
Lecture 3: Algorithm Analysis!
Foundational Data Structures!
(Review of Some 280 Material)!

Asymptotic Algorithm Analysis!
An algorithm with"
complexity f (n) is"
said to be not slower"
than another algorithm"
with complexity g(n) "
if f (n) is bounded by"
g(n) for large n!
!
Commonly written as"
f (n) = O(g(n)) "
(read: f (n) is big-Oh g(n)),!
a.k.a. the asymptotic (or big-Oh) notation!

Big-Oh – Definition!
f (n) = O(g(n)) if and only if there are constants!
c > 0!
n0 ≥ 0!}"such that f (n) ≤ c g(n) whenever n ≥ n0!

0

0.5

1

1.5

2

2.5

0 1

f (n) = n

g(n) = n2!Is n = O(n2)?!

n0 = 1!

Let!
f (n) = 8n + 128!
g(n) = n2!

Is f (n) = O(g(n))?!
Is 8n + 128 ≤ c n2?!

!

Let c = 1, clearly, for n = 8, f (n) > g(n)!
At what value of n0 is g(n) > f (n), ∀n ≥ n0?!

How about for c = 2 and c = 4?!

f (n) = 8n + 128!

g(n) = n2!g(n) = 2n2!g(n) = 4n2!

6.75 10.3 16 8

Big-Oh – Example!

Big-Oh – Definition!
As long as there is a c > 0, and n0 ≥ 0 such that "
c•g(n) ≥ f (n) for all n ≥ n0, we say that f (n) = O(g(n))!
In this example, 8n + 128 = O(n2)!
!
Mathematically:!
f (n) = O(g(n)) iff ∃ c > 0, n0 ≥ 0 | ∀n, n ≥ n0, f (n) ≤ c g(n)!
O(g(n)) = { f (n): ∃ c > 0, n0 ≥ 0 | ∀n, n ≥ n0, 0 ≤ f (n) ≤ c g(n)}"
!
So more accurately, f (n) ∈ O(g(n))!
but conveniently people write f (n) = O(g(n)),!
though NOT f (n) ≤ O(g(n))!

Big-Oh – Definition!
In other words, we only care about LARGE n, it
doesn’t matter what c is!
•  obviously, c cannot be 10100 (one googol, the conjectured

upper bound on the number of atoms in the observable
universe)!!

Also, asymptotically, n2 + k = O(n2), k constant (Why?)!

Big-Oh: Sufficient"
(but not necessary) Condition!

If
n→∞
lim

f (n)
g(n)
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟= c<∞

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ then f (n) is O(g(n))

lim
n→∞

log n
2n
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

= lim
n→∞

1
2n
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

= 0= c<∞

∞ /∞
Use L'Hôpital's Rule

⇒ log2 n=O(2n)

log2 n=O(2n)?
f (n)= log2 n
g(n)= 2n

Condition does not
hold but nevertheless
it is true that"
f (n) = O(g(n))!

sin n
100
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟=O(100)?

f (n)= sin n
100
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

g(n)=100

lim
n→∞

sin n
100
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

100

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

L’Hôpital’s Rule!

If lim
x→c

f (x)= lim
x→c

g(x)= 0 or ±∞

and lim
x→c

f '(x) g '(x) exists then

lim
x→c

f (x)
g(x)

= lim
x→c

f '(x)
g '(x)

wikipedia!

Also useful, derivative of log:!

d
dx
logb (x)=

1
x ln(b)

d
dx
ln(f (x))= f '(x)

f (x)

Log Identities!

Identity! Example!

loga(xy) = logax + logay! log2(12) ="

loga(x/y) = logax – logay! log2(4/3) ="

loga(xr) = r logax! log28 ="

loga(1/x) = –logax! log21/4 ="

log79 =!
!

k = log2n iff 2k = n ! logaa = ? !
!
loga1 = ?!

Identity! Example!

a(n+m) = anam! 25 = !

a(n–m) = an/am! 23–2 = !

(a(n))m = anm! (22)3 = !
!
! 2-4 ="

a–1= ?!
!
a0 = ?!
!
a1 = ?!

