
Lecture 9: Priority Queue!
Heap!
Trie!
Huffman Coding!
AVL Trees!

What is a Priority Queue!
A list of items where each item is given a priority value!
• priority values are usually numbers!
• priority values should have relative order (e.g., <)!
• dequeue operation differs from that of a queue or dictionary: 
item dequeued is always one with highest priority!
!
!
!
!
!
!
No search()!!

Method! Description!
enqueue(item)! insert item by its priority!

Item &dequeuemax()! remove highest priority element!

Item& findmax()! return a reference to highest 
priority element !

size()! number of elements in pqueue!

empty()! checks if pqueue has no elements!

Emergency call center:!
•  operators receive calls and assign levels of urgency!
•  lower numbers indicate higher urgency!
•  calls are dispatched (or not dispatched) by computer to police 

squads based on urgency!
!
Example:!
1. Level 2 call comes in!
2. Level 2 call comes in!
3. Level 1 call comes in!
4. A call is dispatched!
5. Level 0 call comes in!
6. A call is disptached!

Priority Queue Examples!

0!
1!
2!

Priority value used 
as array index!

Scheduling in general:!
• shortest job first print queue!
• shortest job first cpu queue!
• discrete events simulation (e.g., computer games)!

Priority Queue: Other Examples!



Priority Queue Implementations!

Implementation! dequeuemax()! enqueue()!

Unsorted list! O(N)! O(1)!

Sorted list! O(1)! O(N)!

Array of linked list!
(only for small number of  
priorities, items with same 
priority not differentiated)!

O(1)! O(1)!

Heap! O(log n)! O(log n)!

BST as Priority Queue!
Where is the smallest/largest item in a BST?!

Time complexity of enqueue() and dequeuemax():!
• enqueue(): O(log N)!
• dequeuemax(): O(log N)!

Why not just use a BST for priority queue?!

Heaps!
A binary heap is a complete binary tree!

A non-empty maxHeap T is an ordered 
tree whereby:!
• the key in the root of T is ≥"

the keys in every subtree of T!
• every subtree of T is a maxHeap!

•  (the keys of nodes across subtrees"
have no required relationship)!
• a size variable keeps the number of"

nodes in the whole heap (not per subtree)!

• a minHeap is similarly defined!

Heaps Implementation!
A binary heap is a complete binary tree!
•  can be efficiently stored as an array!
•  if root is at node 0:!
•  a node at index i has children at indices 2i+1 and 2i+2!
•  a node at index i has parent at index floor((i–1)/2)!
•  what happens when array is full?! heap:!



maxHeap::dequeuemax()!
Item at root is the max, save it, to be returned!

Move the item in the rightmost leaf node to root!
•  since the heap is a complete binary tree, "

the rightmost leaf node is always at the last index!
•  swap(heap[0], heap(--size));!

The tree is no longer a heap at this point!

Trickle down the recently moved item at the root 
to its proper place to restore heap property!
•  for each subtree, recursively, if the root has a smaller 

search key than either of its children, swap the item"
in the root with that of the larger child!
!

Complexity: O(log n)!
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Heap Implementation!

Item maxHeap::!
dequeuemax() {!
swap(heap[0], heap[−−size]);!
trickleDown(0);!
return heap[size];!

}!

dequeuemax():!
•  remove root!

•  take item from end of 
array and place at root!

•  use trickleDown() 
to find proper position!

Top Down Heapify!
void maxHeap::!
trickleDown(int idx) {!
for (j = 2*idx+1; j <= size; j = 2*j+1) {!
if (j < size-1 && heap[j] < heap[j+1]) j++;!
if (heap[idx] >= heap[j]) break; !
swap(heap[idx], heap[j]); idx = j;!

}!
}!

Pass index (idx) of array element that needs to be trickled down!

Swap the key in the given node with the largest key among the 
node’s children, moving down to that child, until either!
•  we reach a leaf node, or!
•  both children have smaller (or equal) key!

Last node is at heap.size!



maxHeap::enqueue() !
Insert newItem into the bottom of the tree!
•  heap[size++] = newItem;!

The tree may no longer be a heap at this point!

Percolate newItem up to an appropriate spot 
in the tree to restore the heap property!
!
Complexity: O(log n)!
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Heap Implementation!

void maxHeap::!
enqueue(Item newItem) {!
heap[size++] = newItem;!
percolateUp(size);!

}!

enqueue():!
•  put item at the end of 

the priority queue!
•  use percolateUp() 

to find proper position!

Bottom Up Heapify!
void maxHeap::!
percolateUp(int idx) {!
while (idx >= 1 && heap[(idx-1)/2] < heap[idx]){!
swap(heap[idx], heap[(idx-1)/2]); !
idx = (idx-1)/2;!

}!
}!

