

Asymptotic Algorithm Analysis

An algorithm with complexity $f(n)$ is said to be not slower than another algorithm with complexity $g(n)$ if $f(n)$ is bounded by $g(n)$ for large n

Commonly written as $f(n)=O(g(n))$ (read: $f(n)$ is big-Oh $g(n)$),

a.k.a. the asymptotic (or big-Oh) notation

Big-Oh - Example

Let
$f(n)=8 n+128$
$g(n)=n^{2}$
Is $f(n)=O(g(n))$?
Is $8 n+128 \leq c n^{2}$?

At what value of n_{0} is $g(n)>f(n), \forall n \geq n_{0}$?
How about for $c=2$ and $c=4$?

Big-Oh - Definition

As long as there is a $c>0$, and $n_{0} \geq 0$ such that $c \cdot g(n) \geq f(n)$ for all $n \geq n_{0}$, we say that $f(n)=O(g(n))$ In this example, $8 n+128=O\left(n^{2}\right)$

Mathematically:
$f(n)=O(g(n))$ iff $\exists c>0, n_{0} \geq 0 \mid \forall n, n \geq n_{0,} f(n) \leq c g(n)$ $O(g(n))=\left\{f(n): \exists c>0, n_{0} \geq 0 \mid \forall n, n \geq n_{0,0} \leq f(n) \leq c g(n)\right\}$

So more accurately, $f(n) \in O(g(n))$
but conveniently people write $f(n)=O(g(n))$, though NOT $f(n) \leq O(g(n))$

Big-Oh - Definition

In other words, we only care about LARGE n, it doesn't matter what c is

- obviously, c cannot be 10^{100} (one googol, the conjectured upper bound on the number of atoms in the observable universe)!
Also, asymptotically, $n^{2}+k=O\left(n^{2}\right), k$ constant (Why?)

Big-Oh: Sufficient

 (but not necessary) Condition| If $\left[\lim _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)}\right)=c<\infty\right]$ | then $f(n)$ is $O(g(n)$ |
| :---: | :---: |
| $\log _{2} n=O(2 n) ?$
 $f(n)=\log _{2} n$
 $g(n)=2 n$ $\lim _{n \rightarrow \infty}\left(\frac{\log n}{2 n}\right)$
 $=\lim _{n \rightarrow \infty}\left(\frac{1}{2 n}\right)$
 $=0=c<\infty$ | ∞ / ∞
 Use L'Hôpital's Rule $\Rightarrow \log _{2} n=O(2 n)$ |
| $\begin{aligned} & \underbrace{\sin \left(\frac{n}{100}\right)=O(100) ?}_{f(n)=\sin \left(\frac{n}{100}\right)} \\ & g(n)=100 \end{aligned} \quad \quad \lim _{n \rightarrow \infty}\left(\frac{\sin \left(\frac{n}{100}\right)}{100}\right.$ | Condition does not hold but nevertheless it is true that $f(n)=O(g(n))$ |

L'Hôpital's Rule

If $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)=0$ or $\pm \infty$ and $\lim _{x \rightarrow c} f^{\prime}(x) / g^{\prime}(x)$ exists then
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
Also useful, derivative of log:

$$
\begin{gathered}
\frac{d}{d x} \log _{b}(x)=\frac{1}{x \ln (b)} \\
\frac{d}{d x} \ln (f(x))=\frac{f^{\prime}(x)}{f(x)}
\end{gathered}
$$

Log Identities

Identity	Example
$\log _{a}(x y)=\log _{\alpha} x+\log _{a} y$	$\log _{2}(12)=$
$\log _{a}(x / y)=\log _{\alpha} x-\log _{a} y$	$\log _{2}(4 / 3)=$
$\log _{a}\left(x^{r}\right)=r \log _{\alpha} x$	$\log _{2} 8=$
$\log _{a}(1 / x)=-\log _{a} x$	$\log _{2} 1 / 4=$
$\log _{a} x=\frac{\log x}{\log a}=\frac{\ln x}{\ln a}$	$\log _{7} 9=$
$k=\log _{2} n$ iff $2^{k}=n$	$\log _{a} a=?$
$\log _{a} 1=?$	

