 
personnel performing missions in fixed-wing and rotary-
wing aircraft and have been used in large-scale military 
training exercises (Jones et al., 1999; Tambe et al., 1995). 
TacAir-Soar and RWA-Soar agents are completely 
autonomous, making decisions based on their awareness of 
the surrounding environment, commands received from 
other entities, and their extensive knowledge of military 
doctrine and tactics. They have the ability to pursue mission 
objects alone, or they can participate in larger groups made 
up of other synthetic agents or even human teammates 
participating via simulators (Laird, Jones, & Nielsen, 
1998). The research described here builds on that prior 
research and extends it to the specific requirements of the 
creating adversaries for MOUT training. The four most 
important areas of differentiation are: 
 



 
 

Figure 1.  The MOUTBot System Architecture 
 
1. Compressed time scale : In TacAir-Soar and RWA-Soar, 

the decision cycle could vary from .25 to .5 seconds 
without significant degradation in observable behavior. 
For MOUT, reaction times must be on the order of .1 
seconds to support realistic behavior (e.g., avoid 
running into walls). Missions in TacAir-Soar and 
RWA-Soar were on the order of an hour, while for the 
MOUT domain, scenarios transpire in minutes.  

2. Loose mission structure, teamwork and coordination: 
Missions could be very complex in the air domain with 
multiple phases to each mission. In addition, a complex 
hierarchical command structure, set by military 
doctrine, coordinated teamwork. For some missions, 
over 30 aircraft could be flying together. In the MOUT 
domain, the missions consist mostly of defending 
specific rooms, with some individual missions. Only 
small numbers of agents work together and there is 
little or no time for complex communication and 
preplanned coordination. In fact, one surprise was that 
the types of coordination required of the adversaries 
was so minimal, that using the coordination schemes 
developed for the air agents (Tambe, 1997) was 
unnecessary.  

3. Indoor spatial reasoning: In the air domain, fine-grained 
spatial reasoning about terrain is unnecessary. For 
indoor combat, agents must understand room geometry 
of as well as the total topology of a building in order to 
set up attacks, ambushes, and retreats. 

4. Behavior variability: In the air domain, the overall 
complexity of the virtual environment provided 
sufficient variability so that the behavior of TacAir-
Soar agents was not predictable. However, this 
application requires a training environment where the 
trainees can be exposed to the same general situation 

many times. As a result, variability in behavior is much 
more important than in TacAir-Soar.  

Another implementation of synthetic adversaries has been 
developed using ACT-R (Best, Lebiere, & Scarpinnatto, 
2002). Their emphasis was to demonstrate the feasibility of 
using ACT-R for controlling synthetic characters and fine-
grained spatial representations; our application was directly 
geared to the requirements of deployment.  
 
Many commercial computer games simulate military 
combat (America’s Army, Operation Flashpoint, Full 
Spectrum Warrior). The adversaries in these games are 
usually scripted or based on simple finite-state machines. 
Thus, they have limited autonomy, little ability to reason on 
the spatial aspects of tactical situations, and can be too 
predictable, possibly leading to negative training.  However, 
more autonomous individual adversaries have also been 
developed for first-person perspective interactive computer 
games (Adobbati, Marshall, et al 2001; Laird, 2001a). 
These “bots” play “deathmatches”, where the rules and 
weapons are significantly different than MOUT 
engagements. They do not meet the list of requirements 
listed above (no individual missions, limited coordination, 
behavior not constrained by real-world military doctrine and 
tactics). However, there is significant overlap in some of 
the underlying capabilities, enough so that the system 
described here was based in part on a bot developed in Soar 
to play Quake (Laird, 2001a, 2001b).  

Overall System Design 

This section introduces MOUTBots, the autonomous, 
intelligent opponents developed to meet the requirements. 
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Here, we briefly review supporting technologies and describe the overall system architecture. 
 

