DATA STRUCTURES
AND ALGORITHMS
Lecture 12: AA Trees
Treaps

AA-Trees

The implementation and number of rotation cases in Red-Black Trees is complex

AA-trees:

- fewer rotation cases so easier to code, especially deletions (eliminates about half of the rotation cases)
- named after its inventor Arne Andersson (1993), an optimization over original definition of Binary B-trees (BB-trees) by Bayer (1971)
AA-trees still have $O(\log n)$ searches in the worstcase, although they are slightly less efficient empirically

Demo: http://www.cis.ksu.edu/~howell/viewer/viewer.html

AA-Tree Ordering Properties

An AA-Tree is a binary search tree with all the ordering properties of a red-black tree:
I. Every node is colored either red or black
2. The root is black
3. External nodes are black
4. If a node is red, its children must be black
5. All paths from any node to a descendent leaf must contain the same number of black nodes (black-height, not including the node itself)

> PLUS
6. Left children may not be red

An AA-Tree Example

No left red children!
Half of red-black tree rotation cases eliminated! (Which M-way trees are AA-trees equivalent to?)

Representation of Balancing Info

The level of a node (instead of color) is used as balancing info

- "red" nodes are simply nodes that located at the same level as their parents

For the tree on the previous slide:

Redefinition of "Leaf"

Both the terms leaf and level are redefined:
A leaf in an AA-tree is a node with no black internal-node as children

all leaf nodes

Implications of Ordering Properties

I. Horizontal links are right links

- because only right children may be red

2. There may not be double horizontal links - because there cannot be double red nodes

Implications of Ordering Properties

3. Nodes at level 2 or higher must have two children
4. If a node does not have a right horizontal link, its two children are at the same level

Example: Insert 45

First, insert as for simple binary search tree Newly inserted node is red

Implications of Ordering Properties

5. Any simple path from a black node to a leaf contains one black node on each level

Level 3
Level 2
Level 1

Example: Insert 45

After insert to right of 40 :
Problem: double right horizontal links starting at 35 , need to split

Example: Insert 45

After split at 35:
Problem: left horizontal link at 50 is introduced, need to skew

Example: Insert 45

After skew at 50:

Example: Insert 45

After skew at 70:

Problem: double right horizontal links starting at 30 , need to split

Example: Insert 45

After split at 30:
Insertion is complete (finally!)

Skew: Remove Left Horizontal Link


```
void AATree::skew(Link &root) { // root = X
    if (root->left->level == root->level)
        rotate_right(root);
}
```


More on Skew and Split

Skew may cause double reds

- first we apply skew, then we do split if necessary

After a split, the middle node increases a level, which may create a problem for the original parent - parent may need to skew and split

Split: Remove Double Reds

[Lee,Andersson]

AA-Tree Removal
 Rules:

I. if node to be deleted is a red leaf, e.g., 10 , remove leaf, done
2. if it is parent to a single internal node, e.g., 5 , it must be black; replace with its child (must be red) and recolor child black
3. if it has two internal-node children, swap node to be deleted with its in-order successor

- if in-order successor is red (must be a leaf), remove leaf, done
- if in-order successor is a single child parent, apply second rule

In both cases the resulting tree is a legit AA-tree
(we haven't changed the number of black nodes in paths)
3 . if in-order successor is a black leaf, or if the node to be deleted itself is a black leaf, things get complicated ...

Black Leaf Removal

Follow the path from the removed node to the root
At each node p with 2 internal-node children do:

- if either of p 's children is two levels below p
- decrease the level of p by one
- if p 's right child was a red node, decrease its level also
- $\operatorname{skew}(p)$; $\operatorname{skew}(p \rightarrow \operatorname{right})$; skew $(p \rightarrow$ right \rightarrow right);
- split(p); split($p \rightarrow$ right);

In the worst case, deleting one leaf node, e.g., 15, could cause six nodes to all be at one level, connected by horizontal right links

- but the worst case can be resolved by 3 calls to skew () , followed by 2
 calls to split()!
[Andersson,McCollam]