Power Identities

Identity	Example
$a^{(n+m)}=a^{n} a^{m}$	$2^{5}=$
$a^{(n-m)}=a^{n} / a^{m}$	$2^{3-2}=$
$\left(a^{(n)}\right)^{m}=a^{n m}$	$\left(2^{2}\right)^{3}=$
$a^{-n}=\frac{1}{a^{n}}$	$2^{-4}=$
$a^{-1}=?$	
$a^{0}=?$	
$a^{1}=?$	

Big-Oh: We Can Drop Constants

$$
\begin{aligned}
& 3 n^{2}+7 n+42=O\left(n^{2}\right) ? \\
& \begin{array}{l}
f(n)=3 n^{2}+7 n+42 \\
g(n)=n^{2}
\end{array}
\end{aligned}
$$

Definition

$c>0, n_{0} \geq 0$ such that
$f(n) \leq c \cdot g(n), \forall n \geq n_{0}$

Sufficient Condition

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c<\infty \\
& =\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}+7 n+42}{n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6 n+7}{2 n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6}{2}\right)
\end{aligned}
$$

Big-Oh - Common Mistakes

Mistake \#0: $f(n)=O(g(n)) \Rightarrow f(n)=g(n)(\mathrm{NOT})$
Mistake \#1: If $f_{1}(n)=h(n)$ and $f_{2}(n)=h(n)$ then $f_{1}(n)=f_{2}(n)$; it follows that if $f_{1}(n)=O(g(n))$ and $f_{2}(n)=O(g(n))$ means $f_{1}(n)=f_{2}(n)$ (NOT)
Mistake \#2: $f(n)=O(g(n)) \Rightarrow g(n)=O^{-1}(f(n))(N O T)$
(There's no $O^{-1}()$!)

How Fast is Your Code?

Is $f(n)=O\left(2^{n}\right)$?
Is $f(n)=O\left(n^{2}\right)$?
Is $f(n)=O(n \log n)$?
Is $f(n)=O(n)$?
Is $f(n)=O(\log n)$?
Let $f(n)$ be the

complexity of your
code, how fast would you advertise it as?
While $f(n)=O(g(n)) \nRightarrow f(n)=g(n)$, you want to pick a $g(n)$ that is as close to $f(n)$ as possible (a "tight" bound)

About Big-Oh

Asymptotic analysis deals with the performance of algorithms for LARGE input sizes

Big-Oh provides a short-hand to express upper bound, it is not an exact notation

- be careful how big c is
- be careful how big n_{0} must be

Big-Oh asymptotic analysis is language independent

Big-Oh - More Common Mistakes

Mistake \#3: Let $f(n)=g_{1}(n) * g_{2}(n)$

$$
\begin{aligned}
& \text { If } f(n) \leq c g_{1}(n) \text { where } c=g_{2}(n), \\
& \text { then } f(n)=O\left(g_{1}(n)\right)(\mathrm{NOT})
\end{aligned}
$$

Mistake \#4: Let $f_{1}(n)=O\left(g_{1}(n)\right), f_{2}(n)=O\left(g_{2}(n)\right)$,

$$
\text { and } g_{1}(n)<g_{2}(n) \Rightarrow f_{1}(n)<f_{2}(n)(\text { NOT })
$$

Counter-example:

$$
\begin{aligned}
& f_{1}(n)=? \\
& g_{1}(n)=? \\
& f_{2}(n)=? \\
& g_{2}(n)=?
\end{aligned}
$$

Big-Oh - Rules

Rule 1: For $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$

$$
\Rightarrow f_{1}(n)+f_{2}(n)=O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right.
$$

Example: $f_{1}(n)=n^{3} \in O\left(n^{3}\right), f_{2}(n)=n^{2} \in O\left(n^{2}\right)$

$$
\Rightarrow f_{1}(n)+f_{2}(n)=O(?)
$$

Rule 2: For $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$

$$
\Rightarrow f_{1}(n) * f_{2}(n)=O\left(g_{1}(n) * g_{2}(n)\right)
$$

- If your code calls a function within a loop, the complexity of your code is the complexity of the function you call times the loop's complexity