Figure 2. Internal spatial representation in the MOUTBots 

Simulation Environment: Unreal Tournament 
Figure 1 presents the system architecture. The simulation 
environment is realized in an extension of the commercial 
computer game Unreal Tournament (UT) called 
Infiltration1. The UT-Soar-Interface simulates the 
perception and motor actions of our agents in the 
environment and is connected to Soar via Soar General 
Input/Output (SGIO). Each agent is run as an independent 
copy of Soar, the cognitive component of a MOUTBot. 
Soar knowledge is encoded as rules. All of the agents are 
run on a single computer, with the human players running 
on their own computers, networked together.  
 
Unreal Tournament is an off-the-shelf extendable 3D game 
engine that supports networked play. Infiltration provides 
graphics and models of modern weapons (e.g., M-16 rifles), 
more sophisticated models of the impact of wounds, and 
representations of modern army uniforms and equipment. 
All game physics and the game interface are coded in an 
internal scripting language. Using UT’s environment editor, 
we created a synthetic training environment (a 3 story 
building with a variety of rooms and hallways) that 
presented the breadth of training situations as recommended 
by our subject matter experts.  

Perception and Motor Control Module 
We extended Infiltration to include more complete models 
of perception and motor actions. Visual perception is 
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developed by Sentry Studios.  

challenging because of the difficulty of sensing walls (and 
doors) in simulation environments. Processing the internal 
Unreal data structures to detect walls, doors and other 
environmental features would be computationally 
prohibitive. To circumvent these challenges, we introduced 
a number of simplifications based on an annotated map. 
 
Figure 2 illustrates an example map. Each agent receives an 
annotated map with nodes that define the boundaries of 
each room. This allows an agent to determine the room in 
which it is located. Nodes are also placed in the map at 
connections (doors, windows) between areas. The 
MOUTBots use the nodes to build up a topological map of 
the building. The interface supports the motor actions 
required by adversaries, including walking, running, 
shooting (aiming, firing, reloading), grenade throwing, as 
well as postures other than standing (crouching, kneeling). 

Cognitive Architecture: Soar 
The cognitive component of the synthetic adversaries is 
implemented in the Soar cognitive architecture (Laird, 
Newell, & Rosenbloom, 1987; Newell, 1990). In Soar, all 
long-term knowledge is encoded as production rules, while 
the current situation (perception, situational awareness, 
mission information, and goals) is encoded in declarative 
data structures comprising its state. The rules in Soar match 
against the state and propose operators to apply to the 
current situation. Primitive operators send commands to the 
motor system. Complex operators are dynamically 
converted to subgoals that are then pursued by once again 
having rules select and apply operators in the subgoals, 
eventually resulting in operators that execute primitive 



actions. Recent versions of Soar now also include belief 
and goal maintenance mechanisms (Wray & Laird, 2003a). 
These mechanisms improve robustness and simplify 
knowledge development, contributing to our ability to 
encode a complex behavior system quickly. 

Meeting the Requirements 
The MOUTBot consists of over 25 major data structures 
and 800 production rules (which implement 120 operators). 
This section outlines some of the knowledge encoded in the 
MOUTBots and how this knowledge is applied to generate 
behavior, addressing each of the above requirements. 

Competence 
To create competent adversaries for MOUT training, we 
studied available literature (field manuals and historical 
accounts) and interviewed experts. We discovered there is 
little written doctrine for urban combat defense, so we 
relied heavily on human subject matter experts (SMEs). We 
developed synthetic adversaries that could play many 
different roles: defending a room, acting as a sentry (by 
watching through a window), defending a hallway, and 
acting as the leader of the group – giving commands to 
reposition, retreat or attack. As the project progressed, the 
training application began to focus on scenarios of only a 
single fire team of four trainees. Because attackers prefer at 
least a 3-to-1 force ratio for urban attack, these scenarios 
require only two adversaries working together to provide an 
appropriate training experience. However, our implemented 
system also supports larger scenarios with teams of five to 
eight adversaries defending a building.  
 
