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Abstract 

Action modeling is an important skill for agents that must 
perform tasks in novel domains. Previous work on action 
modeling has focused on learning STRIPS operators in 
discrete, relational domains. There has also been a separate 
vein of work in continuous function approximation for use 
in optimal control in robotics. Most real world domains are 
grounded in continuous dynamics but also exhibit emergent 
regularities at an abstract relational level of description. 
These two levels of regularity are often difficult to capture 
using a single action representation and learning method. In 
this paper we describe a system that combines discrete and 
continuous action modeling techniques in the Soar cognitive 
architecture. Our system accepts a continuous state 
representation from the environment and derives a relational 
state on top of it using spatial relations. The dynamics over 
each representation is learned separately using two simple 
instance-based algorithms. The predictions from the 
individual models are then combined in a way that takes 
advantage of the information captured by each 
representation. We empirically show that this combined 
model is more accurate and generalizable than each of the 
individual models in a spatial navigation domain. 
 

 Introduction   

An intelligent agent that wishes to plan in an environment 

must have an internal model of how the environment 

changes in response to its actions. We call such a model an 

action model. Traditionally, action models have been 

provided to the agent a priori using hand-coded 

representations such as STRIPS operators. However, if the 

agent needs to plan in a novel environment, then it must 

learn the action model from experience. We call this 

learning process action modeling. 

 Traditionally, action modeling has been studied in the 

context of learning STRIPS operators (Carbonell & Gil 

1990, Wang 1995, Pasula et. al. 2007, Xu & Laird 2010). 

These methods involved learning the pre- and post-

condition lists of a given set of STRIPS operators by 
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observing examples of their execution. These methods are 

confined to relational domains. 

 There has also been work in robotics on learning models 

for continuous environments. Most of these methods 

represent the environment state as a vector of real numbers 

and use function approximators to learn a continuous 

function �(�, �) → �, where x is the current state, u is the 
action taken, y is the resultant state. Many general function 

approximation methods such as radial basis functions, 

neural networks, and regression trees have been applied to 

this problem. In this paper we will use locally weighted 

learning (Atkeson et. al. 1997) for its simplicity and power.  

 Realistic problems exhibit a combination of discrete and 

continuous dynamics. For example, the trajectory of a ball 

traveling through the air follows a smooth and continuous 

function, but undergoes a sudden qualitative change when 

with the ball hits the ground. While discrete and 

continuous action modeling can individually address these 

domains to some extent, it is not natural or easy. A 

complex scene consisting of many objects can be 

approximately described by a large number of spatial 

predicates such as left-of, on-top, etc., and changes to the 

scene can be encoded as predicate value changes. However 

the Poverty Conjecture (Forbus et al. 1991) argues that no 

single general set of spatial relations can fully capture all 

the information encoded in a continuous scene. As an 

example, consider a fast-moving car turning a corner. It is 

difficult to use a set of spatial predicates to distinguish 

between cases where the car will successfully make the 

turn and cases where it will not.  

 Continuous models can accurately represent such 

continuous dynamics, but are weak at capturing relational 

dynamics. Although they are capable of generalization  by 

smoothing the learned function around the neighborhoods 

of training examples, continuous models have difficulty 

generalizing across higher-order regularities such as how 

the trajectories of two balls change in a collision unless 

relevant metrics such as the distance between the two balls 

are explicitly included in the state vector. 

 Recent work in robotics (Plaku & Hager 2010, Choi & 

Amir 2009) has explored combining robot motion planning 



techniques with classical planning techniques in mixed 

discrete/continuous domains. However, these methods 

assume that the agents have hand-coded models of both the 

continuous and relational dynamics of the environment. 

Hybrid automata are a popular approach to modeling these 

domains in the controls literature, but we have not found 

any work on learning hybrid automata structure from 

experience. 

 In this paper, we integrate a learning algorithm for 

continuous action modeling with a learning algorithm for 

relational action modeling. Although the two algorithms 

operate independently with different representations and on 

different time scales, they are embedded together in the 

Soar cognitive architecture (Laird 2009). The combination 

outperforms the individual approaches in an example 

domain that has both continuous and discrete dynamics. 