Pass index (idx) of array element that needs to be percolated up!

Swap the key in the given node with the key of its parent, "
moving up to parent until:!
•  we reach the root, or!
•  the parent has a larger (or equal) key!

Root is at position 0!



Trie!
trie: from retrieval, originally pronounced 
to rhyme with retrieval, now commonly 
pronounced to rhyme with “try”, to 
differentiate from tree!

A trie is a tree that uses parts of the key, 
as opposed to the whole key, to perform 
search!

Whereas a tree associates keys with 
nodes, a trie associates keys with edges"
(though implementation may store the 
keys in the nodes)!

Example: the trie on the right encodes this 
set of strings: {on, owe, owl, tip, to}!

o! t!

n! w! i! o!

e! l! p!

Trie!
For S a set of strings from an alphabet (not 
necessarily Latin alphabets) where none of 
the strings is a prefix of another, a trie of S 
is an ordered tree such that:!

•  each edge of the tree is labeled with symbols 
from the alphabet!
•  the labels can be stored either at"

the children nodes or at the parent node!

•  the ordering of edges attached to children of a 
node follows the natural ordering of the alphabet!

•  labels of edges on the path from the root to any 
node in the tree forms a prefix of a string in S !

o! t!

n! w! i! o!

e! l! p!

Partial Match!
A trie is useful for doing partial match search:!

longest-prefix match: a search for "
“tin” would return “tip”!
•  implementation:!

continue to search until a mismatch!

approximate match: allowing for"
one error, a search for “oil” would"
return “owl” in this example!
!

!

Useful for suggesting alternatives to misspellings!

o! t!

n! w! i! o!

e! l! p!

Trie Deletion!

By post-order traversal, remove an internal node only if 
it’s also a leaf node, e.g., remove “wade” then “wadi”:!

remove “wade”!
a! e!

d! i! b!

w!

e! i! t!

remove “wadi”!
a! e!

d! i! b!

w!

i! t!

a! e!

i! b!

w!

t!



String Encoding!
How many bits do we need to encode this 
example string:!
If a woodchuck could chuck wood!!
• ASCII encoding: 8 bits/character (or 7 bits/character)!

•  the example string has 32 characters, "
so we’ll need 256 bits to encode it using ASCII!

• There are only 13 distinct characters in the"
example string, 4 bits/character is enough"
to encode the string, for a total of 128 bits!

• Can we do better (use less bits)? How?!

4966206120776f6f64…!

Huffman Codes!

In the English language, the characters e and t 
occur much more frequently than q and x!
Can we use fewer bits for the former and more 
bits for the latter, so that the weighted average 
is less than 4 bits/character?!

Huffman encoding main ideas:!
1.  variable-length encoding: use different number of bits 

(code length) to represent different symbols!
2.  entropy encoding: assign smaller code to"

more frequently occurring symbols!
(For binary data, treat each byte as a “character”)!

Huffman Encoding!
The example string:!
If a woodchuck could 

chuck wood!!

Can be encoded using 
the following code (for 
example)!

Resulting encoding uses 
only 111 bits!
•  111111111000011101…!

Where do the codes 
come from?!

symbol! frequency! code!

I! 1! 11111!
f! 1! 11110!
a! 1! 11101!
l! 1! 11100!
!! 1! 1101!
w! 2! 1100!
d! 3! 101!
u! 3! 100!
h! 2! 0111!
k! 2! 0110!
o! 5! 010!
c! 5! 001!

‘ ‘! 5! 000!

Prefix Codes!

Since each character is represented by a different 
number of bits, we need to know when we have 
reached the end of a character!

There will be no confusion in decoding a string of 
bits if the bit pattern encoding one character cannot 
be a prefix to the bit pattern encoding another!

Known as a prefix-free code, or just, prefix code!

We have a prefix code if all codes are always 
located at the leaf nodes of a proper binary trie!



How to Construct a Prefix Code?!

Minimize expected number of bits over text!

•  if you know the text, you should be able to do this 
perfectly!

•  but top-down allocations are hard to get right!

Huffman’s insight is to do this bottom-up, 
starting with the two least frequent characters!

Huffman Trie!
Better known as Huffman Tree!

Huffman tree construction algorithm:!
• count how many times each symbol occurs!

• make each symbol a leaf node, with its frequency as its weight!

• pair up the two least frequently occurring symbols"
(break ties arbitrarily)!

• create a subtree of the pair with the root weighing"
the sum of its children’s weights!

• repeat until all subtrees have been paired up into a single tree!

• encode each symbol as the path from the root, "
with a left represented as a 0, and a right a 1!

Huffman Trie Example!

If a woodchuck could chuck wood!!
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I! 11111!
f! 11110!
a! 11101!
l! 11100!
!! 1101!
w! 1100!
d! 101!
u! 100!
h! 0111!
k! 0110!
o! 010!
c! 001!