Rule 3: If $f(n)=O(g(n))$ and $g(n)=O(h(n))$

$$
\text { then } f(n)=O(h(n))
$$

Relatives of Big-Oh

Big-Omega $(\Omega())$: asymptotic lower bound

$$
\begin{aligned}
& \text { For } f(n)>0, \forall n \geq 0, f(n)=\Omega(g(n)) \text { if } \\
& \exists c>0, n_{0}>0 \mid \forall n, n \geq n_{0}, f(n) \geq c g(n)
\end{aligned}
$$

$$
h_{1}(n)=O\left(h_{2}(n)\right) \Leftrightarrow h_{2}(n)=\Omega\left(h_{1}(n)\right)
$$

Big-Theta $(\Theta())$:
$f(n)=\Theta(g(n))$ iff
$f(n)=O(g(n))$ and
$f(n)=\Omega(g(n))$
$f(n)$ grows as fast as $g(n)$

Big-Theta

Does $f(n)=\Theta(g(n)) \Rightarrow g(n)=\Theta(f(n))$?
Does $f(n)=\Theta(g(n)) \Rightarrow f(n)=g(n)$?
Does $f(n)=\Theta(g(n)) \Rightarrow f(n)$ is the same order as $g(n)$?

Relatives of Big-Oh

little-oh $(o())$:

$$
\begin{aligned}
& f(n)=o(g(n)) \text { if } f(n)=O(g(n)) \text { but } f(n) \neq \Theta(g(n)) \\
& f(n)=o(g(n)) \text { if } \exists n_{0}>0 \mid \forall c>0, \forall n, n \geq n_{0,} f(n) \leq c g(n) \\
& \text { In contrast to } O(), o() \text { is forall } c>0 \text {, whereas } O() \\
& \text { only requires there exists } c>0 \text {; so } O() \text { is sloppier } \\
& \text { than } o() \text {, which is why we use it more often! }
\end{aligned}
$$

Example: $2 n^{2}=O\left(n^{2}\right)$ is asymptotically tight, but $2 n=O\left(n^{2}\right)$ is not
little-omega $(\omega())$:

$$
f(n)=\omega(g(n)) \text { iff } g(n)=o(f(n))
$$

The Common Case:

Empirical Performance Evaluation

If $n_{0}>$ the common case n, the asymptotic analysis result is not very useful

To determine the common case performance, given known workload, run empirical performance measurement/evaluation

Note that common case performance is not necessarily the average case performance (Why not?)

Empirical evaluation is also useful for evaluating complex algorithm or large software systems

Experiment Setup

Factors that affect the accuracy of your empirical performance evaluation:

- system speed
- system load
- compiler optimization

What you need:

- workload generator: must generate realistic common cases
- reduce system variability:
- use the same compiler
- use the same machine
- minimize concurrent/background tasks
- for shared systems, run experiment around the same time of day

Empirical Results

Repeat experiment several times with the same input and take the average or minimum

Plot algorithm runtimes for varying input sizes
Include a large range to accurately display trend

struct rusage contains other useful information, e.g., memory usage

Analysis vs. Evaluation

When experimental results differ from analysis . . .

- check for correctness in complexity analysis
- check for error in coding
- extra loop
- algorithm implemented is different from the one analyzed!
- if no error, experiment may simply
have not covered worst case scenario
- external factors, e.g., hardware/software system (performance) bug?
I. Which of these are true? Why?
$10^{100}=O(1)$
$3 n^{4}+45 n^{3}=O\left(n^{4}\right)$
$3^{n}=O\left(2^{n}\right)$
$2^{n}=O\left(3^{n}\right)$

Self-Study

Questions
$45 \log (n)+45 n=O(\log (n))$
$\log \left(n^{2}\right)=O(\log (n))$
$[\log (n)]^{2}=O(\log (n))$
2. Let $f(n)=(n-1) n / 2, c=n / 2$, is $f(n)=O(n)$?

