EECS 487: Interactive
Computer Graphics

Lecture 2:
+ Polygonal Mesh
« The Graphics Pipeline: A Grand Tour

Polygons

What are polygons, edges, and vertices?

GPU deals only with simple and convex polygons
not simple: simple: convex: concave:

O By

Model Representation

Geometric rendering engine
(such as OpenGL’s) deals only
with primitives consisting of
points, lines, and polygons

How do you represent:
* curves, and
* curved surfaces

using only lines and polygons?

Why limit ourselves to only points,
lines, and polygons?

Triangles

Triangle is the preferred polygon in CG, why?

w

n
b
‘

a

| “Computer graphics models
are like movie sets in that
usually only the parts that will
be seen are actually built.”

— Cook, Carpenter, Catmull/g

Polygonal Mesh

What is a polygonal mesh?

Ubiquitous in CG because:
* no restriction on the shape and complexity of
object to be modeled
« volumes bounded by planar surfaces
+ approximate curved surfaces
« trade off accuracy and speed
- either closer piecewise linear approximation

- or less space and lower processing/rendering time
- accuracy is application dependent: CAD vs. games

- plenty of algorithms and hardware to render visually

appealing shaded versions of polygonal objects
-« computers are very good at executing repetitive, simple tasks, fast

Tessellation

To tessellate: to completely cover a surface,
without gaps, using one or more 2D shapes

Reasons to tessellate:

- renderer may handle only convex polygons = convex partitioning

« many graphics APIs and hardware are optimized for triangles, but
polygons may not arrive as triangles = tessellate (try to avoid long,
thin triangles)

- surface may need to be subdivided/meshed to catch shadows and
reflected light

Direct3D11 and OpenGL 4.0 have tessellation shader

RTR

5,802 triangles

Triangular Mesh

Problems with quadrilateral mesh:
* points may not be planar

* must approximate normal
= just convert it to triangular mesh!
known as triangulation/tessellation

Triangular mesh:
« can convert any planar polygon
into exact equivalent in triangles

The Problems with Polygons

Not a very compact representation
needs a lot of flat elements to represent =
smooth or highly detailed surfaces
accuracy: exactness of representation can only

be approximated by increasing the number of polygons
- ifimage is enlarged, planar surfaces again become obvious

Intersection test? Inside/outside test?

Y

Hard to edit - :

- creating polygonal objects is straightforward ... %
but laborious and tedious

« how do you edit a polygonal-mesh surface? ‘
- don’t want to move individual vertices ...

- difficult to deform object: a region of low curvature, represented with low
polygon count, cannot be deformed into a high curvature region

« it is more a machine representation than a convenient user representation

N

The Graphics Pipeline: (etsiookatthe |
A Grand TOUf Geometric Pipeline

. in more details

fragments - /
primitives: (“potential”
points, lines, pixels)+ texels
triangles

o7

vertices . E\% pixels
N > w0

&]

Fragment

T Vertex

Rasterization

=
I
c £
Xl Processor Processor 2
g] 2
= textured U—QZE %
(=N » —
a fragments L3 it
< Per-Pixel Texture 0 :
1 Operations Assembly " @z :
* :

= Geometric Pipeline
——> Pixel Pipeline

Images from Fatahalian&Houston 2008 Programmable Shader

Sample Application
Want: Send to OpenGL:

glBegin (GL_TRIANGLE STRIP);

R

glColor3f (0.0, 0.5, 0.0); // green

o

glvertex3£(0.0, 0.0, 0.0); // vertex
glvertex3f (0.0, 1.0, 0.0); // vertex

[

glColor3f (0.5, 0.0, 0.0); // red

glvertex3f (1.0, 0.0, 0.0); // vertex 2

glvertex3f (1.0, 1.0, 0.0); // vertex 3
glEnd () ;

Akeley/Hanrahan

The Geometric Pipeline

Application

Application:

Developer has full control of objects

. L Vertex Processing
and processes in the application space

- e.g., runs and controls simulation, collision

. . . . Primitive Processing
detection, animation, handles user input

- always executes in software:

implementation can be easily changed Rasterization

» main task:

