22281 DATA STRUCTURES AND ALGORITHMS

Lecture 12: AA Trees

Treaps

AA-Trees

The implementation and number of rotation cases in Red-Black Trees is complex

AA-trees:

- fewer rotation cases so easier to code, especially deletions (eliminates about half of the rotation cases)
- named after its inventor Arne Andersson (1993), an optimization over original definition of Binary B-trees (BB-trees) by Bayer (1971)

AA-trees still have $O(\log n)$ searches in the worstcase, although they are slightly less efficient empirically

Demo: http://www.cis.ksu.edu/~howell/viewer/viewer.html

AA-Tree Ordering Properties

An AA-Tree is a binary search tree with all the ordering properties of a red-black tree:

- I. Every node is colored either red or black
- 2. The root is black
- 3. External nodes are black
- 4. If a node is red, its children must be black
- 5. All paths from any node to a descendent leaf must contain the same number of black nodes (black-height, not including the node itself)

PLUS

6. Left children may not be red

[McCollam]

Redefinition of "Leaf"

Both the terms leaf and level are redefined:

A leaf in an AA-tree is a node with no black internal-node as children

Implications of Ordering Properties

- I. Horizontal links are right links
 - because only right children may be red
- 2. There may not be double horizontal links because there cannot be double red nodes

Implications of Ordering Properties

5. Any simple path from a black node to a leaf contains one black node on each level

AATree::Insert()

```
void AATree::
insert(Link &root, Node &add) {
  if (root == NULL) // have found where to insert y
    root = add;
  else if (add→key < root→key) // <= if duplicate ok
    insert(root→left, add);
  else if (add→key > root→key)
    insert(root→right, add);
  // else handle duplicate if not ok
    skew(root); // do skew and split at each level
    split(root);
}
```


	and a dame filmer (and to Tarra).	munanderen Delete (eren ere dieter
	procedure skew (var t: free);	procedure Delete (var x: data;
	var temp: Tree;	var t: Tree; var ok: Doolean);
	begm	begm
$\Lambda \Lambda$ Trac	if $t\uparrow.left\uparrow.level = t\uparrow.level$ then	ok := false;
AA=rree	begin { rotate right }	if t <> bottom then begin
	temp := t;	
	$t := t\uparrow.left;$	{ 1: Search down the tree and }
	$temp\uparrow.left := t\uparrow.right;$	{ set pointers last and deleted. }
Implementation	$t\uparrow.right := temp;$	last := t;
	end;	if $x < t\uparrow$.key then
	end;	Delete (x, t ⁺ .left, ok)
		else begin
	procedure Split (var t: Tree):	deleted := t:
	var temp: Tree:	Delete (x, t [†] ,right, ok):
	hegin	end:
	if t^{\uparrow} right \uparrow right \uparrow level = t^{\uparrow} level then	,
	begin { rotate left }	[2: At the bottom of the tree we]
	temp := t:	[remove the element (if it is present)]
	$t := t^{\dagger}$ right:	if (t - last) and (deleted <> hottom)
	temp f night - tf left.	$n (t = nast)$ and (deteted $\langle \rangle$ obtion)
	temp [.right := t].tert,	and $(x = deleted .key)$ then
	t_{1} left := temp;	begin
	t .level := t .level + 1;	deleted .key := t .key;
	end;	deleted := Dottom;
	end;	t := t .right;
		dispose (last);
	procedure Insert (var x: data;	ok := true;
	<pre>var t: Tree; var ok: boolean);</pre>	end
	begin	
	if t = bottom then begin	{ 3: On the way back, we rebalance. }
	new (t);	else if $(t^{\dagger}.left^{\dagger}.level < t^{\dagger}.level-1)$
	$t\uparrow$.key := x;	or $(t\uparrow.right\uparrow.level < t\uparrow.level-1)$ then
	$t\uparrow.left := bottom;$	begin
	$t\uparrow.right := bottom;$	$t\uparrow$.level := $t\uparrow$.level -1;
	$t\uparrow.level := 1;$	if $t\uparrow.right\uparrow.level > t\uparrow.level$ then
	ok := true;	$t\uparrow.right\uparrow.level := t\uparrow.level;$
	end else begin	Skew (t);
	if $x < t\uparrow$.key then	Skew (t ¹ .right);
	Insert (x, t↑.left, ok)	Skew (t ⁺ .right ⁺ .right);
	else if $x > t^{\uparrow}$.key then	Split (t);
	Insert (x, t ⁺ .right, ok)	Split (t1.right);
	else $ok := false;$	end;
	Skew (t):	end:
	Split (t);	end;
[Andersson]	end:	
	end:	

Balanced BST Summary

AVL Trees: maintain balance factor by rotations

- 2-3 Trees: maintain perfect trees with variable node sizes using rotations
- 2-3-4 Trees: simpler operations than 2-3 trees due to pre-splitting and pre-merging nodes, wasteful in memory usage
- Red-black Trees: binary representation of 2-3-4 trees, no wasted node space but complicated rules and lots of cases

AA-Trees: simpler operations than red-black trees, binary representation of 2-3 trees

Randomized Search Trees

Motivations:

- when items are inserted in order into a BST, worst-case performance becomes O(n)
- balanced search trees either waste space or requires complicated (empirically expensive) operations or both
- randomly permuting items to be inserted would ensure good performance of BST with high probability, but randomly permuting input is not always possible/practical, instead . . .

Randomized search trees balance the trees probabilistically instead of maintaining balance deterministically

Treaps

A treap is a binary tree that:

- has a key associated with each of its internal node: \cdot the key in any node is > the keys in all nodes in its left subtree
- and < the keys in all nodes in its right subtree
 i.e., internal nodes are arranged in in-order with respect to their keys
- and simultaneously has a priority associated with each of its internal node:
- the priority of a parent is higher than those of its descendants
- i.e., internal nodes are arranged in heap-order with respect to their priorities

A treap is a BST with heap-ordered priorities (but it is not a heap as it is not required to be a complete binary tree)

Example of a Treap

Treaps: Insert

- a new item to be inserted into a treap is given a random, unique priority (no duplicates)
- 2. the new item is then inserted into a treap as a leaf node, just like it would be under a standard BST
- 3. if its priority violates the heap-order property of the treap, the new node is rotated up until it is in the correct heap-order priority, using one or more single left- or right-rotation

Example: insert (p/5) into the example treap

Runtime Complexity

Various metrics to measure the complexity of an algorithm:

- asymptotic worst-case bound
- average-case bound
- amortized bound
- probabilistic expected-case bound

Treaps: Search

Standard BST search

If it is desirable to keep frequently accessed items near the root, e.g., when the treap is used to maintain a cache, whenever an item is accessed, assign the item a new random number that gives it a higher priority and, if necessary, rotate its node up to maintain heap-order

If it is desirable for the treap of a set of keys to be unique, use one-way hash function on keys to generate priorities

Treaps Running Time

The expected depth of any node is $O(\log n) \Rightarrow$ the expected running time of search, insert, delete (and tree split and join) are all $O(\log n)$

The expected number of rotations per insertion or deletion is less than $2 \Rightarrow$ fast implementation

Proof: relies on probabilistic analysis that is beyond the scope of this course . . .

Calls to random number generator usually incur non-trivial cost

Treap Exercise

Insert F, E, D, C, B, A with random priorities • assuming min-heap ordering of the priorities