If so, why? If not, what's the big-Oh of $f(n)$?
3. Is $\log n=O(n)$? Is $\log n=O\left(n^{2}\right)$? Which is a tighter bound?
4. Given 4 consecutive statements: $S_{1} ; S_{2} ; S_{3} ; S_{4}$; Let $S_{1}=O(\log n)$, $S_{2}=O\left(\log n^{3}\right), S_{3}=O(n), S_{4}=O(3 n)$. What is the big-Oh time complexity of the four consecutive statements together? Prove it mathematically using the definition of big-Oh.
5. You ran two programs to completion. Both have running time of 10 ms . Can you say that the two programs have the same big-Oh time complexity? Why or why not?
6. Find $f(n)$ and $g(n)$, such that $f(n)$ is not $O(g(n))$ and $g(n)$ is not $O(f(n))$

Foundational Data Structures

Data structures from which we build abstract data types (ADTs):

- arrays
- linked lists

Example ADTs?
Since they are so foundational to all the more complicated data structures, it is of upmost importance that you thoroughly understand how to work with them

Arrays Review

What is an array?

```
char ar[] = {'m', 'e', '2`, '8`, '1'};
ar[0] = 'e';
char c = ar[2];
// now we have c== '2'
char *ptr = ar;
// now ptr points to "ee281"
ptr = &ar[1];
// now ptr points to "e281"
// same as ptr = ar+1;
```


Copying with Pointers

How can we copy
data from src_ar
to dest_ar?

```
double size = 4;
double src_ar[] = {3, 5, 6, 1};
double dest_ar[size];
```


Without pointer

for (int $i=0 ; i<$ size; $i++)\{$ dest_ar[i] = src_ar[i];
\}
With pointer?

In which cases would you want to use pointers?

Arrays: Common Bugs

Two most common bugs (in various guises):
I. out-of-bound access

- index variable not initialized
- null-termination error
- off-by-one errors
-bounds not checked

2. dangling pointers into/out of array elements

- pointers in array not de-allocated \rightarrow memory leak
- when moved (or realloc-ed), pointers to array elements not moved

Off-by-One Errors

```
const int size = 5;
int x[size];
// set values to 0-4
for(int j=0; j<=size; j++){
    x[j] = j;
}
// copy values from above
for(int k=0; k<=(size-1); k++) {
    x[k] = x[k+1];
}
// set values to 1-5
for(int m=1; m<size; m++) {
    x[m-1] = m;
}
```


Index Variable Not Initialized

```
int i;
printf("%c\n",y[i]);
```

What's the bug?

Correct programs always run correctly on correct input

Buggy programs sometimes run correctly on correct input

- sometimes they crash even when input doesn't change!

NULL-termination Errors

```
int i;
char x[10];
strcpy(x, "0123456789");
// allocate memory
char* y =
    (char*)malloc(strlen(x));
for(i = 1; i < 11; i++) {
    y[i] = x[i];
}
y[i] = '\0';
printf("%s\n",y);
```

Lookup/confirm the behavior of various libraries by reading the manual pages (under Linux or Mac OS X) or http://www.cplusplus.com/reference/clibrary/

Bounds Not Checked

```
int main(int argc, const char* argv[])
    char name[20];
    strcpy(name, argv[1]);
}
```

What errors may occur when running the code?

How can the code be made safer?

Example of a Container Class:
 Adding Bounds Checking to Arrays

```
class Array
    int* data; // array data
    unsigned int length; // array size
    // Why aren't data and length public?
public:
    // Constructor
    Array(unsigned len=0):length(len) {
    data = (len ? new char[len] : NULL);
}
    // other methods to follow in next slides...
};
```


Container Classes

Wrapper for objects

- allows for control/protection over editing of objects
- e.g., adding bounds checking to arrays

Container class operations:

- Constructor
- Destructor
- addElement ()
- removeElement ()
-getElement()
-getSize()
- copy ()
- assign()