‘ ‘! 000!

Characteristics of Huffman Trees!

All symbols are leaf nodes by construction, 
hence no code is a prefix of another code!

More frequently occurring symbols at shallower 
depth, having smaller codes!

Implementation:!
•  You are given a list of items with varying frequencies!
•  need to repeatedly choose two that"

currently have the lowest frequency!
•  need to repeatedly place sum of the above back into the list!

•  How would you implement the algorithm?!



Encoding Time Complexity!

Running times, string length: n, alphabet size: m!
•  frequency count: O( )!

•  Huffman tree construction: O( )!

•  Total time: O( )!

To decode, we need the code table, "
so the code table must be stored"
with the encoded string!

How to store/communicate "
the code table?!

I! 11111!
f! 11110!
a! 11101!
l! 11100!
!! 1101!
w! 1100!
d! 101!
u! 100!
h! 0111!
k! 0110!
o! 010!
c! 001!

‘ ‘! 000!

Code Table Encoding!

The Huffman code for 
any particular text is 
not unique!

For example, all three 
sets of codes in the 
table are valid for"
the example string!

The last column can be 
compressed into: "
3‘ ’cdou4!hkw5aflI!

sym! freq! code1! code2! code3!
‘ ‘! 5! 000! 001! 000!
c! 5! 001! 010! 001!
d! 3! 101! 100! 010!
o! 5! 010! 000! 011!
u! 3! 100! 101! 100!
!! 2! 1101! 0110! 1010!
h! 2! 0111! 1101! 1011!
k! 2! 0110! 1110! 1100!
w! 1! 1100! 0111! 1101!
a! 1! 11101! 11100! 11100!
f! 1! 11110! 11101! 11101!
l! 1! 11100! 11111! 11110!
I! 1! 11111! 11110! 11111!

Code Table Encoding!
The last column was not created from a Huffman tree directly!

The Huffman tree is used only to determine the code length of 
each symbol, then:!

1.  order symbols by code length!

2.  starting from all 0s for the shortest length code!

3.  add 1 to the code for each subsequent symbol!

4.  when transitioning from code of length k to code of length"
k+1, as determined by the Huffman trie, add 1 to the last length-k code 
and use it as the prefix for the first length k+1 code!

5.  set the k+1st bit to 0 and continue adding 1 for each subsequent code!

Resulting code table has one encoding for each symbol and is 
prefix-free!

Worst-Case BST Performance!
Exercise: !
•  insert 4, 2, 6, 3, 7, 1, 5!
•  remove 2, insert 8, remove 5, insert 9, "
remove 1, insert 11, remove 3!

Moral: even a balanced tree"
can become unbalanced after"
a number of insertions and"
removals!

Why is a balanced tree desirable?!

6!

4!

7!

9!

8!

11!

a search tree of "
maximum height!

3!

6!

7!

2!

4!

1! 5!
a search tree of 
minimum height!



Balanced Search Trees!

What are your requirements"
to call a tree a balanced tree?!
!
Would you require a tree to be "
perfect to call it balanced?!
• a perfect binary tree of height h "
has exactly 2h+1 – 1 internal nodes!
• so by this criterion, only trees with "
1, 3, 7, 15, 31, 63, … internal node"
can be balanced!
• too restrictive!

Need another definition of “balance condition”!
!
Want the definition to satisfy "
the following criteria:!
1.  height of tree of n nodes = O(log n)!
2.  balance condition can be maintained"

efficiently:, e.g., O(1) time to rebalance"
a tree!

Several balanced search trees, each with its own 
balance condition: AVL trees, B-trees, 2-3 trees, 2-3-4 
(a.k.a. 2-4) trees, red-black trees, AA-trees, treaps!

Balanced Search Trees!

AVL Trees!
Adel’son-Vel’skii & Landis (AVL) tree!

• AVL trees’ balance condition:!
•  an empty binary tree is AVL balanced!
•  a non-empty binary tree is AVL balanced if both its left and right"

sub-trees are AVL balanced and differ in height by at most 1!

•  satisfies criterion 1: balance condition can be proven to 
maintain a tree of height Θ(log n) "
⇒ search is guaranteed to always be O(log n) time!!

•  satisfies criterion 2: requires far less work than would be 
necessary to keep the height exactly equal to the minimum!
•  we’ll see how an AVL tree keeps its balance condition"

and how this is an O(1) operation"
⇒ both insert and remove are also guaranteed to be O(log n) time!!

AVL Tree ADT!
Search, insert, and remove all works exactly the same 
as with BST!

However, after each insertion or deletion!
• must check whether the tree is still balanced, i.e., balance 

condition still holds!
•  if the tree has become unbalanced, “re-balance” the tree by 

performing one rotation to restore balance!