Power Identities!

loga x=
log x
log a

=
ln x
ln a

a−n = 1
an

Big-Oh: We Can Drop Constants!

c> 0, n0 ≥ 0 such that

f (n) ≤ c ⋅g(n),∀n≥ n0

3n2 + 7n + 42 = O(n2)?!
f (n) = 3n2 + 7n + 42!
g(n) = n2!

c = 5!
g(n) = 5n2!

Definition!

n0!

Sufficient Condition!

n→∞
lim

f (n)
g(n)

= c<∞

=
n→∞
lim

3n2+ 7n+ 42
n2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
n→∞
lim

6n+ 7
2n

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=
n→∞
lim

6
2
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

Big-Oh – Common Mistakes!
Mistake #0: f (n) = O(g(n)) ⇒ f (n) = g(n) (NOT)!

Mistake #1: If f 1(n) = h(n) and f 2(n) = h(n) then "
f 1(n) = f 2(n); it follows that if f 1(n) = O(g(n)) and
f 2(n) = O(g(n)) means f 1(n) = f 2(n) (NOT)!

Mistake #2: f (n) = O(g(n)) ⇒ g(n) = O–1(f (n)) (NOT)!
(There’s no O–1()!)!

Is f (n) = O(2n)?!
Is f (n) = O(n2)?!
Is f (n) = O(n log n)?!
Is f (n) = O(n)?!
Is f (n) = O(log n)?!
!
Let f (n) be the"
complexity of your"
code, how fast would you advertise it as?!

While f (n) = O(g(n)) � f (n) = g(n), you want to pick a
g(n) that is as close to f (n) as possible (a “tight” bound) !

How Fast is Your Code? !

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

n log n!

n!

1!
log n!

n2!2n!

n!

ru
nt

im
e!

f (n)

About Big-Oh!

Asymptotic analysis deals with the performance of
algorithms for LARGE input sizes!
!
Big-Oh provides a short-hand to express upper
bound, it is not an exact notation!
•  be careful how big c is!
•  be careful how big n0 must be!
!
Big-Oh asymptotic analysis is language independent!

Big-Oh – Rules!
Rule 1: For f 1(n) = O(g1(n)) and f 2(n) = O(g2(n)) "

⇒ f 1(n) + f 2(n) = O(max(g1(n), g2(n))!

Example: f 1(n) = n3 ∈ O(n3), f 2(n) = n2 ∈ O(n2) "
⇒ f 1(n) + f 2(n) = O(?)!

Rule 2: For f 1(n) = O(g1(n)) and f 2(n) = O(g2(n)) "
⇒ f 1(n) * f 2(n) = O(g1(n)*g2(n))!

•  If your code calls a function within a loop, the complexity of
your code is the complexity of the function you call times the
loop’s complexity!

Rule 3: If f (n) = O(g(n)) and g(n) = O(h(n))"
then f (n) = O(h(n))!

Big-Oh – More Common Mistakes!

Mistake #3: Let f (n) = g1(n)*g2(n)"
If f (n) ≤ cg1(n) where c = g2(n),"
then f (n) = O(g1(n)) (NOT)!

Mistake #4: Let f 1(n) = O(g1(n)), f 2(n) = O(g2(n)), "
and g1(n) < g2(n) ⇒ f 1(n) < f 2(n) (NOT)!

Counter-example: "
f 1(n) = ?"
g1(n) = ?"
f 2(n) = ? "
g2(n) = ?!

Relatives of Big-Oh!

Big-Omega (Ω()): asymptotic lower bound!

For f (n) > 0, ∀n ≥ 0, f (n) = Ω(g(n)) if"
∃ c > 0, n0 > 0 | ∀n, n ≥ n0, f (n) ≥ c g(n)!

h1(n) = O(h2(n)) ⇔ h2(n) = Ω(h1(n))!
!

Big-Theta (Θ()):!

f (n) = Θ(g(n)) iff "
f (n) = O(g(n)) and "
f (n) = Ω(g(n))!

f (n) grows as fast as g(n)!

Big-Theta!

Does f (n) = Θ(g(n)) ⇒ g(n) = Θ(f (n))?!

Does f (n) = Θ(g(n)) ⇒ f (n) = g(n)?!

Does f (n) = Θ(g(n)) ⇒ f (n) is the same order as g(n)?!

