
Lecture 1: Introduction!

What 281 Covers!
Algorithmic Thinking: “Conceptualizes problems with
digital representations and seeks algorithms that
express or find solutions” – P.J. Denning!

Solutions are not simple or even known!
Require efficient algorithms for large datasets!
•  data must be wisely stored (efficient data structures)!
•  data must be quickly processed (fast algorithms)!

Can be broken down into two fundamental topics:!
1.  Abstraction and Representations!
2.  Algorithmic Patterns and Performance Analysis!

Required Reading!

Prerequisites:!
• EECS 280!
• EECS 203!
• C++!

Recommended Readings!

www.cplusplus.com/doc/tutorial/!
www.cplusplus.com/reference/!
http://www.cprogramming.com/ (but too much ads)!
http://www.codeguru.com/Cpp/ !
!
Other books:!
•  Stroustrup, C++ Programming Language, latest ed.!
•  Lippman, Lajoie, and Moo, C++ Primer, latest ed., gentler and

more verbose than Stroustrup!
•  Josuttis, The C++ Standard Library, latest ed.!

Two Parts of 281!

Instructor for first half: Sugih Jamin!
email: !
Office: 4737 CSE!
Office hours: TT right after lecture, Fri 9:00-10:00 and by appt.!
!
GSIs/IAs:!
Max Corman (cormamax), Gaurav Kulkarni (kgaurav),
Rong Ling (lingrong), Peter Terlep (pterlep), Steve
Wishnousky (swish)!

GSIs/IAs! Discussion sessions:!
W 3:30-4:30 1500 EECS Rong Ling!
W 4:30-5:30 1006 DOW Pete!
Th 5:00-6:00 1010 DOW Pete!
F 1:30-2:30 3150 DOW Max!
F 2:30-3:30 1005 DOW Gaurav & Steve!
F 3:30-4:30 1005 DOW Rong Ling!

!
Office hours (held in 1695 CSE)!
Steve: M 2-3!
Pete: M 3-4, W 1-2!
Rong Ling: M 4:30-5:30, W 4:30-5:30!
Gaurav: F 3:30-4:30!
Max: Tu 3:30-4:30, Th 3:30-4:30!

Two Parts of 281!

Instructor for second half: Prof. David Chesney!
!
GSIs/IAs stay the same!
!
Best to think of the two parts of 281 as two
separate courses, each with its own course
policies and grading criteria!
!
Most of what follows apply only to the first half
of 281!
!

Course Web Site!

http://www.eecs.umich.edu/~sugih/courses/eecs281/!
and on ctools!
!

Most lecture slides will be posted on web site before
lecture, but some will be updated after lecture!
•  always grab a fresh copy if you need to consult a lecture note!
•  don’t print it out, save a tree!

Course Announcements!

Announcement page on ctools!

Both course web site and ctools site (linked to
each other) are “required readings”!

Email both your GSI/IA and myself if you have any
questions!

We will post FAQ’s on the Announcements page,
check it first before asking your questions!

Grading Policy#
(50% of Course Grade)!

• 1 Midterm Exam: 13% !Thu, 10/20, 6-8 pm!
• 2 Homeworks: 10% !Hand in hardcopies!
• 2 Programming Assignments: 26% !Turn in online!
• Class Participation: 1%!

Do not email us any
of your assignments!!

Scheduling Conflicts!
Only documented medical or personal emergency
allowed!

If you need extra time to complete an exam due to
personal disability, please inform us 1 week in
advance!

Other scheduling conflicts will not be considered
two weeks after the start of the term (today)!

Outside commitments, e.g., job interviews, top-
coder contests, are not considered valid reasons for
missing a deadline or exam!

Grading Policy!
Regrade:!
• within 5 working days!
• written request!
• whole work will be regraded!

Late days:!
•  2 free late days in total for programming assignments 1 and 2!

•  including weekends!
•  NOT per assignment!

•  no need to inform us to use any of your free late days!
•  keep track of your own free late day usage!

Help with PAs stops 2 days before due date!

Late Penalty!
Applied to PAs after free late days are used up!
Applied to HW1 immediately!
HW2 will not be accepted late (solution handed out same day)!

Penalty schedule:!
•  ≤ 24 hours: 4%
•  ≤ 48 hours: 8+4=12%
•  ≤ 72 hours: 12+12=24%
•  ≤ 96 hours: 16+24=40%
•  ≤ 120 hours: 20+40=60%
•  work more than 5 days late will not be accepted!