(a) an unbalanced 
AVL tree!

(c) a balanced AVL 
tree after insertion!

 (b) a balanced AVL 
tree after rotation!



Tree Rotations!
The rotation operation: interchange the role of a 
parent and one of its children in a tree!
• while still preserving the BST ordering among"

the keys in the nodes!

Two directions of rotations:!
•  right rotation: parent becomes right child of its left child!
•  left rotation: parent becomes left child of its right child!

Tree Rotations!
To preserve the BST ordering:!
•  right rotation: "

the right link of "
the left child"
becomes"
the left link of"
the parent; parent"
becomes right child"
of the old left child!

•  left rotation: "
the left link of"
the right child"
becomes"
the right link of"
the parent; parent"
becomes left child"
of the old right child!
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Tree Rotations!
What rotations would you need to balance the 
following two trees:!
!
!
!
!
!
!
!
!
Rotation is a local change involving only three 
links and two nodes ⇒ can be done in O(1) time!

6!

7!

4!

7!

6!

4!

rotate_left(4)!

rotate_right(7)! rotate_left(4)!

single rotation!

double rotation!

6!

7!4!

6!

7!4!
6!

7!

4!

Example: Single Rotation!

(a) an unbalanced 
AVL tree!

(b) a balanced AVL tree 
after a single left rotation!



Example: Double Rotation!

(a) an unbalanced AVL tree, (b) left rotated, and (c) right 
rotated, AVL balanced restored after a double rotation!

Restoring AVL Balance: Details!
Let Tl and Tr be the left and right 
subtrees of a tree rooted at node T!
Let hl be the height of Tl"
and hr the height of Tr!

Define the balance factor (BT) "
of node T as: BT = hl – hr!

AVL trees’ balance condition:!

The tree rooted at node T "
is AVL balanced iff |BT| ≤ 1!
•  if Tl is deeper, then BT > 1!
•  if Tr is deeper, then BT < –1!
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AVL balanced at T, p, and v!

Unbalanced AVL Trees!

When an AVL tree becomes unbalanced, there are 
four cases to consider depending on the direction 
of traversal from the unbalanced node to the tallest 
grandchild:!
1.  Left-Left (LL)!
2.  Right-Right (RR)!
3.  Left-Right (LR)!
4.  Right-Left (RL)!
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Unbalanced AVL Tree!
For example,!

LL: a new node is added to"
subtree pl, causing!
Bp = 0 � Bp = 1 ⇒ BT = 2,!
which violates the AVL "
balance condition, and"
the tree rooted at T is"
now unbalanced!

From T, to get to the tallest "
grandchild is by doing a Left-Left traversal "
(balance factor positive positive, B++)!

Bp = 1!

BT = 2!

AVL unbalanced at T!i!

L!

L!



Restoring Balance!

If the subtree rooted at node T has become unbalanced 
(|BT| > 1), to restore balance at node T, rotate counter 
to the direction of traversal to tallest grandchild:!
•  for an LL traversal (B++), do a single right rotation!
•  for an RR traversal (B––), do a single left rotation!
•  for an LR traversal (B+–), do a double rotation, with the first 
rotation countering the last traversal, in this case, we do left 
rotation, then right rotation!
•  for an RL traversal (B–+), do a right-left double rotation!

!
Must retain BST property at all times!

LL: Single Right Rotation!

Make T the right child of p and pr the left child of T!
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RR: Single Left Rotation!

Make T the left child of v and vl the right child of T!
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LR: Double Left-Right Rotation!

Do a left rotation on q, then a right rotation!
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RL: Double Right-Left Rotation!

Do a right rotation on u, then a left rotation!
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Exercise!
Insert into an AVL tree: 42, 35, 69, 21, 55, 83, 71!
Compute the balance factors!
Is the AVL tree balanced?!
Insert 95, 18, 75!

Rebalance Can be Done in O(1)!
When an AVL tree becomes unbalanced, exactly one 
single or double rotation is required to balance the tree#
• when adding a node, only the height of nodes in the access path 
between the root and the new node can be changed!
•  if adding a node doesn’t change the height of node i in the 
access path, no rotation is needed at i or its ancestors!
•  if height of i changes, it can either:!
•  remain balanced: no rotation needed at i, but may be necessary at its 

parent node (see LL figure, for example)!
•  become unbalanced: after one rotation, the height of (sub)tree previously 

rooted at i is the same as before insertion! so, none of its ancestors needs 
to be rebalanced#

Height Restored After Rotation!

After one rotation, the height of (sub)tree previously 
rooted at T is the same as before insertion!!
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AVL Removal!
First remove the node as with BST!
!
Then update the balance factors of the node’s 
ancestors in the access path and rebalance as needed!