The Rooms Environment 

The test environment that we use throughout the paper is 

called the Rooms environment. This environment consists 

of an agent embodied as a moving square navigating 

among a set of connected rooms. Each room has one 

switch in the form of a floor tile and one door that leads to 

another room. Initially all doors are closed. When the agent 

moves over a switch, the door leading to the next room 

slides open. The environment’s state is represented as a 

vector of real numbers (Figure 1.a). The vector contains 

the x, y coordinates of the agent, rooms, doors, and 

switches. The agent’s output is a vector of two numbers 

representing its vertical and horizontal velocities. The 

environment has discrete time and changes in lock step 

with the agent. At every time step, the environment sends 

its state vector to the agent, who must then specify its 

horizontal and vertical velocities for the next time step. 

The environment then updates its state based on those 

inputs and repeats the loop. 

System 

The agent is implemented in the Soar cognitive 

architecture. Soar combines multiple memory, learning, 

and decision mechanisms. Soar’s working memory and 

long-term procedural memory mediate the interactions 

between all other components. Working memory encodes 

information as a labeled, directed graph structure. 

Production rules test for the presence of specific 

substructures in the working memory graph and fire when 

those structures are present, making changes to working 

memory. Productions can initiate action in and receive 

responses from other Soar modules by testing for and 

creating structures in designated parts of working memory 

that are monitored by the components. 

 Soar also has an episodic memory (Nuxoll & Laird 

2007, Derbinsky & Laird 2009) that automatically records 

the state of working memory at fixed intervals, a semantic 

memory for storing long-term declarative facts, and the 

Spatial Visual System (SVS; Wintermute 2010) for 

reasoning about continuous spatial scenes. In this paper we 

are only concerned with episodic memory and SVS.  

Episodic Memory 

The episodic memory mechanism stores periodic snapshots 

of working memory in an independent long-term memory. 

Each snapshot is called an episode. Stored episodes can be 

retrieved into working memory by querying episodic 

memory with a cue. The cue specifies a subset of the 

episode that the agent wants to retrieve. The episodic 

memory mechanism returns the episode that shares the 

most common substructure with the cue. We describe later 

how we use this structure-matching mechanism to 

implement a relational action model learner. 

SVS 

SVS mediates between a continuous environment and 

Soar’s symbolic working memory. The environment 

deposits its state in SVS as a vector of continuous numbers 

(Figure 1.a). The numbers represent the centroid positions 

(x, y, z), rotations (roll, pitch, yaw), and scaling factors (sx, 

sy, sz) of all objects in the environment. Associated with 

each object is also a 3D geometry defined as a convex hull 

over a point cloud. For the Rooms environment, we use 

only two dimensional coordinates and ignore rotation and 

scaling. 

 SVS encodes the environmental state in a continuous 

spatial scene buffer (Figure 1.b). The agent reasons about 

the continuous scene by querying for the truth values of 

spatial literals. For example, the agent can ask SVS 

whether the convex hulls of two objects intersect. 

Currently SVS contains a fixed set of basic innate spatial 

predicates, including intersection, containment, and 

alignment. The result of a query is placed into Soar’s 

working memory. By using an appropriate set of queries, 

the agent can create a relational representation of the 

spatial scene in working memory. For the Rooms 

environment, the agent queries for containment 

relationships between rooms and the agent, doors, and 

switches, and also intersection relationships between the 

agent and switches and between rooms. The relational state 

is encoded as a bipartite graph with a set of literal vertices 

and a set of object vertices (Figure 1.c). Edges connect 

each literal vertex with the object vertices corresponding to 

its arguments. Each literal vertex is labeled as either true or 

false with the result of the corresponding query.  

 One of the contributions of this paper is the addition of 

continuous model learning and continuous control 



subcomponents to SVS. The model learning component is 

described in detail below. 

Continuous Controller 

The controller mediates between the discrete actions 

generated by production rules and the continuous outputs 

to the environment. Discrete actions are defined as desired 

changes to predicate values. For example, when the agent 

is not on a switch, it can instruct the controller to make the 

literal intersect(agent, r0_switch) true, i.e., it wants to 

move to the switch. In order to translate this command into 

continuous outputs, the controller needs to know what 

outputs will take the environment towards a state where the 

predicate is true.  