Relatives of Big-Oh!
little-oh (o()):!

f (n) = o(g(n)) if f (n) = O(g(n)) but f (n) ≠ Θ(g(n))!

f (n) = o(g(n)) if ∃ n0 > 0 | ∀c > 0, ∀n, n ≥ n0, f (n) ≤ c g(n)!

In contrast to O(), o() is forall c > 0, whereas O()"
only requires there exists c > 0; so O() is sloppier"
than o(), which is why we use it more often!!

Example: 2n2 = O(n2) is asymptotically tight, but 2n = O(n2) is not!
!
little-omega (ω()):!

f (n) = ω(g(n)) iff g(n) = o(f (n))!

In the Limit!

O() : f (n) =O(g(n))⇔ f (n) ≤ c1g(n) and lim
n→∞

f (n)
g(n)

≤ c1

Ω() : f (n) =Ω(g(n))⇔ f (n) ≥ c2g(n) and lim
n→∞

g(n)
f (n)

≤ c2

Θ() : f (n) =Θ(g(n))⇔ both lim
n→∞

f (n)
g(n)

≤ c1 and lim
n→∞

g(n)
f (n)

≤ c2

o() : f (n) = o(g(n))⇔ lim
n→∞

f (n)
g(n)

= 0

ω() : f (n) = ω(g(n))⇔ lim
n→∞

f (n)
g(n)

= ∞

The Common Case: "
Empirical Performance Evaluation!

If n0 > the common case n, the asymptotic analysis
result is not very useful!

To determine the common case performance, "
given known workload, run empirical performance
measurement/evaluation!

Note that common case performance is not
necessarily the average case performance (Why not?)!

Empirical evaluation is also useful for evaluating
complex algorithm or large software systems!

Experiment Setup!
Factors that affect the accuracy of your empirical
performance evaluation:!
•  system speed!
•  system load!
•  compiler optimization!
!
What you need:!
• workload generator: must generate realistic common cases!
•  reduce system variability:!

•  use the same compiler!
•  use the same machine!
•  minimize concurrent/background tasks!

•  for shared systems, run experiment around the same time of day!

Measuring Time!

#include <iostream>
#include <sys/resource.h>
#include <sys/time.h>

void main(){
 struct rusage startu;
 struct rusage endu;

 getrusage(RUSAGE_SELF, &startu);
 //---- Do computations here
 getrusage(RUSAGE_SELF, &endu);

 double start_sec = start.ru_utime.tv_sec + startu.ru_utime.tv_usec/1000000.0);
 double end_sec = endu.ru_utime.tv_sec + endu.ru_utime.tv_usec/1000000.0);
 double duration = end_sec - start_sec;

}

initialize rusage variables!

set data of rusage variables at !
start/end of computation!

duration = end – start!

struct rusage{!
 //--- user time used !
 struct timeval ru_utime; !
 !
 //--- system time used !
 struct timeval ru_stime; !
 …!
}!

struct timeval{!
 //--- seconds !
 unsigned int tv_sec; !
!
 //--- microseconds !
 unsigned int tv_usec; !
}!

struct rusage contains other useful information, e.g., memory usage!

Empirical Results!
Repeat experiment several times with the same
input and take the average or minimum!

Plot algorithm runtimes for varying input sizes!

Include a large range to accurately display trend!

runtime looks
linear . . .! … but not for

extended input
sizes!

Analysis vs. Evaluation!
When experimental results differ from analysis . . .!

•  check for correctness in complexity analysis!

•  check for error in coding!
•  extra loop!
•  algorithm implemented is different from the one analyzed!!

•  if no error, experiment may simply"
have not covered worst case scenario!

•  external factors, e.g., hardware/software "
system (performance) bug?!

1.  Which of these are true? Why?!
10100 = O(1)!
3n4 + 45n3 = O(n4) !
3n = O(2n)!
2n = O(3n)!
45log(n) + 45n = O(log(n))!
log(n2) = O(log(n))!
[log(n)]2 = O(log(n))!