Example: !
•  PA worths 100 points, work late by 24 hours and 10 mins!

•  if no free late days left: 12 points late penalty!
•  if 1 free late day left: 8 points late penalty!

•  turning in HWs after lecture has started is considered one day late!

Collaboration!
• All work must be done individually!
• Cheating and plagiarizing are not tolerated!
• To pass off the implementation of an algorithm #
as that of another is also considered cheating:!
•  e.g., insertion sort is not heap sort!
•  if you can not implement a required algorithm, #
you must inform the teaching staff when turning in your
assignment, e.g., have the program print out an error msg!

• We take the Honor Code seriously!!
• There is a cost to being honest, but it’s less than
the cost of being caught dishonest!

Collaboration!

HWs 1 and 2: consultation of online and offline
sources allowed, but must not be copied verbatim,
you need to show that you have understood the
material!
• Cite your sources, including classmates and roommates,
but not teaching staff or required readings!

Midterm exam: open-book, open-notes, see course
Grading Policy web page (under Resources on
ctools)!

Programming Assignments (PAs) 1 & 2!
No group project, all work must be done individually!

No STL!

Must not include external materials (e.g., open-source
code downloads or code from others (this or
previous terms) or found online)!

The autograder platform is Linux, with g++ 4.1.2!
•  develop and test locally!
•  compile with g++ remotely!
•  then submit!
•  no other platform supported!

PAs 1 & 2 Grading Criteria!

Code compiles!

Code runs correctly!

Code is readable, well-documented, e.g., !
• no use of literals!
•  code re-use instead of cut-and-paste!

Algorithm is efficient!

Implementation is efficient, e.g.,!
• no unnecessary copying!
• no loop invariant statement in loop!

Code Reuse
Simple
Example!

const int C=10, K=1;!
int b, c; !
!
int f()!
{!
 if (x < C) {!
 a = x-2;!
 b = a+K;!
 c = (x%2)+b;!
 d = b/2+c*2;!
 } else {!
 a = x+1;!
 b = a+K;!
 c = (x%2)+b;!
 d = b*2+c/2;!
 }!
 !
 return(d);!
}!

void g(a, x)!
{!
 b = a+K;!
 c = (x%2)+b;!
}!
!
int h()!
{!
 if (x < C) {!
 a = x-2;!
 g(a, x);!
 d = b/2+c*2;!
 } else {!
 a = x+1;!
 g(a, x);!
 d = b*2+c/2;!
 }!
 !
 return(d);!
}!

Start homework and projects early!
If in doubt, make a small program and test!
Experiment with code and learn from mistakes!
Utilize software development tools!

Tips For Success!

Standard Tools!
• Compiler+Linker!
• Make utility (Makefile)!
• Debugger!
• Profiler!

Personal Preference!
• Text editor!
• IDE (Integrated
Development Environment)!
• Source code version control!
• Visualization software!

How to Write Clear Code Quickly!
Know C++ syntax!
•  study it (or look it up if you’ve forgotten)!

Develop algorithm first, check it, implement later!
•  trying 1-2 variants to see what works is OK with syntax, but

not with algorithms!
•  bad idea: tweak the algorithm in the hope that it will just work

at some point!

Work on your skills (practice, practice, practice)!

Study good code examples!

Avoiding Errors!
You will spend more time testing & debugging than coding!

� don’t wait until the last two days before a deadline to
start coding! or testing!!

Reuse code as much as possible!
•  reuse will reduce the amount of code to debug!
•  design for reuse!

Backup often!
•  new features & bug fixes may introduce new bugs!
•  use a source code version control system such as cvs, svn, or git

(but careful not to make your code public!)!

Finding Errors - Testing !
Compile often (g++ -Wall -Werror)!
•  try not to type > 20 lines of code without compiling!
•  compiling often narrows down source of bugs !

Generate a wide variety of test cases!
•  no single test will catch all errors!
• most errors are only triggered by some test cases!

Begin testing as early as possible!
•  test each function/class separately if possible (unit test)!
•  Fail Early, Fail Often!

The Autograder!
Your code is required to be 100% correct !
•  a 100% pass rate from the autograder does not mean your code
is 100% correct and does not guarantee 100% grade on the
assignment!

The autograder tests only a few test cases!
•  you are expected to generate more test cases on your own!
•  your code may contain bugs not caught by the autograder!