 We associate each spatial literal with an objective 

function over continuous states that has a global minimum 

at a state where the literal is true. For example, we take the 

objective function for the literal intersect(a, b) to be the 

squared Euclidean distance between the centroids of a and 

b. Given a command to change the value of a certain 

literal, the continuous controller follows the gradient of the 

objective function until either the desired literal is achieved 

or a local minimum is reached. It does this by sampling the 

range of possible outputs at each time step, predicting the 

next state resulting from using that sample with the learned 

continuous model, and calculating the value of the 

objective function at that state. It then chooses the output 

that results in the lowest next objective value, and repeats. 

Hence the controller implements a greedy search. 

 Even though the agent specifies only one literal to 

change per discrete action, it is often the case that other 

literals will change while executing the action. For 

example, if the agent is in room r1 and moves to make 

intersect(agent, r2_switch) true where r2_switch is located 

in room r2, then it will also have made contains(r2, agent) 

true and contains(r1, agent) false in the process. 

Furthermore, the controller can reach local minimums 

before achieving the desired literal. For example, if the 

agent wishes to enter a room whose door is closed, then the 

controller will become trapped in a local minimum next to 

the door.  The agent must then take a different discrete 

action to make progress. 

  

Learning Action Models 

In the context of our system, we define the action model to 

predict the literal changes in the relational state that results 

from taking a discrete action. Even though our system is 

also capable of making predictions about changes to the 

continuous state, we are mainly concerned with relational 

predictions because goals are usually given to the agent as 

relational conditions. For example, a goal in the Rooms 

environment may be for the agent to move into a certain 

room rg, which corresponds to making contains(rg, agent) 

true. 

Learning Continuous Action Models 

Given a vector state x and a motor output u, the purpose of 

the continuous model is to predict the resultant vector state 

y. In other words it must approximate the environment 

function �(�, �) → �. We use locally weighted learning to 
learn the model. Locally weighted learning is an instance-

based learning technique that combines nearest neighbor 

and linear regression. For each time step elapsed in the 

environment, the model stores the observed tuple (�, �, �) 
in a database. To make a prediction for a state and output 

(�′, �′), the model first chooses k closest training samples 
to (�′, �′) and performs a linear regression on them. The 

 

Figure 1. System and representations overview. 
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resulting local linear model is then used to make the 

prediction. This approach is online and incremental, and 

has been shown to provide good generalization as well as 

being able to fit arbitrarily complex functions. We set k at 

20 for the experiments in this paper. 

 To make a prediction about which literals change as a 

result of performing some discrete action, SVS simulates 

the controller’s trajectory using the continuous model 

rather than sending it to the environment. At each step, the 

model updates the spatial scene based on its prediction. 

These changes to the scene appear in working memory as 

if they were caused by the environment. This kind of 

transparency allows the same set of production rules to 

control both actions taken in the environment as well as in 

simulation. 

Learning Relational Action Models 

The relational model makes direct predictions about how 

the relational state changes as a result of discrete actions 

issued to the controller. This is similar to the problem of 

learning STRIPS operators from example transitions. We 

use an instance-based algorithm that is both online and 

incremental first described in (Xu & Laird 2010). 

 The agent stores each transition it experiences in its 

episodic memory as a pair of adjacent episodes. To make a 

prediction about which literals change from taking action a 

in state s, our algorithm first queries episodic memory for a 

state t that is similar to s where a was also performed. We 

retrieve t with a cue that includes the discrete action, a 

subset of the literal graph, and type information (i.e. 

containment literals can only map to containment literals 

and doors can only map to doors) but not the names of 

objects. Therefore, the algorithm generalizes training 

instances to all situations with similar relational structure 

modulo object names. 

 Next, the algorithm retrieves episode t’ that immediately 

follows t. The two episodes are compared to find the literal 

changes that occurred, and then those changes are 

analogically mapped back into s. The analogical mapping 

algorithm is similar to the one used in the Structure 

Matching Engine (Falkenheiner 1989). The intuition is that 

since s and t are relationally similar, the changes that occur 

between t and t’ will be relationally similar to the changes 

that will occur in s. 