2.  Let f (n) = (n – 1)n/2, c = n/2, is f (n) = O(n)?"
If so, why? If not, what’s the big-Oh of f (n) ?

3.  Is log n = O(n)? Is log n = O(n2)? Which is a tighter bound?!

4.  Given 4 consecutive statements: S1; S2; S3; S4; Let S1 = O(log n), "
S2 = O(log n3), S3 = O(n), S4 = O(3n). What is the big-Oh time
complexity of the four consecutive statements together? Prove"
it mathematically using the definition of big-Oh.!

5.  You ran two programs to completion. Both have running time of 10 ms.
Can you say that the two programs have the same big-Oh time
complexity? Why or why not?!

6.  Find f (n) and g(n), such that f (n) is not O(g(n)) and g(n) is not O(f (n))

Self-Study
Questions! Foundational Data Structures!

Data structures from which we build
abstract data types (ADTs):!
•  arrays!
•  linked lists!
!
Example ADTs?!
!
Since they are so foundational to all the
more complicated data structures, it is of
upmost importance that you thoroughly
understand how to work with them!

char ar[] = {�m�, �e�, �2�, �8�, ‘1’};
ar[0] = �e�;

char c = ar[2];
// now we have c==�2�

char *ptr = ar;
// now ptr points to “ee281”

ptr = &ar[1];
// now ptr points to “e281”
// same as ptr = ar+1;

Arrays Review!
What is an array?!

m e 2 8 1
ar[0] ar[1] ar[2] ar[4]

ar
ar[3]

ptr

c 2

e

Copying with Pointers!

for (int i = 0; i< size; i++){
 dest_ar[i] = src_ar[i];
}

double size = 4;
double src_ar[] = {3, 5, 6, 1};
double dest_ar[size];

How can we copy
data from src_ar
to dest_ar?!

With pointer?!

Without pointer!

In which cases would you
want to use pointers?!

Two most common bugs (in various guises):!

1.  out-of-bound access!
•  index variable not initialized!

•  null-termination error!

•  off-by-one errors!

•  bounds not checked!

2.  dangling pointers into/out of array elements!
•  pointers in array not de-allocated � memory leak!

• when moved (or realloc-ed), pointers to array elements not moved!

Arrays: Common Bugs! Index Variable Not Initialized!

int i;
printf(�%c\n�,y[i]);

What’s the bug?!

Correct programs always"
run correctly on correct input!
!
Buggy programs sometimes"
run correctly on correct input !
•  sometimes they crash"

even when input doesn’t change!!

Off-by-One Errors!
const int size = 5;
int x[size];

// set values to 0-4
for(int j=0; j<=size; j++){
 x[j] = j;
}
// copy values from above
for(int k=0; k<=(size-1); k++) {
 x[k] = x[k+1];
}
// set values to 1-5
for(int m=1; m<size; m++){
 x[m-1] = m;
}

NULL-termination Errors!
int i;
char x[10];
strcpy(x, “0123456789”);

// allocate memory
char* y =
(char*)malloc(strlen(x));

for(i = 1; i < 11; i++) {
 y[i] = x[i];
}
y[i] = ‘\0’;
printf(“%s\n”,y);

Lookup/confirm the behavior of various libraries by reading the manual pages
(under Linux or Mac OS X) or http://www.cplusplus.com/reference/clibrary/ !

Bounds Not Checked!
int main(int argc, const char* argv[]) {
 char name[20];
 strcpy(name, argv[1]);
}

What errors may occur when running the code?!
!
How can the code be made safer?!

 Container Classes!
Wrapper for objects!
• allows for control/protection over editing of objects!
• e.g., adding bounds checking to arrays!

Container class operations:!
• Constructor!
• Destructor!
• addElement()
• removeElement()
• getElement()
• getSize()
• copy()
• assign()

Example of a Container Class: "
Adding Bounds Checking to Arrays!

class Array{
int* data; // array data
unsigned int length; // array size
// Why aren’t data and length public?

public:
// Constructor:
Array(unsigned len=0):length(len) {
data = (len ? new char[len] : NULL);

}
// other methods to follow in next slides…

};

Array Class: Inserting an Element!
bool insert(int index, double val){
if (index >= size || index < 0)
return false;

for(int i=size-1; i > index; i--) {
data[i] = data[i-1];

}
data[index] = val;
return true;

}

ar

ar.insert(1, 3.4);

why is i
decremented
instead of
incremented?!

Original array!

