
Lecture 4: Linked List, Basic ADTs!
(Review of Some 280 Material)!
PA1 Walkthrough!

Linked List Review!

What is a linked list?!

Each node points to the next node!
The last node points to NULL!

head!

Linked Lists!
struct Node {!
Node* next;!
int item;!
Node(){ next = NULL; }!

};!
!
class LinkedList{!
Node *head;!

!
public:!
LinkedList();!
~LinkedList();!
// other methods here!

};!

Linked Lists Methods!
int getSize();!
!
bool appendItem(int item);!
bool appendNode(Node *n);!
!
bool deleteItem(int item);!
bool deleteNode(Node *n);!

Why no const in appendNode()?!

What if we wanted to store objects instead
of just primitive types?!

What other methods would be useful?!

Counting Nodes in a Linked List!

Visiting a series of elements is a traversal !
Each step of a traversal is an iteration!

int LinkedList::getSize() {!
int i=0; !
Node *current = head;!
while (current){!
i++;!
current = current->next;!

}!
return i; !

}!

traverses through
the list!

head!

Linked List: Appending a Node!

head!

appnode!curr!

Search down list until curr�next == NULL!

head!

curr!
appnode!

Set curr�next = appnode; appnode�next = NULL!

head!

 curr!

Linked List: Delete Node!

head!

delnode!curr!

Search down list until curr�next == delnode!

Set curr�next = delnode�next and delete delnode!

head!

curr!

head!

delnode!curr!

Not the best way to delete a node!

Arrays versus Linked Lists!

List!Array!

0 1 2 4 5!

Arrays! Linked Lists!

Access! Random in O(1) time! Random in O(n) time!

Insert!
Append!

Inserts in O(n) time!
Appends in O(n) time!

Inserts in O(1) time!
Appends in O(n) time!

Bookkeeping! Pointer to beginning!
Size or pointer to end of array!

Pointer to first node!
Next node pointer in each node!

Memory! Free in O(1) time!
Wastes memory if size is too large!
Requires reallocation if too small!

Free in O(n) time!
Allocates memory as needed!
Allocation/deallocation costly!
Next pointers wasteful!

W
or

st

C
as

e!

W
or

st

C
as

e!

class LinkedList {!
Node *head;!
int size;!

!
public:!

LinkedList();!
~LinkedList();!
int getSize() {!

return size; !
}!

};!

Linked List Optimizations!

returns stored size!

incremented/
decremented when nodes
are inserted/deleted!

Doubly-linked List !

Each node points to next and
previous nodes!

First node’s previous pointer
and last node’s next pointer
point to NULL!

Which operations are faster
with a doubly-linked list?!

Singly-linked! head!

Doubly-linked! head!

// Doubly-linked node!
struct node{!

int item;!
Node* next;!
Node* prev;!
Node() { next = NULL;!

prev = NULL; }!
};!

Doubly-linked List: Delete Node!
delnode!

bool LinkedList::deleteNode(Node* delnode)
{!

delnode->prev->next = delnode->next;!
delnode->next->prev = delnode->prev;!
delete delnode;!
return true; !

}!

head!

head!

Complexity of Deleting a Node!

Singly-linked list: O(n)!
Doubly-linked list: O(1)!
!
Why is deleting an element from a doubly-linked
list so easy?!
!
Why do we need O(n) for a singly-linked list?!
Can we do better?!

O(1) Singly-linked Node Deletion!

Idea 1:!
• overwrite data in node to be deleted with next node’s data!
• delete next node!
• assume data can be copied!

•  some data such as references can not be copied!
•  how to delete the last item on the list? Copy from head?!

• potential problem?!

head!

Not recommended!

delnode!

index!

junk!

Idea 2:!
• problem: we need access to the next pointer of the
previous node!

• how about we pass a pointer to the previous node
instead? deleteNode(Node *prev);!

!
• new problem: how to delete the first node? head is a
Node *, not a Node!

O(1) Singly-linked Node Deletion!

delnode!

head!

prev!

Not recommended!

Idea 3:!
• problem: we need to access the next pointer of the previous node!
• typedef Node *Link;!
• deleteNode() called with a double pointer to "
the node to be deleted: deleteNode(Link &dellink);!