In order to perform the required missions, the MOUTBots 
required the following capabilities:  
4Situational awareness 

4 Categorize situation: available weapons, ammo, 
enemy, health, level of incoming fire, etc. 

4 Record/manage information about threats and 
friendly units  

4 Identify tactically relevant topology of building 
4Movement  

4 Move within room, to door ways, and through 
doorways (run and walk) 

4 Compute paths between rooms; determine visibility 
between rooms, note types of rooms, exits, etc. 

4 Explore buildings and create an internal map 
4Weapons handling & management 

4 Reload, unjam weapon 
4 Choose weapon based on situation 

4Perform specific mission 
4 Change mission on command from leader 
4 Abandon mission 

4Appropriate tactical and mission response 
4 Atack with gun and grenade (and rocks) 
4 Retreat/Hide and pop out 
4 Defend a room 

4 Roam 
4 Watch for enemy entry (sentry) 
4 Surrender 

4Communication & coordination via realistic messages 
This knowledge is represented as elaborated objects in 
memory and operators (implemented via production rules).  
Objects. The agent uses object data structures to maintain 
situation awareness during execution of a scenario. For 
example, the threat data structure is used to maintain 
awareness about enemy (i.e., trainee) contacts. The threat 
structure includes information about the status of the threat 
and current or last known location. Additional situation-
specific information may also be elaborated. For example, 
for a visible threat, the threat’s body position, its direction 
of movement, whether or not it is firing, its egocentric 
location with respect to the agent (near, far; left, right; etc.) 
will be asserted. In some situations when the agent cannot 
directly observe a known threat, it may make (simple) 
predictions about the possible movement of the enemy 
which are stored with the threat information.  
 
The building map is the most complex object maintained by 
the MOUTBot. The MOUTBot creates its map by exploring 
the building before an engagement. It uses map nodes to 
build an internal representation of the location and extent of 
rooms, doors, and windows. Figure 2 shows a visualization 
of the MOUTBot’s internal representation of the map. The 
bot is in the lower right corner facing northeast. The semi-
circle shows the bots potential visible areas (it can not see 
through walls). Nodes (represented as asterisks) are 
embedded in the map. The agent uses these nodes to define 
walls (black lines) and connections between rooms. The 
agent determines navigable areas within rooms (gray lines). 
During exploration, the MOUTBot also analyzes the map to 
determine paths between rooms, which are critical for some 
of its tactical analysis of threats and safe retreat paths. The 
MOUTBot can engage an enemy without a full map; 
however, because many of the tactics are dependent on map 
information, its behavior will be severely degraded without 
it. Thus, the image in Figure 2 is built up by the agent from 
its own exploration of the building environment.  
 
Other important objects include mission, a description of 
the current mission and the achievement of objectives; and 
self, the current assessment of the agent’s capabilities 
including health, available weapons, as well as any 
customizations that differentiate this agent from others. 
Operators.  Operators are used to take action in the world, 
establish goals, and record persistent facts about the current 
situation. For example, the reload operator performs an 
action in the environment. The MOUTBots do not count 
rounds as they are expended (in contrast to Dirty Harry, but 
in agreement with our experts). Reload is proposed after 
the agent attempts to fire and receives an error message 
from the simulator. This error message corresponds to the 
“click” of a trigger to an empty chamber. When reload is 
selected, a rule sends the reload command to the simulator. 
The simulator will respond by playing an animation 



representing the reloading of the weapon and providing 
additional rounds to the weapon (assuming the agent has 
additional rounds available). During this time, the agent can 
do additional reasoning, but it cannot perform any other 
actions in the world. The reload error message can trigger 
other actions beside reload. For example, if a threat is near, 
other operators will be proposed so that the agent might 
choose to seek cover before reloading.  
 
Record-threat is an example of an operator that maintains 
situation awareness by internally recording information, in 
this case, about other agents it has observed. It is invoked 
whenever a threat is encountered that the agent has not 
previously encountered, when it is loses contact with an 
agent (e.g., if the agent passes by a doorway), and when it 
encounters an agent it has encountered previously. The 
action of the record-threat operator is to add to or update 
the threat object with information about the enemy agent. 
In the current MOUTBot, the agent discriminates between 
individual enemies and makes no mistakes due to 
misclassification of a threat (e.g. fratricide), although 
introducing human error would require relatively simple 
elaborations of the model.  
 
