
 

 

 

 

Learning Integrated Symbolic and Continuous Action Models for 

Continuous Domains 

 Joseph Z. Xu and John E. Laird 
Computer Science and Engineering, University of Michigan 

2260 Hayward Street, Ann Arbor, MI 48109-2121 USA  

{jzxu, laird}@umich.edu  
 
 
 

Abstract 
Long-living autonomous agents must be able to learn to 
perform competently in novel environments. One important 
aspect of competence is the ability to plan, which entails the 
ability to learn models of the agent’s own actions and their 
effects on the environment. In this paper we describe an 
approach to learn action models of environments with 
continuous-valued spatial states and realistic physics 
consisting of multiple interacting rigid objects. In such 
environments, we hypothesize that objects exhibit multiple 
qualitatively distinct behaviors we call modes, conditioned 
on their spatial relationships to each other. We argue that 
action models that explicitly represent these modes using a 
combination of symbolic spatial relationships and 
continuous metric information learn faster, generalize better, 
and make more accurate predictions than models that only 
use metric information. We present a method to learn action 
models with piecewise linear modes conditioned on a 
combination of first order Horn clauses that test symbolic 
spatial predicates and continuous classifiers. We empirically 
demonstrate that our method learns more accurate and more 
general models of a physics simulation than a method that 
learns a single function (locally weighted regression). 

Introduction  

We are interested in the problem of developing long-living, 
embodied agents that can adapt to a variety of novel 
environments and tasks. One way an agent can gain 
competence in a novel environment is to learn to plan in it. 
This requires that the agent have an internal model of how 
its actions change the environment. We call such a model 
an action model. 
 Many real-world environments can be characterized as 
collections of discrete, interacting objects with continuous 
properties embedded in a two or three dimensional space. 
The action model for such an environment can be 
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described as a continuous function �: �� , �� → ���	, where 
�� , ���	 ∈ ℝ� are the environment state at time steps  and 
 + 1, and �� ∈ ℝ� is the agent’s action at time . 
Common methods for learning continuous action models 
include locally weighted regression (Atkeson, Moore, and 
Schaal 1997), Gaussian processes, and support vector 
regression (Nguyen-Tuong and Peters 2011). These 
methods all assume that the model function is smooth over 
its input space, and rely on this smoothness assumption for 
generalization, i.e. the behavior of the model is assumed to 
be similar in the neighborhood of each training example. 
 However, in environments with multiple interacting 
objects, the model function often changes abruptly and 
discontinuously at boundary conditions. Consider a world 
with a free moving ball and a fixed box. The ball’s velocity 
will change smoothly when it is flying in the air, but it will 
change direction instantaneously when it bounces against 
the box. Whether the ball flies or bounces is determined by 
whether it touches the box and not by the absolute 
positions of the ball and the box. In the six-dimensional 
space of the ball’s and box’s ��, �, �� positions, the points 
with bouncing behavior forms a set of disjoint hyper-
planes instead of a bulbous neighborhood. In these types of 
environments, the smoothness assumption fails, and 
generalizations based on that assumption are invalid. 
 We hypothesize that in environments with multiple 
interacting objects, it is the relationships between the 
objects that determine how they behave, rather than their 
absolute positions in a coordinate system. Furthermore, 
behaviors tend to vary smoothly when certain relationships 
hold but change abruptly when relationships change. The 
action model should therefore be described by a set of 
individually smooth functions that cover disjoint regions in 
the relation space instead of a single global smooth 
function. Call these individual functions modes. 
 In this paper, we present a method to learn action 
models that are composed of multiple modes. Our system 



 

 

automatically identifies new modes from unlabeled 
training data using Expectation Maximization (EM) and 
learns a classifier that predicts which mode the 
environment exhibits based on spatial relationships 
between objects. We compare its performance in a 
simulated environment with realistic physics to that of a 
global model learning approach (locally weighted 
regression) and show that our modal approach has better 
generalization and prediction accuracy. 

