
EECS 487: Transformations
Ari Grant & Sugih Jamin

October 2009

1. Affine Transformations

Definition. The n-dimensional Euclidean space En is the set of all points in Rn with the
included metric (measure of distance) d(~x, ~y) =

√
(~x− ~y) · (~x− ~y).

Definition. An affine combination of points ~p0, ~p1, . . . , ~pn ∈ En is any point ~p ∈ En such
that there exists a0, a1, . . . an ∈ R with

~p =
n∑

i=0

ai~pi and
n∑

i=0

ai = 1.

Definition. An affine combination is a convex affine combination if it is also true that ai > 0
for all i.

Definition. A transformation Λ̂ : En → En is a linear transformation if

Λ̂(a~u + b~v) = aΛ(~u) + bΛ(~v).

Claim. All matrices are linear transformations when multiplied with a vector.

Proof. This fact follows trivially from the fact that matrix multiplication follows the above
property. �

Claim. Any transformation Φ̂ that is of the form Φ̂(~p) = Â·~p+~t preserves affine combination

if Â is a square matrix and ~t is a constant vector.

Proof. It is necessary to show that

Φ̂

(
n∑

i=0

ai~pi

)
=

n∑
i=0

aiΦ̂(~pi).

The required manipulation follows.

Φ̂

(
n∑

i=0

ai~pi

)
= Â ·

(
n∑

i=0

ai~pi

)
+ ~t =

[
n∑

i=0

Â · (ai~pi)

]
+ ~t
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Note that
∑n

i=0 ai = 1. So multiply ~t by 1 but write it as the sum of the affine combination
coefficients.

=

[
n∑

i=0

aiÂ · ~pi

]
+ ~t

[
n∑

i=0

ai

]
=

[
n∑

i=0

aiÂ · ~pi

]
+

[
n∑

i=0

ai
~t

]

=
n∑

i=0

(
aiÂ · ~pi + ai

~t
)

=
n∑

i=0

ai

(
Â · ~pi + ~t

)
=

n∑
i=0

aiΦ̂(~pi)

�

Definition. A transformation Φ̂ : En → En is an affine transformation if

Φ̂(~p) =
n∑

i=0

aiΦ(~pi)

where ~p =
∑n

i=0 ai~pi is an affine combination.

Note then that any transformation Φ̂(~p) = Â · ~p + ~t is an affine transformation if Â is a
square matrix and ~t is a constant vector.

Remark. This is a very important fact. It means that given a set of vertices {vi} defining
a shape or object O, one can transform the individual vertices instead of the entire object,
as long as the transformation is affine.

2. How Vectors (Vertices) Transform

For everything that follows, we can assume that work is done in E3, the standard 3-
dimensional Euclidean space. Also, no assumptions will be made that basis vectors are
orthogonal or normalized.

Theorem 2.1. An affine transformation is fully specified by its action on the basis vectors.

Proof. Let basis A be the set of vectors {~xA, ~yA, ~zA} and let basis B be the set {~xB, ~yB, ~zB}.
Any vector ~v can be written as a linear combination of the basis. That is, there exist
αA, βA, γA, αB, βB, γB ∈ R such that ~v = αA~xA +βA~yA +γA~zA = αB~xB +βB~yB +γB~zB. Thus
when writing coordinates it is important to note which basis is being used. The convention
will be to specify the basis with a subscript, thus

~v =

 αA

βA

γA


A

=

 αB

βB

γB


B

.

One assumption must now be made. It will be assumed that the basis vectors are constant
throughout all space, thus ~xA is always parallel to ~xA no matter where one is. This is not
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the case for instance in spherical coordinates where the basis vectors ~r, ~θ, and ~φ point in
different directions depending on what point in space is being used.

Note that this assumption is equivalent to there being affine maps from the standard ı̂, ̂,
and k̂ to the basis A and to the basis B.

This assumption means that there exist a, b, c, d, e, f, g, h, i ∈ R such that

~xB = a~xA + b~yA + c~zA

~yB = d~xA + e~yA + f~zA

~zB = g~xA + h~yA + i~zA.

Let us examine the vector above, ~v = αA~xA + βA~yA + γA~zA = αB~xB + βB~yB + γB~zB.