The Retreat operator requires many primitive actions 
spread out over time. When retreat is selected, a subgoal is 
automatically created (because there are not rules to directly 
apply it). In the subgoal, there are additional operators that 
perform the necessary actions, including determining where 
the greatest threat is (shown as the red line in Figure 2), 
picking a door to retreat through (away from the threat), 
abandoning the current objective, moving to a new room 
and then determining what objective should be pursued in 
that room (such as defending the room or further 
retreating). Some of these actions require subgoals as well 
(such as moving to a new room), and a subgoal stack is 
dynamically created. The dynamic context switching 
required by the MOUTBots did not require elaborate 
knowledge representations because Soar now includes 
mechanisms that dynamically capture dependencies between 
goals and performs the context switching via architectural 
mechanisms (Wray & Laird, 2003a). 

Taskability 
All agent knowledge (and consequently behavior) is 
independent of the specific mission and scenario; the same 
set of rules is used for all scenarios and all agents. In order 
to define specific scenario with unique roles for different 
MOUTBots, a user creates explicit mission tasking within a 
single “mission specification” production rule. This 
mission specification allows the user to indicate teammates, 
fire teams, and a commander(s), the type of mission 
(defensive/offensive), each MOUTBot’s role in the mission 

(defend area/roam/sentry), initial areas to defend, places to 
which to retreat, and the type and direction of expected 
threats. Moreover, the leader MOUTBot can issue a limited 
set of commands to change the missions of other bots. For 
example, if there is an agent performing the sentry mission, 
once it sights an enemy approaching the building and 
informs others of the approaching threat, it might be 
instructed to move to another area and defend that area, 
causing it to terminate the sentry objective and initiate a 
defend objective. 

Observational Fidelity 
We did not attempt to make the MOUTBots as realistic as 
possible. The MOUT environment has many behavioral 
elements to consider for representation, among them 
doctrine and tactical knowledge, spatial and temporal 
knowledge, coordination and communication with other 
entities, courage and cowardice, indecision, leadership, 
startle responses, reaction to light, noise, smoke, debris, 
emotion, mood, physiological moderators, etc. The 
observational fidelity requirement provided a critical guide 
for determining what to represent among this imposing list. 
We concentrated on those elements observable to trainees 
as well as fundamental behaviors such as tactically 
appropriate movement, weapons handling, and 
communication. This focus allowed us to simplify non-
observable behaviors. For example, trainees should not 
generally be able to observe opponents at-ease in a MOUT 
situation; thus, MOUTBots “at-ease” simply stand without 
moving, fidgeting, etc. Observational fidelity also allowed 
us to avoid detailed internal models when the behavioral 
role of the model is minimal. For example, although we 
implemented a fairly sophisticated ray-tracing model of 
peripheral vision, a plane-based model of visual perception 
was indistinguishable at the level of behavior from the ray-
tracing model. Although it did not fully represent the 
complexities of human peripheral vision, the simpler model 
required significantly less computational resources. 
 
Observational fidelity also mandates that any behavior that 
is observable should be represented. Thus, agents must not 
“cheat” (as in common in commercial computer games). 
Agents are limited by the terrain; they do not transport to 
other locations, disappear in firefights, etc. Additionally, 
they must coordinate as actual human combatants do, by 
shared, common knowledge, observation, and 
communication when necessary. This requirement also 
means that their behavior can be disrupted in the same way 
human behavior is and it means that the agents will make 
mistakes. For example, if one member of a MOUTBot fire 
team decides to exit after observing an enemy, it is possible 
that his partner may have not sighted the enemy and may 
miss his retreat, unless these events are communicated. 

 



Figure 3. An example of variability in the MOUTBots: Choosing a location from which to defend 
 

Behavior Variability 
A difference in observed behavior when entities are placed 
in essentially the same situations is the essence of behavior 
variability. Capturing variability in synthetic entities is 
important because it prepares the trainee for the variability 
inherent in human behavior in the real world. As project 
SMEs stressed, it is critical to expose trainees to the breadth 
of skill levels in the opponent forces. Untrained forces may 
behave in ways that are non-optimal and even dangerous for 
themselves; however trainees must be prepared to quickly 
respond to such behavior with appropriate tactics, even if 
they would not use them against a highly trained opponent.  
 