Related Work 

The idea of learning models with multiple modes is not 
new. Toussaint and Vijayakumar (2005) learned multiple 
linear models with Expectation Maximization and 
distinguished between modes with a product-of-sigmoids 
classifier. Many approaches to a similar problem called 
“hybrid system identification” have been studied in the 
control literature (Paoletti et. al. 2007), using a variety of 
clustering techniques, including EM. There has also been 
work on learning piecewise linear functions as the leaves 
of decision trees known as model trees (Potts 2005). These 
approaches all associate modes with continuous regions of 
the metric state space, which generalizes poorly when 
behaviors are conditioned on relationships between 
objects. Our approach conditions modes on first-order 
Horn clauses that test spatial relationships and thus 
performs better in those cases. 
 Our system uses similar combined symbolic/continuous 
representations as qualitative and spatial reasoning systems 
such as FROB (Forbus 1980), CLOCK (Forbus, Nielson, 
Faltings 1991), and QSIM (Kuipers 1994). The focus of 
those pieces of work was on symbolic reasoning with 
hand-coded qualitative representations, whereas we focus 
on learning and our use of symbolic information is in 
service of making better numeric predictions. 
 Troha and Bratko (2011) learn a qualitative model of a 
robot pushing an object and use it for motion planning. 
Their model differs from ours in that it only makes 
predictions about directions of change for individual 
dimensions of the continuous state, rather than actual 
numeric values. 

Approach 

We assume that the environment is deterministic and fully 
observable, progresses in fixed-length time steps, and is 
composed of discrete objects. The environment reports its 
state to the agent as a vector of continuous properties. Each 
object has a position ��, �, ��, rotation �����, ���ℎ, ����, 
and scaling factor ���, ��, ���, as well as a 3D geometry 
defined by a convex hull. These properties have a fixed 
interpretation in the system. Other arbitrary continuous 

properties can also be included in the state vector, such as 
the ��, �, �� velocity of the object. Our system has no a 
priori interpretation for these properties. We also require 
the environment to provide a type for each object. Our 
system doesn’t have special knowledge about types, but it 
does assume that objects of the same type behave 
identically, which aids in generalization. 
 We assume for simplicity that the action models for the 
individual dimensions of the state vector are independent, 
and decompose the problem of learning the model 
�: �� , �� → ���	 into learning individual models 
�: �� , �� → ��	 for each dimension �� ∈ ���	. Furthermore, 
we treat the agent’s output � just like any other dimension 
in �, so the problem further reduces to learning the 
function �: � → �. 
 Figure 1 gives an overview of the learning and 
prediction algorithms. The learning algorithm (upper half 
of Figure 1) segments the training examples into modes 
and learns a classifier that associates modes with initial 
states. The prediction algorithm (lower half) uses the 
learned classifier to predict the mode of a state and then 
uses the mode’s function to predict the value of the 
modeled dimension. 

Learning 
Given a sequence of observations ��	, �	�, ��!, �!�, …, (� in 
Figure 1) our system combines the continuous state vector 
and object geometries into a 3D scene called the scene 
graph. It is then able to extract spatial relationships from 
the scene graph, such as if �#$��$��%, &� is true. The set 
of spatial relationships tested is hard-coded into the system 
and invariant across domains. Because most predicates in 
our system are binary, even a small number of objects 
results in a large number of possible predicates. Therefore, 
we only consider the predicates involving the objects 
closest to the one being modeled. This heuristic is based on 
the assumption that there is no “action at a distance”. 
Object types are encoded as unary predicates such as 
'����%�. The true relational and type predicates for each 
time step are collected in the set �� and combined with the 
continuous data to form the input into the model learner 
��	, �	, �	�, ��!, �!, �!�, … (�). 

 
Figure 1. Overview of the learning and prediction algorithms. 



 

 

 Our system must then solve two learning problems, 
which are described in detail in the following sections. We 
call the first problem the segmentation problem, where the 
system must identify a set of modes, the parameters of the 
functions describing those modes, and which modes are 
responsible for each observation (�). Solving the 
segmentation problem associates with each input tuple 
��( , �( , �(� a corresponding mode index )(. These 
augmented observations ��( , �( , �( , )(� serve as the training 
input for the classification problem (�), where the system 
must learn a classifier *+,: �, � → ) that predicts the 
mode from the initial state of a transition.  