• to delete a node in the linked-list (note the nifty use of "
reference args!): deleteNode(prev�next);!

• to delete the first node: deleteNode(head);!

!
• use this method in your programming assignments!

O(1) Singly-linked Node Deletion!

delnode!

head!

dellink!

Linked Lists with Tail Pointers!
Singly-linked with tail pointer!

Doubly-linked with tail pointer!

Which operations are faster with a tail pointer?!

class LinkedList{!
Node *head;!
Node *tail;!

public:!
// insert methods here!

};!

tail!

head!

head!

tail!

Singly-linked List with Tail Pointer: "
Appending a Node!

void LinkedList::appendNode(Node* appnode){!
tail->next = appnode;!
tail = appnode; !!
appnode->next = NULL; !

}!

head!

 tail!

appnode!

head!

appnode!tail!

Complexity of Appending a Node!

void LinkedList::addNode(Node* appnode){!
Node *current = head;!
while (current->next != NULL)!

current = current->next; !
current->next = appnode; !
appnode->next = NULL; ! !

}!

1 step!
n steps!
!
1 step!

Total: 1 + n*1 + 1 = O(n)!

void LinkedList::addNode(Node* appnode){!
tail->next = appnode;!
tail = appnode;!
appnode->next = NULL; ! !

}!

1 step!
1 step!

Total: 1 + 1 + 1 = O(1)!

Singly-linked List:!

Singly-linked List with Tail Pointer: !

Merging List!
ListA!

ListB!

How long does it take to merge ListA and ListB into one list?!

What if both lists have tail pointers?!
tail!

ListA!

ListB!

tail!

Prepend freed nodes to free list instead of de-allocating them!
mylist.deleteNode(delnode)!

!
!
!
!
!
Next time you need a new node, take from free list first!
mylist.appendItem() calls mylist.appendNode(appnode)!

Free List: Speeding Up"
(De)Allocation!

freelist!

mylist!

mylist!

delnode!freelist!

appnode!

Pre-allocate a chunk of memory to create free list!
!

!

with four nodes assigned to mylist:!

!
!
!
!

after mylist.delNode(delnode):!

Free List: Implementation!

freelist!

freelist!mylist!

freelist!mylist!

Dangling pointer of one kind or another:!

1.  head and tail not initialized to NULL!

2.  free head without freeing each element!

3.  deletion or insertion dangles pointer!

!

4.  trying to access freed element!

Linked List: Common Bugs!

head!

delnode!

junk!

index!

Consistency Checking!
Arrays:!
•  does stored size match number of elements?!
•  check that start+size < end!

•  start: pointer to start of array!
•  size: stored size of the array!
•  end: pointer to one slot past last element!

Linked lists!
•  does stored size match number of elements?!
•  does the last node point to NULL?!
•  In a doubly-linked list, check that next/prev pointers are

consistent (p == p�next�prev) and"
(p == p�prev�next)!

•  Is there a loop in the list?!

Loop Detection!

What is a “loop”?!
!
!
!
!
!
!
!
Why is a loop bad?!
!
How do you check for loop in a list?!

head!

head!

Circular List!

Last node points to first node!

Can also be doubly-linked!

Simplify coding: prependNode(), appendNode(),
insertNode() can all use the same code!

head!

tail!

Reversing a Linked List!
head!

newhead!

Now head = newhead!

head!

newhead!

head!

newhead!

head!

newhead!

Complexity of Reversing
a Linked List!

How long does reversal take?!

How much memory is needed?!

Can reversal be made more time efficient?!

Can reversal be made more space efficient?!
•  can we reverse with only O(1) additional memory?!

Reversing a Doubly-linked List !

Can we reverse this in O(1) memory?!
!
Can we do the reversal in O(1) time?!
• what if we add a tail pointer?!
!

tail!

head!

Self-Study Questions !

1.  When would a linked list be preferred over an array?!
2.  How are linked lists and arrays similar?!
3.  What methods are faster with doubly-linked lists?!
4.  What methods are faster with a tail pointer?!
5.  What does it mean to check that a linked list is consistent?!
6.  How can you tell if a linked list is circular?!