For this project, we focused on behavior variability in 
individual agents. If a single agent has little or no variability 
in its behavior, it becomes predictable, and a trainee may 
attempt to “game” an opponent inappropriately. Rather than 
modeling detailed knowledge differences that lead to 
different choices or potential sources of variability, our 
goal was to create mechanisms that better support 
variability in decision making within the agent architecture. 
Our hypothesis is that, long-term, it will be less expensive 
to introduce factors that influence the decision making 
process that can be generalized over many applications 
rather than attempting to program (or have an agent learn) 
knowledge differences. These variability parameters can be 
used to generate within-subject and across-subject 
variability without having to model the sources of 
variability explicitly. This hypothesis assumes that there are 
human behavior moderators that lead to variability, even 
when the knowledge of human participants is (more or less) 
the same. 
 
Normally, we would encode the best or good choices for a 
specific situation. For example, one might only use a 

grenade at dynamic tactical junctures, or when faced with 
overwhelming firepower. Following this approach, multiple 
agents in the simulation and across multiple runs of the 
simulation all would exhibit similar behaviors. They would 
not use grenades until tactically appropriate situations. In 
reality, soldiers make different choices.  
 
We extended Soar’s basic knowledge representation and 
modified the Soar decision process to support more varied 
option selection. Productions that propose and prefer 
operators now include a numeric value, indicating a 
“probability” of selection when compared to other, equally 
preferable choices. When the options available are all 
equally preferable, the values for each option are averaged 
and then a random choice made from the normalized 
probability distribution of the averaged values.  
 
This new selection mechanism requires a broader 
knowledge base than is strictly necessary. When variability 
is desired, the knowledge engineer must identify a range of 
options rather than one. For example, in the MOUTBots, 
target selection was initially based on proximity, which is a 
valid, realistic algorithm for selecting targets. To improve 
variability, we need to encode multiple target selection 
strategies and define simple probability distributions among 
these different strategies. In the long-term, agent 
development may focus on much more comprehensive 
efforts to describe and codify behaviors across many classes 
of subjects. 
 
We implemented this simple within-subject approach to 
greater variation in decision making. Figure 3 shows an 
example of the resulting variability in the MOUTBots. In 
this scenario, two MOUTBots move to corner positions in 
the room. Agents also choose a body position (standing, 
crouched, prone) appropriate for the position. For example, 



at positions near the covered doors, agents will stand or 
crouch, but not go prone. The figure shows some of the 
possible positions that the agents will take, given repeated 
execution of the identical scenario. Variability also plays a 
role in more dynamic decision making. For example, the 
agents have knowledge to recognize some tactically 
appropriate situations in which to use a grenade. The 
grenade selection knowledge was also encoded for regular 
engagements with a low probability. Thus, the user can be 
surprised when the MOUTBots unexpectedly throw a 
grenade, increasing unpredictability in the user experience.  
 
This new mechanism is still being evaluated and, at this 
point, we can not claim that this design for variability in 
decision making provides human-like decision making. This 
is an empirical question and will require both data on 
human variability as well as experimentation to determine 
how it provides/fails to provide human-like variability. 

Transparency 
Because Soar is a symbolic architecture, its knowledge can 
be readily understood by non-technical users. For example, 
a MOUTBot goal might be to defend a room; a user could 
find a “defend-room” goal among the Soar agent’s active 
goals. Although this representation facilitates transparency, 
alone it does not achieve it because some knowledge of the 
run-time aspects of the architecture is needed to extract this 
information. For the MOUTBot development, we used an 
application specific visualization tool that provides users 
the ability to see an agent’s map of its terrain, where it 
believes other friendly and enemy agents are located, its 
desired movement and targeting goals, and a fine-grained 
view of its near-field environment (e.g., whether it was 
adjacent to a wall). Figure 2 showed a representation of the 
map portion of the tool. For a fielded application, we could 
couple the Soar agents with a tool specifically designed to 
bridge the gap between the transparency of Soar’s 
representation and the extraction of this information from 
the agents themselves (Taylor et al, 2002), making it much 
easier for non-technical users to understand the decisions 
and behavior of Soar agents. 