The Segmentation Problem 
Our system uses Expectation Maximization (EM) to solve 
the segmentation problem, as shown in Figure 2. Given a 
set of training examples ��-, �.� and a set of modes, EM 
simultaneously solves for the parameters of each mode and 
the assignment of examples to modes that results in a 
locally maximal likelihood. We assume that each mode can 
be approximated by a linear function, so the parameters for 
each mode are just a set of weights /�. EM begins with a 
guess at the parameters of each mode and then iteratively 
alternates between an expectation (E) step and a 
maximization (M) step. In the E step, the algorithm 
calculates the probability that each example � was 
generated by mode 0, assuming that the current parameter 
estimates for 0 are correct. We assume the data has 
Gaussian noise, so the probability that example ��-, �(� is 
generated by mode 0 with weights /� follows a Gaussian 
distribution centered on the dot product /� ∙ �- with 
variance 	2!. In the M step, the parameters for each mode 
are updated to maximize the likelihood that it generated the 
examples assigned to it in the E step. This is done with 
forward stepwise linear regression. We chose forward 
stepwise regression to avoid overfitting the training data, 
because the continuous state has high dimensionality even 
when there are few objects in the environment, but most 
models only depend on a small number of dimensions. 
Repeating these two steps guarantees convergence to a 
local maximum likelihood.  

 For each new training example, our algorithm runs EM 
to convergence or until a fixed number of iterations is 
reached. The algorithm skips the M step when a new 
example fits an existing mode to within a hand-tuned 
threshold, allowing it to be responsive enough for online 
learning. When this is not the case, the M step must rerun 
the regression for the mode that needs to be updated. While 
it is difficult to characterize the complexity of forward 
stepwise regression, it is at least linear in the number of 
training examples, and hence unsuitable for online 
learning. Future work may correct this problem, for 
example by discarding redundant training data. 
 Textbook EM formulations assume that the number of 
modes is known, but our system must infer this from 
training data. We do this by initially assuming that all 
examples are generated by a single noise mode with a 
constant low probability. Periodically, the algorithm 
attempts to find a new linear function that fits a large 
subset of the noise examples. The system does this by 
running a second EM loop on the noise data, only 
assuming that the data was generated by a noise function 
and a single linear function. If a linear function is found 
that fits at least 40 examples within the aforementioned 
accuracy threshold, then a new mode is added containing 
those examples. 
 The threshold of 40 is domain-dependent and was 
chosen to avoid overfitting the noise data and inventing 
spurious modes, while balancing against the need to 
discover real modes without requiring too much training 
data. However, with enough narrow data, the system can 
still commit to overspecific modes. For example, it may 
discover two separate constant-valued modes of a ball 
rolling at two different speeds that can be generalized into 
a single mode conditioned on the previous speed of the 
ball. Therefore, when a new mode is discovered, our 
system will first try to merge it with each existing mode by 
looking for a function that covers both. Modes will also be 
removed if they fall below the 40 example threshold. This 
can occur if the examples in a mode are subsumed by a 
more general mode. 

The Classification Problem 
The goal of the classification algorithm is to predict the 
mode for each transition given the initial state. We 
hypothesize that many modes can be identified based on 
common, domain independent spatial relationships, but 
others are based on the specific numeric properties of the 
continuous state. For example, the flying mode of a ball 
can be distinguished from the bouncing mode based on 
whether the ball is intersecting the ground, but whether the 
ball is bouncing off a ramp or rolling depends on the 
numeric value of the ball’s � velocity at the beginning of 
the transition. This leads us to propose that our system 
actually learns two types of classifiers: a symbolic one 

 
Figure 2. The segmentation algorithm. 