•  bugs range from poor algorithm design to careless typos!
•  grades needlessly suffer from lack of testing (�last-day coding�)!
!
The autograder is NOT a debugger, don’t use it as one!
•  you will slow down the system for everyone!
•  you may crash the system!
•  the autograder won’t be available until a couple of days before a

deadline!

What 281 Covers!
Algorithmic Thinking: “Conceptualizes problems with
digital representations and seeks algorithms that
express or find solutions” – P.J. Denning!

!

Can be broken down into two fundamental topics:!
1.  Abstraction and Representations!
2.  Algorithmic Patterns and Performance Analysis!

Algorithmic Patterns!
What are algorithmic patterns?!
• approaches to problems, ways of doing things,

tips and tricks of the trade!

•  in the olden times, what you learn from guild
apprenticeship!

Performance Analysis and Tuning!
Performance analysis: how some tools are
better for certain tasks than other tools!
• how do you pick the right data structure?!
• how do you know if an algorithm is efficient?!
• how do you design an algorithm to be efficient?!

“When you have a hammer every problem
looks like a nail.” Not!

Performance tuning: how to improve the
performance of the tools and solutions!

Performance Analysis of Name Search!

Best-Case !
•  data is found in the first place you look!
•  least number of steps required, given ideal input!

Worst-Case !
•  data is found in the last place you could possibly look!
• most number of steps required, given difficult input!

Average-Case !
•  average number of steps required, given any input!
•  average performed over all possible inputs of a given size!

array of!
N items!

Using a linear search over N items,!
how many steps will it take to find item x?!

Best-Case: 1 step!
Worst-Case: N steps!

Average-Case: N/2 steps!

Execution Cost!

Algorithms take resources to execute, such as:!
•  Space: memory, bandwidth!
•  Time!
•  Energy!

!
Two types of resource cost:!
• fixed cost!
•  variable cost!

Space-Time Tradeoff!

If you can load all your data into memory, you can
sometimes come up with very fast algorithm!
!
Examples of memory-constrained problem/system?!

Timing Cost!

Fixed cost (one-time cost):!
•  coding time!
•  compile time!
•  variable initializations, etc.!

!
Variable cost:!
•  run time: depends on the size of the problem!

Worst-case Runtimes of
Our Name Search Problem!
Assume can search 10 names/ms !

!
!
!
!
!
!
!
There is usually more than one ways to solve a problem!
Want: the most efficient way!

Population (size)! Linear!
EECS 281 (230)! 23 ms!

UM (40 000)! 4 secs!

MI (9 mil)! 15 mins!

Shanghai (23 mil)! 38 mins!

US (311 mil)! 8 hours 38 mins!

China (1.3 bil)! 1 day 13 hours!

World (6.9 bil)! 8 days!

Binary!
0.8 ms (lookup 8 names)!

1.5 ms!

2.3 ms!

2.4 ms!

2.8 ms!

3.0 ms!

3.3 ms!

Algorithm Design!
Typical approach:!
• define problem to be solved!
•  understand its complexity!
• decompose it into smaller subtasks!

!
Creative refinements:!
•  think outside the box: exploit any particular #
characteristics of the workload or problem!
• don’t lose the forest for the tree:!
•  find the real performance bottleneck of the whole program (how?)!
•  also note the human labor cost!

• optimize for the common case!

Algorithm Performance Analysis!
Given two algorithms, how do you determine
which is more efficient?!
!
Example: roofing problem!
•  a new house is being built in the village!
•  the builders are currently working on the roof!
•  there are three different methods for moving roof-tiles
from the truck to the roof!

Three Roofing Methods!
Method 1:!
A builder can carry two tiles on his shoulder as he climbs up the ladder.
He then climbs down and carries two more tiles up the ladder. Each
round trip (up and down the ladder) costs $2!

Method 2:!
The builder rents a lift for $10. The lift can move 20 tiles up the roof at
one time, at a cost of $1 per round trip!

Method 3:!
The builder rents a super-lift for $40. Unfortunately, the lift has a slow
leak in its hydraulic system. It is able to lift half of the necessary tiles to
the roof on the first round-trip. However, on the second trip, it is only
able to lift half of the remaining tiles, then half of the remaining . . . down
to the minimum of one tile per round trip. Each round trip costs $2!

In all three methods, it costs $4/tile to set!

Back-of-the-Envelope “Analysis”!
Which is the cheapest of the three methods to build a shed
(8 tiles)?!
Which is the cheapest for a gazebo (128 tiles)?!
Which is the cheapest for a house (2048 tiles)?!