Minimal Computational Footprint 
A significant direction Soar development over the past 
decade has been improving its performance and it has run as 
many as twenty simple bots in UT while maintaining the 
game’s frame rate.(Laird et al., 2002). For the MOUTBot 
application, as mentioned previously, we used observational 
fidelity as a criterion for simplifying the models of 
perceptions and actions that would increase computational 
overhead. Another significant element of the MOUTBot’s 
efficiency is the SGIO interface. SGIO provides both a 
socket interface for development and an option to compile 
Soar directly into other applications. Using the compiled 
connection, we were able to run 5 independent agents while 
maintaining a game frame rate of 20 Hz on a 1GHz 
Pentium III laptop with ½ GB RAM. While we did not 

perform more specific stress tests, this performance was 
more than acceptable for the target application, because 
only 1 or 2 MOUTBots were needed.  

Limitations and Future Work 
The MOUTBot is a prototype, a first approximation of the 
tremendous behavior space of this domain. It has a number 
of limitations, four of which are outlined below.  
1. Integration with higher-fidelity simulations: Some 

behavior simplifications were dictated by Unreal 
Tournament’s simulation limitations, rather than 
fundamental limits in the approach. For example, UT 
represents entity bodies as cylinders, rather than as 
articulating components. While there are some 
animations that show specific body movements 
(aiming, reloading, walking), it was not feasible to 
simulate realistically ones that were not (such as 
turning the head or communicating with gestures). 
When MOUTBots are integrated with a simulator that 
provides more fine-grained representations of the body, 
they will need to be extended or combined with other, 
existing technologies to capture the kinematics of body 
movement and to make control decisions over these 
features.  

2. Robust models of spatial reasoning: The MOUTBots 
are dependent on the nodes embedded in the Unreal 
Tournament maps. As described previously, the agents 
need representations of walls and doors. In simulators 
where these representations are available, more general 
models of space and the ability to comprehend and 
predict concealment and cover locations will be 
required. 

3. Fault tolerant execution: Extensions to the agent are 
needed so that it can better handle failures itself. In 
particular, the current agent lacks common sense 
knowledge that would allow it to reflect about its 
situation when it found itself unable to execute its 
desired task. Such models exist (e.g., Nielsen et al, 
2002), so this problem is more of a knowledge 
integration challenge than a basic research problem. 

4. Requirements analysis & behavior validation: Even 
with the behavior variability solutions described above, 
competent behavior covers only a narrow part of the 
overall behavior space. Fanaticism, “less” competent 
behaviors (possibly representing poorly trained 
guerillas or novices), additional errors in judgment and 
perception, etc. all could be modeled. In order to justify 
their cost, these extensions require a thorough 
understanding of user requirements in specific training 
applications.  We attempted to obtain some of this 
information by presenting the MOUTBots at various 
stages during development to subject matter experts.  
These demonstrations resulted in valuable feedback 
(e.g., early demos led us to concentrate on variability as 
an overall requirement).  However, we recognize the 
need for more formal validation techniques that would 
allow knowledge engineers to evaluate agent behaviors 



more directly and quickly. Some recent progress has 
been made towards this goal, using the current 
MOUTBot prototype as a testbed (Wallace & Laird, 
2002).   

Conclusions 
Achieving intelligent opponents that are fully autonomous, 
believable, and interactive, while exhibiting a variety of 
behaviors in similar circumstances, will require much 
additional research and development. However, we made 
significant progress towards these goals. Using computer 
game technology allowed us to develop the prototype 
MOUTBot entities without a high fidelity simulator. The 
Soar cognitive architecture provided efficient execution, 
allowing a full complement of opponents to run with the 
simulation on standard PC hardware.  Soar also facilitated 
knowledge reuse, resulting in greater breadth, depth, and 
realism in behaviors. We also developed a general 
framework for supporting behavioral variability, and 
implemented portions of this framework in Soar. Thus, the 
MOUTBots, by combining the strengths of human behavior 
representation and computer game technology, demonstrate 
that realistic, autonomous, embodied intelligent agents can 
meet the requirements of interactive, virtual training.  
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