The Combined Model 

We now describe how the two models are combined to 

make a final prediction. Figure 2 shows an example 

walkthrough of this process. The agent first makes multiple 

predictions with its relational model using different 

retrieved episodes. Because important spatial information 

may be missing from episodic memory or the retrieval cue, 

episodes with different spatial properties will structurally 

match the initial state equally well. In the example, the cue 

used does not specify the relationship between the agent’s 

current room and the room containing the switch, so one of 

the retrieved episodes is of the agent moving to a switch in 

the same room (N) while the other is of the agent moving 

to a different room (M). 

 In order to determine which retrieval is correct, the agent 

makes a prediction using the continuous model. Since the 

continuous model’s prediction is based on a simulation 

instead of an analogical mapping, it takes into account all 

the spatial information in the scene. In the example, the 

continuous model correctly predicts that the agent will 

enter another room when it tries to hit the switch. 

However, the continuous model is poor at generalizing 

over relational dynamics, and it doesn’t predict that hitting 

the switch will open the door, because in the agent’s 

training examples the switch was in a different location. To 

make the final prediction, we assume that the literal 

changes agreed upon by all the relational model predictions 

are valid, and for the literal changes that are not in 

agreement, we take the predictions from the continuous 

model. In the example, the agent combines the agreed upon 

predictions about the door opening with the predictions 

about the agent changing rooms from the continuous model 

to make the correct final prediction. 

 

 

Figure 2. Example walkthrough of the combined model making a 

prediction. Two predictions are made by the relational model, 

one that predicts the agent will change rooms (contains(R0, 

Agent) is made false and contains(R1, Agent) is made true) and 

another that does not. Both agree on the opening of the door 

(contains(R1, R1_Door) is made false). The continuous model is 

used to resolve the disagreement in favor of the room change. 

The final prediction includes both the room change and the door 

opening. 
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Experiments 

To measure the advantage gained by combining the 

relational and continuous models, we tested the prediction 

accuracy of the continuous model alone, the relational 

model alone, and the combined model on random 

transitions in the Rooms environment.  

 To train the agent for each condition, we repeatedly 

instantiate the agent in randomly generated states in the 

Rooms environment. The state always consists of four 

rooms with one switch each and doors separating them. 

The doors are randomly chosen to be open or closed. For a 

single agent, the positions of the switches in the rooms are 

fixed. This prevents the continuous model from  smoothing 

over training examples where the same switch is in 

different places and as a result incorrectly predicting that 

the switch moves.  

 The agent first wanders for ten steps, adding ten samples 

to its continuous model, and then attempts to change a 

randomly chosen literal. This results in the agent traversing 

a trajectory along the literal’s gradient and further adds a 

number of samples to its continuous model. This entire 

training sequence adds exactly two episodes to the agent’s 

episodic memory: an episode before attempting to change 

the literal and an episode after. We repeat this training 

procedure on all 168 combinations of door configuration 

and discrete actions for one configuration of switches.  

 In preliminary experiments we found that the continuous 

model trained in this way did not consistently learn that 

doors impeded movement. This is because when making a 

prediction for a location close to a door, the nearest 

neighbor search will return training examples of the agent 

on both sides of the door. While the training examples on 

one side of the door suggest that the agent will be blocked 

by the door, the examples on the other side suggest that the 

agent will move unimpeded. The weighted linear 

regression smoothes over these examples and predicts that 

the agent’s movement will be slowed by the door but not 

stopped. Because allowing movement through doors is 

tantamount to ignoring all spatial aspects of the problem, 

we manually added knowledge to the agent to stop a 

simulation as if a local minimum was encountered 

whenever the agent intersected a door. As discussed 

before, not being able to accommodate abrupt changes in 

the dynamics of the world is a general problem with 

continuous function approximators. Since we are using the 

continuous model to primarily help in generalization of the 

relational model, this piece of a priori knowledge does not 

invalidate our results. However, it is a problem we will 

address in future work. 