 

 

based on spatial relations and type predicates (�(�, and a 
numeric one based on continuous properties ��-�. These 
are combined in the final classifier.  
 For symbolic classification, we use the FOIL (Quilan 
1990) algorithm to learn a classifier in the form of a 
disjunction of Horn clauses that test the spatial predicates 
of the symbolic state. FOIL is an inductive logic 
programming (ILP) algorithm,  and generalizes over object 
identities so that the learned clauses describe the concept 
using variables rather than the actual objects in the training 
set. We use FOIL because it is simple to implement and 
sufficient for our experiments, but want to replace it with 
an incremental algorithm in the future. In our system, each 
training example consists of all predicates that are true at 
the beginning of the transition (and implicitly by closed 
world assumption all predicates that are false), and which 
mode the transition belongs to. 
 Consider the example in Figure 3. The FOIL learner is 
given three observations ��	, 3�, ��!, 33�, ��4, 3� where 3 is 
the flying mode and 33 is the bouncing mode. It recognizes 
that �#$��$��%, &� is the predicate that separates modes 
3 and 33, whereas �$5�%, &� is inconsequential and 
therefore discarded. The final learned clause, 
~�#$��$���, ��, is variablized so that it can be used to 
distinguish between bouncing and flying for any ball and 
obstacle, not just A and B. 
 As discussed previously, some modes cannot be 
distinguished by symbolic information alone. When this is 
the case, each learned Horn clause may misclassify some 
negative examples as false positives. Furthermore, true 
positive examples that cannot be accurately described by 
Horn clauses will be classified as false negatives. To 
address this problem, our system learns a numeric  
classifier that distinguishes between the true and false 
positives of each clause whose false positive rate is above a 
hand-tuned threshold. Furthermore, if the false negative 
rate of the entire disjunction is too high, our system also 
learns a numeric classifier to distinguish between the true 
and false negatives. The final decision combines these two 
types of classifiers as shown in Figure 4. The algorithm has 
a waterfall model. If any pair of Horn clause/numeric 
classifier both decide an instance is positive, then it is 

labeled as belonging to mode 1. Otherwise it goes on to the 
next clause/numeric classifier pair. If none of the pairs 
consider the instance as positive, then a final numeric 
classifier makes the decision between mode 1 and 2. Note 
that if the false positive rate of a clause is very low, then 
the numeric classifier will be null and default to a “yes” 
answer. The same is true for false negatives. 
 We currently use Linear Discriminant Analysis (LDA) 
(Hastie, Tibshirani, Friedman 2001) for learning the 
numeric classifier. Other methods such as support vector 
machines can also be used, but we chose LDA due to its 
simplicity and lack of tunable parameters. As future work, 
we plan to investigate whether it is possible to learn new 
spatial predicates from numeric classifiers that prove to be 
accurate and useful over multiple domains. 
 A drawback of using numeric classifiers is that they are 
based on the absolute values of continuous properties 
rather than the relationships between objects. Therefore, 
they are more prone to overfitting than the symbolic 
classifiers, and occasionally will decrease the performance 
of the overall classification as the system incorrectly 
second guesses its symbolic classification. We plan to 
address this problem in future work. 
 Since FOIL only learns binary classifiers and a model 
can exhibit more than two modes, we use a one-against-
one approach to combine multiple binary classifiers (Tax 
and Duin 2002). This means that for each pair of modes ) 
and #, we learn a binary classifier using the instances from 
mode ) as positive examples and the instances from mode 
# as negative examples. During classification, each binary 
classifier casts a vote for one of its modes, and the mode 
with the most votes wins. Ties are broken arbitrarily. 

Prediction 
Having learned a set of linear modes 7� and a classifier 
*+,: �, � → ), prediction is straightforward. Given the 
input state � (A in Figure 1), our system first augments the 
input with predicate information ��, ��, just like during 
learning (B). Next, the classifier predicts which mode ) 
governs the transition (C). The final prediction is /� ∙ � 
where /� are the linear weights learned for ) (D). 

 
Figure 3. Simple FOIL classifier learning example. 

 
Figure 4. Classification flowchart for how clauses learned with 
FOIL and numeric classifiers (Num) are combined to make a 
single binary classification. 