Abstract Data Type!
What is Abstract Data Type (ADT)?!
•  a higher-level data representation (higher-level than arrays

and linked-lists) that helps us conceptualize and manipulate
a problem!

•  how ADTs are implemented is hidden from the users!
•  object-oriented ADTs come with pre-defined interfaces!
!
Algorithmic Thinking: “Conceptualizes problems with digital
representations and seeks algorithms that express or find
solutions” – P.J. Denning!
!
“(Almost) any problem in computer science can be solved by
another layer of representation”!

Vector ADT!
What is a vector?!
• a mathematical construct, a linear sequence of elements!

How is a vector different from an array?!
• boundary check is automatic!
• resizing is automatic and invisible!
• allows for operation on whole vector, e.g., add two vectors!
•  interfaces: isempty(), getSize(), ithElement(),
insert(), replace(), delete(), etc.!
!
How to implement?!

What is a Stack?!
A "pile" of items where new objects are put on top !
of the pile and the top object is removed first (LIFO
order)!
!
!
!
!
!

Applications:!
• Web browser’s “back” feature!
• Editor’s “Undo” feature!
• Function calls in C/C++!

Method! Description!
push(object)! add object to top of the stack!

pop()! remove top element!

object& top()! return a reference to top element !

size()! number of elements in stack!

empty()! checks if stack has no elements!

Stack Example: Web Browsing!
1. Open Browser to http://www.google.com!
2. Search for “iOS”!
3. Go to Apple’s iOS4 page!
4. Click on “Store”!
5. Go to the “iPhone” page!
6. Go back to “Store”!
7. Go to the “iPad” page!
8. Finished, close browser!
!

Should we use arrays or linked lists "
to implement stacks?!

url stack!
Google Homepage

Search Results: iOS

Keep a pointer (top) to the last element of array!
!
!
!
!
!
!
!
!
What is the asymptotic runtime of each method?!

Stacks Using Arrays!

Method! Implementation!
push(item)! add new item to end of array and increment top!

allocate more space if necessary (requires copying)!

pop()! decrement top!
Item& top()! return reference to item in top node!

size()! subtract top and stack pointers!

empty()! are top and stack the same?!

stack !

top!

Singly-linked list is sufficient!
!
!
!
!
!
!
!
What is the asymptotic runtime of each method?!
Is an array or linked list more efficient for stacks?!

Stacks Using Linked Lists!

Method! Implementation!
push(item)! prepend to the list!

pop()! remove top of the list!

Item& top()! return reference to item in top node!

size()! Use LinkedList::size() method !

empty()! Use LinkedList::empty() method !

top!

What is a Queue?!

Method! Description!

enqueue(object)! add element to tail of queue!

dequeue()! remove element at head of queue !

Object& peek()! return reference to element at head of the queue!

size()! number of elements in queue, keep a count!

empty()! checks if queue has no elements!

A “line” of items with FIFO access: "
the first item inserted into the queue is the first one out!

1. Computer A sends 2 requests!
2. Computer B sends 3 requests!
3. Server handles 3 requests!
4. Computer A sends 1 request!
5. Server handles 3 requests!

Queue Example: "
Request Queue of a Web Server!

request queue!

Should we use arrays or linked lists !
to implement the server queue?!

Queues Using Arrays:
Enqueue and Dequeue !

1. tail == head "
and count is 0!

2.  enqueue element!

3.  enqueue element!

4.  enqueue element, "
tail++ modulo array len!

5.  allocate more (usually
doubled) memory and
enqueue element!

6.  dequeue element!

7.  dequeue element!

head!

tail!

Circular array
of size 3!

Circular array
of size 4!

tail!

head!head!head!

tail!tail!tail!

Event sequence!

Use a circular array!
!
!
!
!
!
!
!
!
!
What is the asymptotic runtime of each method?!

Queues Using Arrays !

Method! Implementation!
enqueue(item)! increment tail, wrapping to front of array when end

of allocated space is reached!
if tail becomes head, reallocate array and unroll!

dequeue()! delete item at head and increment head, wrapping to
front of array when end of allocated space is reached!

Item& peek()! return reference to element at head!
size()! return count;!

empty()! return count;!

head! tail! Singly-linked list with tail pointer is sufficient!
!
!
!
!
!
!
!
What is the asymptotic runtime of each method?!
Is an array or linked list more efficient for queues?!