- sets graphics parameters Fragment Processing

- feeds geometry and textures into the
pipeline Framebuffer
+ has to live with what other stages do if not

doing shader programming

Display

Akeley/Hanrahan

Vertex Processing © ©
Vertex assembly: o O Application

- type conversion, e.g., to float

« initialize values, e.g., z=0,w =1

Vertex Processing

« initialize state: color, etc.) o

¥ | Primitive Processing |
Per-vertex operations: ® P |
+ model and view transforms | Rasterization |
- per-vertex lighting and shading l

« compute and transform
per-vertex texture coordinate
« lots of floating point operations

« a scene with a single light requires
about 100 floating point ops

| Fragment Processing |

Display

Akeley/Hanrahan

Primitive Processing o o

Primitive assembly:
- group vertices into primitives: ®
+ 1 vertex > point
« 2 vertices > line
+ 3 vertices > triangle .
+ polygon/quad tessellation
- duplicate vertices in strips or fans

Application

+
Vertex Processing |

Primitive Processing

Rasterization |

Primitive operations: |

- perspective projection

- clipping

* screen mapping

- culling, back-face culling,
2-sided lighting

| Fragment Processing |

Display

Akeley/Hanrahan

Rasterization/Scan Conversion

Convert triangle into fragments Application

« discretization

| Vertex Processing |

I

| Primitive Processing |

- enumerate covered pixels

- interpolate all values

inside the triangle
» colors
« texture coordinates
« depth

« anti-aliasing
Fragment Processing |

‘ Display

Rasterization

Akeley/Hanrahan

Rasterizer Stage o o©

Goal: assign per pixel color o}

0 Application

Input from Geometry Stage:

| Vertex Processing |

« 2D vertices 1

(in screen coordinates)+depth

| Primitive Processing |

« vertex color and texture

coordinates

Rasterizer Stage
Image space

Rasterizer Stage
Operations:

- Rasterization/scan conversion :

.
« Texture mapping
« Fragment shading

- Fragment merge Display

»

Texture Mapping ‘..+'

Glue an image onto an object

Application

Combine fragment color

| Vertex Processing |

with a looked-up value l

» texture coordinates =

| Primitive Processing |

index into the texture map

For example:

| Rasterization |

Akeley/Hanrahan

Fragment Shading

Fragment operations: Application

« texture combiners

, Vertex P i
« per-fragment shading [vertexProcessing |

- fragment tests: owner, scissor, (e l]
decal, alpha (transparency), fog Primitive Processing

| Rasterization |

Fragment Processing

no-op in this case\

Display
Akeley/Hanrahan
. . . The most common
Geometnc Plpe|lne but not the only
architecture
Vertex processing Rasterization®
« transformations - interpolate values
« lighting and shading between vertices
- projection: 3D to 2D*+depth < scan conversion
- clipping Fragment processing
* primitive assembly - texture mapping
- depth test
- alpha test
s, oo |2
g : s
< Per-Pixel | |, Texture :
Operations Assembly
.
——— GeometrcPpeliie ———» Pael Programmable

Pipeline Shader

Fragment Merge ‘—» h

The framebuffer consists of Application

« color buffer (RGBa)

: depth- or z-buffer | Vertex Processing |

« stencil buffer - l

« (accumulation buffer) I

Framebuffer operations: =

« blending or compositing l

« depth testing
(z-buffering)

- shadow maps

11

| Primitive Processing |

| Rasterization |

Fragment Processing

Framebuffer

q:

T
HEREE
|_an overla

L1l

|

I _|
ing cursor, e.g._|

p'I) Igl | Igl

[

Display

Alternative Architectures

« The Reyes Architecture:
- “patches” as primitives, not polygons
* patches tessellated (diced) into micropolygons
 multiple fragments (micropolygons) per pixel
- fragment clipping and visibility after processing

« Tile Architecture:
« each pipeline handles only a sub-regionttile of a frame

« Frameless Rendering:
- framebuffer updated at random locations to avoid tearing

+ Direct3D 10/OpenGL 3.2 added geometry processor
« Direct3D 11/OpenGL 4.0 added tessellation processor

« Raytracing? Radiosity?

Akeley/Hanrahan