~v =

 αB

βB

γB


B

= αB~xB + βB~yB + γB~zB

= αB(a~xA + b~yA + c~zA) + βB(d~xA + e~yA + f~zA) + γB(g~xA + h~yA + i~zA)

= (αBa + βBd + γBg)~xA + (αBb + βBe + γBh)~yA + (αBc + βBf + γBi)~zA

=

 αBa + βBd + γBg
αBb + βBe + γBh
αBc + βBf + γBi


A

=

 a d g
b e h
c f i

 αB

βB

γB


A

Notice that the matrix that transforms the components of ~v from the basis A to the basis
B can be rewritten as follows αA

βA

γA


A

=

 | | |
(~xB)A (~yB)A (~zB)A

| | |

 αB

βB

γB


A

.

Thus given the coordinates of a vector in basis B, the coordinates in basis A can be found
by multiplying (~v)B by a matrix whose columns are the basis vectors of basis B expressed
in terms of basis A.

(~v)A =

 | | |
(~xB)A (~yB)A (~zB)A

| | |

 (~v)B

�

Corollary 2.2. Applying a transformation M̂ to the coordinates of a set of vectors {~vi} is

the same as instead applying M̂T to the basis {~ei} while maintaining the vector coordinates.
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Proof. Let ~v ∈ E3, E = {~a,~b,~c} be a basis, and aE, bE, cE ∈ R be the coordinates. That is,

~v = aE~a + bE
~b + cE~v =

 aE

bE

cE


E

= (aE bE cE)

 ~a
~b
~c

 .

Now apply the transformation matrix

M̂ =

 d e f
g h i
j k l



to the coordinate vector (aE, bE, cE)T .

M̂

 aE

bE

cE

 =

 d e f
g h i
j k l

 aE

bE

cE


=

 daE + ebE + fcE

gaE + hbE + icE

jaE + kbE + lcE


E

This is the coordinate vector of the transformed vector. If instead the transpose of the

matrix is applied to the basis vector one has ~v ′ = aEM̂T~a + bEM̂T~b + cT
E~̂c.

~v ′ =

 d e f
g h i
j k l

T  ~a
~b
~c


=

 d g j
e h k
f i l

 ~a
~b
~c


=

 d~a + g~b + j~c

e~a + h~b + k~c

f~a + i~b + l~c


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Applying the coordinate vector to get the transformed vector gives

~v ′ = (aE bE cE)

 d~a + g~b + j~c

e~a + h~b + k~c

f~a + i~b + l~c


= aE(d~a + g~b + j~c) + bE(e~a + h~b + k~c) + cE(f~a + i~b + l~c)

= (aEd + bEe + cEf)~a + (aEg + bEh + cEi)~b + (aEj + bEk + cEl)~c

=

 daE + ebE + fcE

gaE + hbE + icE

jaE + kbE + lcE


E

�

Remark. This has a profound importance. Given the components of a set of vectors in
some basis. The set can be transformed by multiplying the basis vectors by a matrix or by
multiplying the components (as a vector) by the transpose of that matrix! Thus if asked how
to rotate a vector by θ is it the same as multiplying the transpose of that transformation
(rotation by −θ).

Example. In En rotate the vector ~v = (a, b)T counterclockwise by the angle θ.

The vector ~v has length
√

a2 + b2 and an angle ϕ = arctan(b/a) above the x−axis. The new
vector has the same length but has a polar angle θ + φ. Thus

a′ =
√

a2 + b2 cos(θ + φ) =
√

a2 + b2 (cos θ cos φ− sin θ sin φ)

=
√

a2 + b2

(
cos θ

a√
a2 + b2

− sin θ
b√

a2 + b2

)
= a cos θ − b sin θ

b′ =
√

a2 + b2 sin(θ + φ) =
√

a2 + b2 (sin θ cos φ + cos θ sin φ)

=
√

a2 + b2

(
sin θ

a√
a2 + b2

+ cos θ
b√

a2 + b2

)
= a sin θ + b cos θ

Thus it follows that (
a′

b′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
a
b

)
.
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This is the matrix that rotates a vector (a, b)T by an angle θ in a plane formed by two vectors
~x and ~y around the axis ~x× ~y.

Now instead of working with the components, try rotating the coordinate system in a
way that ~v still has the same components but its direction matches what is expected.

It may appear as if the same transformation has been applied to the basis as to the vector
in the last part, but that is not true! The new x−axis is given by ~x ′ = cos θ~x + sin θ~y and
the new y−axis is ~y ′ = − sin θ~x + cos θ~y. Thus we have(

~x ′

~y ′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
~x
~y

)
.

Hence the axes were indeed transformed by the transpose matrix used for the vector.
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