Call insert!

Are arrays desirable when many insertions are needed?!

1.6 3.1 4.2 5.9

bool insert(int index, double val){
if (index >= size || index < 0)
return false;

for(int i=size-1; i > index; i--) {
data[i] = data[i-1];

}
data[index] = val;
return true;

}

Array Class: Complexity of Insertion!

Best case: O(1)!
!
Worst case: O(n)!

Average case: O(n)!

at most n times !

Memory Leak!

ar

If ar is deleted/freed using either:!
free(ar); or delete ar; "
objects it points to become"
inaccessible, causing memory leak!
!
How to delete ar correctly?!

Memory Ownership!

array A =

array B =

Both arrays contain
pointers to objects!

When should the objects be freed?!

How to implement this?!

Array Class: Append Example!

Original ar =

Create a new temp_ar =

New ar =

How can we append one more element ?!
!
!
Copy existing elements into new array "
and add new element:!
!
Delete old array so that memory can be reused"
(but be careful of dangling pointers!)!
!
Why do we have to make a new array?!
How big shall we make the new array?!

Dangling Pointers!
Say we have a binary search tree
(BST) pointing to elements in an
unsorted array ar (the BST acts as
an “index” to speed up search)!

Now if we need a larger array, we’d
need to reallocate a larger chunk
of memory and copy each element
of the old array to the new array!

Leak if the BST is not updated and
continues to point to the old space

ar

ar

junk!

How to fix this?!

Amortized Complexity!

A type of worst-case complexity analysis
spread out over a given input size!
!
Considers the average cost over a
sequence of operations!
•  in contrast: best/worst/average-case "
only considers a single operation!

Justifies the cost of expandable arrays!

Array Class: Complexity of Append!
Appending n additional elements"
to an already full array of size n!
On first append!
•  double array size from n to 2n (1 step)!
•  copy n items from original array to"

new array (n steps)!

On remaining n–1 appends!
•  place element in appropriate "

location (n–1 times 1 step)!

Total: 1+n+(n–1) = 2n steps!

Amortized complexity of appending additional n
elements: 2n/n = 2 steps per append = O(1)!

Pros and Cons of Arrays!

Name 2 advantages of using an array:!
!
!
Name 3 disadvantages of using an array:!
!

2D Arrays in C/C++!

0! 1! 2!

3! 4! 5!

6! 7! 8!

0! 1! 2!
0!

1!

2!

row!

column!int arr[3][3];
int val =0;

// For each row
for (int r=0; r < 3; r++){
// For each column
for (int c=0; c < 3; c++){
arr[r][c] = val++;

}
}

Limitations:!

2D Arrays in 1D!
0 1 2

3 4 5

6 7 8 0! 1! 2! 3! 4! 5! 6! 7! 8!

0 1 2

0

1
2

row

column

1D array!

index =

3×3 2D array!

num_columns = 3
row =
column =

Limitation:!
•  indexing cumbersome, makes code hard to read!

•  prefer to address elements as array[][]

Want:!

2D Arrays with Row Pointers!
int data = (int *) malloc(9*sizeof(int));
int *arr[3]; // array of row pointers

// assign row pointers
for (int r=0, nc=3; r < 3; r++) {
arr[r] = &array[r*nc];

}

int val=0;
for(int r=0; r < 3; r++){ //rows
for(int c=0; c < 3; c++){ // columns
arr[r][c] = val++;

}
}

0!

1!

2!

arr =

arr[2][1]

data =

Use this method in your programming assignments

0!
1!
2!
3!
4!
5!
6!
7!
8!

Self-Study Questions!
1.  Who owns the memory in a container class?!
2.  What are the disadvantages of arrays?!
3.  Why do you need a const and a non-const version of some

operators? What should a non-const op[] return?!
4.  How many destructor calls (min, max) can be invoked by: "

operator delete and operator delete[]
5.  Why would you use a pointer-based copying algorithm ?!
6.  Are C++ strings null-terminated?!
7.  Give two examples of off-by-one bugs.!
8.  How do I set up a 2D array class?!
9.  Perform an amortized complexity analysis of an automatically-

resizable container with doubling policy.!
10.  Discuss the pros and cons of pointers and references"

when implementing container classes.!