Queues Using Linked Lists !

Method! Implementation!
enqueue(item)! append to the list!

dequeue()! delete head of the list!

Item& peek()! return reference to item at head of list!

size()! use LinkedList::size() method !

empty()! use LinkedList::empty() method !

head!

tail!

Deque: a Queue and Stack in One "
(Double-ended Queue)!

Not a proper English word, pronounced “deck”!

Items can be inserted and removed from both ends of
the data structure!

Six major methods!
• push(), dequeue(), peek_head()!
• enqueue(), pop(), peek_tail()!

Minor methods!
• size(), empty()!
!
Cannot traverse elements!

As circular array !
• head and tail both get incremented/decremented!

As doubly-linked list with tail pointer!
• singly-linked doesn’t support efficient removal!
• other operations map directly to doubly-linked list
operations!

Deque Implementation!

head ! tail !

head!
tail !

Which ADT to Use?!

Freelist!

The game Tetris!

Strategy game:!
• user can build multiple units!
• but the barrack can only produce one unit at a time!

Reverse Polish calculator:!
• compute “(5 + 9) * 2 + 6 * 5” as “5 9 + 2 * 6 5 * +”!
• advantage: no need to use parentheses to indicate
precedence!

Self-Study Questions!

What is an ADT?!

Define vector, stack, queue, deque!

What is the best way to implement each of the ADT
above?!

Describe several applications where one ADT would
be more appropriate than another!

In choosing ADT for a given application, look for:!
•  the right trade-offs for runtime complexities!
• memory overhead!

Programming Assignment 1!
Due date: Thu, 9/22, 10:00 pm!

To be done individually (no group or team)!

No STL (iostream and string are allowed, they are
part of the C++ standard library, not part of STL)!

Must not include external materials (e.g., open-source
code downloads or code from previous terms from
friends or found online)!

To pass off the implementation of an algorithm"
as that of another is also considered cheating:!
•  e.g., insertion sort is not heap sort!
•  if you can not implement a required algorithm, "

you must inform the teaching staff when turning in your assignment!

Problem Specification!
Find a path from the given start position (‘S’) to the
given target position (‘T’) in the game world!

Game world consists of n levels of square maps!

Levels are arranged left to right in sequential order,
starting with level 0!

!

!

!

Each map consists of m×m number of tiles!

level 0! level 1! level 2! level 3!

Sample World Map!

2!
3!
sample input map file !
with two 3x3 level!
W.W!
W>.!
.WS!
WW.!
..T!
.W.!

Actual has
no color!!

Map Representation!

Each level has a map!

You’re creating a 3D "
map of the world, with
each tile addressable as"
world[level][row][col]!

‘S’ at world[0][2][2]!
‘T’ at world[1][1][2]!

W! .! W!

W! >! . !

.! W! S!

W! W! .!

.! .! T!

.! W! .!

grid =

map =
world =

Movements!
You can move east, west, south, north, but
not diagonally!

You cannot move onto an impassable tile or
off the map!

The only movement you have at a portal is
to exit at the destination level!
• portals at location (x, y) on a level exits at the
same location (x, y) on the destination level!

• map coordinates start at (0, 0) at the"
upper left (northwest) corner of the map!

Path Finding!
Start by inserting the start tile into a “navigation
data structure”, then (your implementation may
vary):!
1.  visit next tile (search fail if no more next tile)!

2.  in a clockwise order starting from the tile north of this
tile, examine each neighbor!

3.  if neighbor is not the target tile, is passable, and you have
not previously visited this neighbor, insert it into the
navigation data structure so that you can visit it later!

4.  loop (go back to step 1)!

Your program must complete within 10 seconds of
total CPU time!

Path Finding!
Two types of “navigator”:!
1.  one stack based, built on a linked-list!
2.  one queue based, built on an array!

Either one must be able to find the shortest path
to the target!

There is only one acceptable solution per algorithm
for each input!

Both algorithms must find a valid path (not
necessarily the shortest) to the target if one exists!

8!
1!
#level 1!
WWWWWWWW!
W W!
W W WW!
W W X W!
W WW W!
WWWW W!