 

 

Experiments 

We test the model learning algorithm’s accuracy and 
generalization in a realistic physics domain. The 
experimental domain is a 2 dimensional square room 
containing a ball, a box, and a ramp. The box and ramp are 
stationary after initial placement. The ball can bounce and 
slide against the walls, floor, box, and ramp, and is affected 
by gravity. The domain is implemented with the Chipmunk 
Physics Engine (Lembcke 2013). 
 Training occurs in blocks, each consisting of initializing 
the room in a particular configuration and then running the 
physics simulation for 200 time steps. The initial positions  
and sizes of the ball, box, and ramp, and also the ball’s 
initial direction of travel are varied in each block. 
Furthermore, the exact distances between objects are 
randomly varied, and the entire room is randomly placed 
with respect to the origin of the coordinate system. This 
randomization makes it difficult for algorithms that depend 
on absolute coordinate values to generalize, but it does not 
affect generalization using spatial relationships. There are 
40 relationally unique initial configurations, and we repeat 
them three times with different random seeds, for a total of 
120 training scenarios. We test the accuracy of the learned 
models on 120 test scenarios generated in the same way, 
but with different random seeds. Each test block also runs 
200 time steps. Finally, we repeat this training-testing 
sequence five times, randomizing the presentation order of 
the training configurations each time, since this effects 
how the modes are learned. 
 The algorithm learns two models simultaneously: one 
for the horizontal or x component of the ball’s velocity, 
and one for the vertical or y component. These two models 
are qualitatively different because gravity acts on the y axis 
but not the x axis. The algorithm does not learn models for 
the ball’s position because it can be derived from the 
velocity predictions. We expect the algorithm to learn 

individual modes corresponding to the ball rolling on flat 
surfaces, flying in the air, rolling on the ramp, or bouncing 
off objects. 
 Table 1 shows the complete list modes we expected in 
the environment and those learned by model. 8� and 8� 
are the values of the x and y velocities in the initial state of 
the transition. Except for the very tiny constants introduced 
by rounding errors, all the learned constants are correct: 
We used a gravity constant of 9.8)�<!, and our simulation 
step size was 10<> seconds. Each object has a restitution 
constant of 0.9, resulting in the −0.81 constants on the 
bouncing modes. The system also discovered modes that 
are more general than we anticipated. We expected 
separate modes for bouncing and flat rolling in the y-
velocity model, as well as for bouncing against a ramp 
versus rolling on it, but the system combined them with no 
loss of accuracy in each case. There were also occasional 
training sequences that resulted in irregular modes, but 
most of them were pruned after sufficient training. 
 We compare the accuracy of our model learning method 
to locally weighted regression (LWR). LWR (Atkeson, 
Moore, and Schaal 1997) is an instance-based function 
approximation technique that has been applied successfully 
to many model learning scenarios in robotics. In LWR, 
learning involves simply storing each training instance 
��( , �(� in a table. To make a prediction for instance �, 
LWR chooses @ training instances closest to � and fits a 
linear function to them using regression. The function is 
then used to make the prediction for �. This approach has 
been shown to provide good generalization while fitting 
arbitrarily complex functions. The most important 
difference between LWR and our algorithm is that LWR 
learns a single smooth function conditioned on absolute 
coordinates, whereas our algorithm learns a set of 
functions that can change abruptly as spatial relationships 
change. We use Euclidean distance as the measure of 
closeness between instances, and set @ at 300 and used a 
A<! kernel, verified empirically to give good results. We 
center the training and testing data on the location of the 
ball so that the distance metric measures relative distance 
between the ball and other objects, which is more robust 
than using absolute coordinates. Note that we don’t 
perform this centering for our algorithm. 
 Figure 5 plots the prediction accuracy for both x and y 
velocities using our model learning method and LWR. The 
y-axis  has a logarithmic scale and marks the ratio of the 
model’s prediction error and the baseline error. The 
baseline error is the average error of a model that always 
predicts no change in the modeled dimension. These values 
are 8.38 × 10<> for x-velocity and 9.75 × 10<> for y-
velocity. The lines in the plot represent median values. 
Error bars were not drawn because they obscured the plot. 
Except for the first two data points, the 5 and 95 percentile 
ranges of each data point are completely separated. The 

 Ideal Learned 
X-velocity, flying or rolling on flat surface 

8� 8� 

X-velocity, rolling or bouncing on ramp 

@	 ∙ 8� + @! ∙ 8� + � 0.638 ∙ 8� − 0.724 ∙ 8� + 3.92 × 10<> 

X-velocity, bouncing against vertical surface 

−@ ∙ 8� −0.81 ∙ 8� + 3.04 × 10<	I 

Y-velocity, rolling and bouncing on flat surface  

−@ ∙ 8� + � −0.81 ∙ 8� − 4.87 × 10<	J 

Y-velocity, flying under influence of gravity 

8� + � 8y − 9.8 × 10<> 

Y-velocity, rolling or bouncing on ramp 

@	 ∙ 8� + @! ∙ 8� + � −0.724 ∙ 8� − 0.448 ∙ 8� − 1.96 × 10<> 

 Table 1. Ideal modes for each model and the learned modes. 