AA-Tree Implementation	procedure Skew (var t: Tree); var temp: Tree: begin if t . .left \uparrow.level $=\mathrm{t} \uparrow$.level $\mathbf{t h e n}$ begin $\{$ rotate right \} temp := t ; temp \dagger.left $:=\mathrm{t} \uparrow$.right; $\mathrm{t} \uparrow$.right $:=$ temp; end; end; procedure Split (var t: Tree); var temp: Tree; begin if $\mathrm{t} \mid$.right \uparrow.right \dagger.level $=\mathrm{t} \uparrow$.level then begin \{rotate left \} temp $:=\mathrm{t}$; $\mathrm{t}:=\mathrm{t} \mid$.right; temp \dagger right $:=\mathrm{t} \uparrow$.left; $\mathrm{t} \uparrow$. left : = temp; $\mathrm{t} \mid$. level : $=\mathrm{t} \mid$. level +1 ; end; end; procedure Insert (var x: data; var t: Tree; var ok: boolean); begin if $t=$ bottom then begin new (t); \dagger.key := x; $\mathrm{t} \dagger$.left : $=$ bottom; $\mathrm{t} \dagger$.right $:=$ bottom; t.level $:=1$; ok := true; end else begin if $\mathrm{x}<\mathrm{t} \uparrow$.key then Insert ($\mathrm{x}, \mathrm{t} \dagger$.left, ok) Insert ($\mathrm{x}, \mathrm{t} \mid$.right, ok) else ok:= false Skew (t) end; end:	procedure Delete (var x: data; var t: Tree; var ok: boolean); ok := false; if $\mathrm{t}<>$ bottom then begin \{1: Search down the tree and \} \{set pointers last and deleted. \} last:=t; $\mathrm{x}<\mathrm{t} \uparrow$.key then Delete ($\mathrm{x}, \mathrm{t} \uparrow$.left, ok) else begin Delete ($\mathrm{x}, \mathrm{t} \uparrow$.right, ok); end; \{ 2: At the bottom of the tree we \} \{remove the element (if it is present). \} if ($t=$ last) and (deleted $<>$ bottom $)$ and ($x=$ deleted \uparrow.key) then begin deleted \uparrow.key $:=\mathrm{t} \uparrow$.key; deleted $:=$ bottom; $\mathrm{t}:=\mathrm{t} \uparrow$.right; dispose (last); end ok := true; \{3: On the way back, we rebalance. $\}$ else if $(\mathrm{t} \uparrow$.left \uparrow.level $<\mathrm{t} \uparrow$.level-1) or ($t \uparrow$.right \uparrow.level $<\mathrm{t} \uparrow$.level-1) then begin $\mathrm{t} \uparrow$.level $:=\mathrm{t} \uparrow$.level -1 ; if $\mathrm{t} \uparrow$.right \dagger.level $>\mathrm{t} \uparrow$.level then $\mathrm{t} \dagger$.right \dagger.level $:=\mathrm{t} \dagger$. level; sew (t), Skew ($\mathrm{t} \dagger$.right); Skew ($\mathrm{t} \dagger$-right \dagger.right); Split (t \uparrow.right); end; end;

Balanced BST Summary

AVL Trees: maintain balance factor by rotations
2-3 Trees: maintain perfect trees with variable node sizes using rotations

2-3-4 Trees: simpler operations than 2-3 trees due to pre-splitting and pre-merging nodes, wasteful in memory usage

Red-black Trees: binary representation of 2-3-4 trees, no wasted node space but complicated rules and lots of cases

AA-Trees: simpler operations than red-black trees, binary representation of 2-3 trees

Randomized Search Trees

Motivations:

- when items are inserted in order into a BST, worst-case performance becomes $O(n)$
- balanced search trees either waste space or requires complicated (empirically expensive) operations or both
- randomly permuting items to be inserted would ensure good performance of BST with high probability, but randomly permuting input is not always possible/practical, instead ...

Randomized search trees balance the trees probabilistically instead of maintaining balance deterministically

Treaps

A treap is a binary tree that:

- has a key associated with each of its internal node:
- the key in any node is $>$ the keys in all nodes in its left subtree and < the keys in all nodes in its right subtree
- i.e., internal nodes are arranged in in-order with respect to their keys
- and simultaneously has a priority associated with each of its internal node:
- the priority of a parent is higher than those of its descendants
- i.e., internal nodes are arranged in heap-order with respect to their priorities

A treap is a BST with heap-ordered priorities (but it is not a heap as it is not required to be a complete binary tree)

Treaps: Insert

I. a new item to be inserted into a treap is given a random, unique priority (no duplicates)
2. the new item is then inserted into a treap as a leaf node, just like it would be under a standard BST
3. if its priority violates the heap-order property of the treap, the new node is rotated up until it is in the correct heap-order priority, using one or more single left- or right-rotation

Example: insert $(p / 5)$ into the example treap

Example of a Treap

assuming min-heap
ordering of the priorities:

Example Treap with $p / 5$ Inserted

assuming min-heap
ordering of the priorities:

Treaps: Delete

Exact reverse of insert:
I. Rotate the node to be deleted such that its child with larger priority becomes the new parent
2. continue rotating until the node to be deleted is a leaf node
3. delete the leaf node

Example: delete ($p / 5$) from the example treap

Treaps: Search

Standard BST search

If it is desirable to keep frequently accessed items near the root, e.g., when the treap is used to maintain a cache, whenever an item is accessed, assign the item a new random number that gives it a higher priority and, if necessary, rotate its node up to maintain heap-order

If it is desirable for the treap of a set of keys to be unique, use one-way hash function on keys to generate priorities

Runtime Complexity

Various metrics to measure the complexity of an algorithm:

- asymptotic worst-case bound
- average-case bound
- amortized bound
- probabilistic expected-case bound

Treaps Running Time

The expected depth of any node is $O(\log n) \Rightarrow$ the expected running time of search, insert, delete (and tree split and join) are all $O(\log n)$

The expected number of rotations per insertion or deletion is less than $2 \Rightarrow$ fast implementation
Proof: relies on probabilistic analysis that is beyond the scope of this course...

Calls to random number generator usually incur non-trivial cost

Treap Exercise

Insert F, E, D, C, B, A with random priorities
\cdot assuming min-heap ordering of the priorities