Path Output! 2!
3!
#level 0!
W.W!
Wuw!
.Wn!
#level 1!
WW.!
.eT!
.W.!

Output a copy of the map"
with the path marked with"
the direction to take at each "
tile, starting from the start tile!

The target tile should be"
marked with ‘T’!

Each level must be pre-tagged"
with “#level k”!

Strip off comments, extra"
characters, and blank lines in the input file!

If no path found, output original input map!

Actual has
no color!!

dos2unix!
Beware of DOS/Windows file format incompatibility:!

•  on Windows: line end is two characters (“\r\n”)!

•  on Linux and Mac OS X: only ‘\n’ is used!

• many editors do not show the difference!

•  always run all files created on Windows through
dos2unix on Linux before compiling and submitting!

•  especially the testcases files!!

•  by default, dos2unix overwrites input file with
converted file!

Remote Access!

To login to remote Linux system!
•  from Linux/Mac OS X, use the ssh command!
•  from Windows: use putty (http://www.putty.nl/download.html)!
!
To transfer files to/from remote Linux system!
•  from Linux/Mac OS X: use the scp command !
•  from Windows: use WinSCP (http://winscp.net/)!
!
Beware of Linux/Windows file format incompatibilities !
•  always run all files (especially the testcases!) "

created on Windows through dos2unix on"
the Linux system before compiling and submitting!

Files Organization!
How would you organize your code into files?!

Alternative 1: path281.cpp (NOT)!

Alternative 2: path281.cpp, navigator.h,
stackNavi.h, stackNavi.cpp, queueNavi.h,
queueNavi.cpp, stack.h, stack.cpp,
queue.h, queue.cpp, linkedList.h
linkedList.cpp, array.h, array.cpp (NOT)!

Alternative 3: path281.cpp, navi.h, adts.h,
tile.h!

Your choice would be different, but try not to split it
up into too many files!!

Time Requirements!

Task!
Lines of
Code!

% Total
Time!

design! 6!
world map! 160! 23!
ADTs (unit test)! 78 (+118)! 21!
navigator (unit test)! 25 (+45)! 6!
path_finder()! 133! 16!
path_printer()! 138! 13!
clean up! 15!

How long does it take to do PA1?!

PA1 Grading Criteria!

Working, efficient solution (75%):!
• code compiles!
• code runs correctly, including two command line
options: –q and –s!

• implementation is efficient, e.g.,!
•  no unnecessary copying!
•  no loop invariant statement in loop!

Test cases (20%)!

Code is readable, well-documented (5%):!

Code Readability!

Negative space (or just plain space) increases code
readability!
!
Wrap around lines make code hard to read!
!
Direct action is easier to follow than action
description!
!
Don’t compute indices on the fly!
!
Use short, mnemonic variable and function names!

Code Reuse!

Reuse code as much as possible!
•  reuse will reduce the amount of code to debug!

•  design for reuse!

•  put the code to be reused in a function, not
cut-and-pasted!

Coding Penalties (≤ 5 Points)!

All code in one file !–2!
Make clean not clean –2!
Junk file –1!
!
Per occurrence penalty:!
Wrap around lines !–1!
Cut-and-pasted code !–1!
Meaningless variable/function names !–1!
Use of literals !–1!

Makefile!
Make sure you don’t have the following in your
autograder output:!
Warning: 'make clean' does not
remove all executable and object
files!
!
See sample Makefile next slide!

CC = g++!
CFLAGS = -g -Wall –pedantic!
!
HDRS = navi.h adts.h tile.h!
SRCS = path281.cpp!
OBJS = $(patsubst %.cpp, %.o, $(SRCS))!
!
path281: $(OBJS)!
 $(CC) $(CFLAGS) -o $@ $(OBJS)!
!
%.o: %.cpp $(HDRS)!
 $(CC) $(CFLAGS) -c $<!
!
.PHONY: clean!
clean: !
 -rm -f *.o *~ *core* path281!

Makefile!

TAB!

TAB!

TAB!

Code Similarity!

We use Moss to measure code similarity!

Moss (a Measure Of Software Similarity) is
an automatic system for determining the
similarity of programs!

Moss is a system for detecting software
plagiarism!

http://theory.stanford.edu/~aiken/moss/!