 

 

results are averaged across 5 different training orders, all 
40 initial configurations, and 3 random seeds. 
 The plot for x-velocity only shows the prediction errors 
for test points that exhibited either the bouncing or ramp-
rolling mode. This is because the third mode – flat 
rolling/flying – results in no change in x-velocity and is 
thus easy to predict and uninteresting, but accounts for 
94% of the generated test data. Including these test 
examples would drown out the discrepancy between our 
approach and LWR on the more interesting transitions, 
such as rolling on the ramp and bouncing off objects. 
 The results show that our algorithm outperforms LWR 
as expected, and that LWR was not able to perform 
significantly better than the null baseline. The major 
shortcoming of LWR is that Euclidean distance over the 
raw input space is a poor measure of the similarity of two 
transitions, even after centering the data on the ball. 
Therefore, the learned model doesn’t generalize well. We 
also analyzed nature of the prediction errors made by our 
model, and found that they all resulted from incorrect 
mode classifications. For both the x and y velocities, the 
linear functions for the natural modes of the domain were 
learned accurately after only a few examples, but the FOIL 
classifier converged more slowly, and  never reached 
perfect accuracy. 
 As discussed previously, there exist other multi-modal 
learning algorithms, but they do not consider spatial 
relationships in their mode classifiers. We argue that our 
approach performs better than these other approaches in 
spatial domains. To show this, we compare the 
classification accuracy of FOIL with two popular 
classifiers that only rely on continuous state information – 

support vector machines and nearest neighbor – on the 
physics simulation data. For each data point, we use the 
mode that results in the lowest prediction error as the true 
mode. For the SVM and NN classifiers, each training and 
test example has the form ��, )�, where � is the vector of 
continuous state properties and ) is the true mode. For 
these examples, we centered the state vectors around the 
ball in the same way as for LWR. We use a quadratic 
kernel for the SVM classifier. The results are shown in 
Figure 6. Again, there is the problem of the flat-
rolling/flying mode dominating the x-velocity test set. 
Here, we show the accuracy of all three classifiers 
averaged over all examples (“All” condition), as well as 
over only the examples from the ramp-rolling and 
bouncing modes (“Hard” condition). Only the All 
condition is shown for y-velocity. The plots show the FOIL 
classifier learns significantly faster and converges at a 
much higher accuracy than both SVM and NN. 

Conclusion 

We have presented an algorithm for learning piecewise 
linear action models conditioned on both symbolic spatial 
relations and continuous state properties. Our main 
argument is that in spatial domains with physics-like 
behavior and multiple interacting objects, knowledge of 
spatial predicates can lead to more generalization and 
accuracy in model learning. We have shown that our model 
learning approach outperforms LWR and our FOIL-based 
mode classifier outperforms SVM and NN classifiers that 
only use numeric state information. 
 One of the major shortcomings of our system is that 
while it accepts training examples in an online manner, 
many of its parts are not incremental, and it is not fast 
enough to run in real-time. The major performance 
bottlenecks are the algorithm for searching for new modes 
and FOIL, both taking on the order of seconds for each 
execution in the domain presented here. This will be 
addressed in future work. 
 Another limitation is our assumption that all modes are 
linear. Our approach should theoretically work with 
higher-order modes as well, but when the individual modes 
are capable of modeling complex functions, the system 
requires more sophisticated ways to balance learning fewer 
complex modes with learning more simple modes. 
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Figure 5. Comparison of prediction accuracy for x and y velocity 
between our model learning method (MM) and LWR.  

Figure 6. Performance of mode classifiers learned with FOIL, 
SVM, and NN on x and y velocity modes.  
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