Array Class: Inserting an Element

```
bool insert(int index, double val){
    if (index >= size || index < 0)
        return false;
    for(int i=size-1; i > index; i--)
```

```
        why is i decremented
```

```
    data[i] = data[i-1];
```

 data[i] = data[i-1];
 }
 instead of
 instead of
 incremented?
 data[index] = val;
 return true;
 }
ar $$
\begin{array}{llllll}{\hline1.6}&{3.1}&{4.2}&{5.9}&{}&{}\\{\hline}\end{array}
$$\quad\mathrm{ Original array}
ar.insert(1, 3.4); Call insert

```

Are arrays desirable when many insertions are needed?

\section*{Array Class: Complexity of Insertion}
```

bool insert(int index, double val){
if (index >= size || index < O)
return false;
for(int i=size-1; i > index; i--) {
data[i] = data[i-1]; \longleftarrow}\mathrm{ at most }n\mathrm{ times
}
data[index] = val; Best case: O(1)
return true;
}
Worst case: $O(n)$
Average case: $O(n)$

```

\section*{Memory Ownership}

Both arrays contain pointers to objects


When should the objects be freed?
How to implement this?

\section*{Memory Leak}

If ar is deleted/freed using either:
free (ar); or delete ar; objects it points to become inaccessible, causing memory leak


How to delete ar correctly?


\section*{Array Class: Append Example}
\[
\text { Original ar }=\begin{array}{|l|l|l|l|l|}
\hline \hline & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

How can we append one more element \(\bullet\) ?


Copy existing elements into new array and add new element:


Delete old array so that memory can be reused (but be careful of dangling pointers!)

Why do we have to make a new array?
How big shall we make the new array?

\section*{Dangling Pointers}

Say we have a binary search tree (BST) pointing to elements in an unsorted array ar (the BST acts as an "index" to speed up search)

Now if we need a larger array, we'd need to reallocate a larger chunk of memory and copy each element of the old array to the new array

ar


Leak if the BST is not updated and continues to point to the old space

How to fix this?

\section*{Amortized Complexity}

A type of worst-case complexity analysis spread out over a given input size

Considers the average cost over a sequence of operations
- in contrast: best/worst/average-case only considers a single operation

Justifies the cost of expandable arrays

\section*{Array Class: Complexity of Append}

Appending \(n\) additional elements to an already full array of size \(n\)
On first append
- double array size from \(n\) to \(2 n\) ( 1 step)
- copy \(n\) items from original array to new array ( \(n\) steps)

On remaining \(n-1\) appends
- place element in appropriate location ( \(n-1\) times 1 step)

Total: \(1+n+(n-1)=2 n\) steps


Amortized complexity of appending additional \(n\) elements: \(2 n / n=2\) steps per append \(=O(1)\)

\section*{Pros and Cons of Arrays}

Name 2 advantages of using an array:

Name 3 disadvantages of using an array:

\section*{2D Arrays in C/C++}
```

int arr[3][3];
int val =0;
// For each row
for (int r=0; r < 3; r++){
// For each column
for (int c=0; c < 3; c++){
arr[r][c] = val++;
}
}
Limitations:

```

\section*{2D Arrays in 1D}

1D array
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}
```

num columns = 3
row =
column =

```

Want:
\(3 \times 32 \mathrm{D}\) array
row

ndex =

Limitation:
- indexing cumbersome, makes code hard to read - prefer to address elements as array [ ] [ ]

\section*{Self-Study Questions}
I. Who owns the memory in a container class?

2. What are the disadvantages of arrays?
3. Why do you need a const and a non-const version of some operators? What should a non-const op [] return?
4. How many destructor calls (min, max) can be invoked by: operator delete and operator delete[]
5. Why would you use a pointer-based copying algorithm ?
6. Are \(\mathrm{C}++\) strings null-terminated?
7. Give two examples of off-by-one bugs.
8. How do I set up a 2D array class?
9. Perform an amortized complexity analysis of an automaticallyresizable container with doubling policy.
10. Discuss the pros and cons of pointers and references when implementing container classes.```