 At the intervals where the agent has experienced 10, 30, 

50, 100, and 168 training examples, we test the agent’s 

prediction performance on a distinct test set of 50 

randomly generated combinations of initial states and 

discrete actions. The same 50 test combinations are used at 

each interval. We measure the agent’s performance by the 

average number of incorrect literals it predicts. 1.75 

predicates changed in each test transition on average, with 

a maximum of 10. The results averaged over 24 random 

switch configurations are shown in Figure 3. As the plot 

shows, while the relational model alone initially performs 

better than the continuous model, presumably due to its 

ability to generalize better on few training examples, its 

performance plateaus faster and it ends performing slightly 

worse than the continuous model. The combined model 

both generalizes better and has better asymptotic 

performance than either of the individual models.  

 To better understand the performance of each model, 

Figure 4 breaks the error into two cases. The stacks in a 

group from left to right correspond to the continuous 

model, the relational model, and the combined model. The 

bottom bars in the stack show the number of missed 

literals, meaning the model predicted that a literal remains 

unchanged when in fact it changed. The top bars show the 

number of extra literals, meaning the model predicted that 

a literal changes when in fact it did not.  

Figure 3. Average number of incorrect literals per prediction 

for the three types of models. Error bars indicate one standard 

deviation. 

Figure 4. Average number of extra and missed predicates per 

prediction. The bars from left to right are continuous model 

only, relational model only, and combined model. 
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 Most of the discrepancy between the performance of the 

continuous model and the combined model consists of 

missed literals. This is due to the fact that the continuous 

model cannot capture the causal link between stepping on a 

switch and opening a door. The continuous model only 

learns that a door opens (changes position) when the agent 

moves to the absolute location of the corresponding switch 

in the training room configuration. In the test 

configurations, the switch positions are randomly 

permuted, but the continuous model still associates the 

original position of the switches with door opening. The 

problem is that the relative distances between the agent and 

the switches are not considered by the distance metric of 

the nearest neighbor algorithm underlying the continuous 

model. The relational model can capture this dynamic 

because its distance measure is based on relational 

structure and can be conditioned on the intersect(agent, 

switch) literal which is invariant of the absolute positions 

of the agent and switch. Note that even though the 

continuous model does better overall than the relational 

model, it consistently misses more literals. 

 The cause of the discrepancy between the relational 

model and the combined model is more convoluted. By 

examining the traces of individual runs, we see that in 

some cases the relational model predicts that the agent 

cannot enter a room or step on a switch in a different room 

because the doors between the start and end positions were 

closed in the retrieved episodes. This results in missed 

literal changes. In other cases the exact opposite problem 

occurs and results in extra literal changes. The combined 

model is robust to the second case due to the predictions 

from the continuous model. However, in cases involving 

stepping on switches in other rooms, even though the 

continuous model successfully predicts that the agent can 

intersect the switch and the relational model successfully 

predicts that stepping on the switch opens a door, the 

combined model only takes the intersection of these 

predictions, resulting in it not predicting the door to open. 

This is a shortcoming of the way we are combining the 

predictions and should be improved in future work. 

Conclusion 

In this paper we have described an approach to integrating 

continuous and relational model learning techniques in a 

single agent architecture. We showed that by combining 

the predictions made by the two types of models, we can 

make predictions that both generalize better on small 

numbers of training examples and are more accurate in the 

limit. Although more sophisticated and specialized 

continuous modeling techniques can probably yield better 

results, our point is that a hybrid of relatively simple 

techniques can capture some of the same complex 

dynamics that the specialized algorithms are designed for.  

 As discussed previously, one of the shortcomings of 

locally weighted learning  is that it incorrectly smoothes 

over training examples that are qualitatively different. This 

has not been addressed here because this paper is primarily 

concerned with improving relational predictions using the 

continuous model as additional knowledge. Our planned 

immediate future research direction is to explore ways to 

prevent these types of problems using knowledge encoded 

in the relational model. 

 Another interesting research direction concerns the 

choice of spatial queries used to build the relational state.  

This is an important factor in determining how regular and 

learnable the relational dynamics of the environment are. 

In this paper we designed the queries by hand to be 

sufficient to learn a good model over. It would be 

interesting to explore approaches for the agent to learn 

these through experience. 
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