E§ 3D Transformations

Coordinate systems:
y

EECS 487: Interactive L
Computer Graphics “”

Lecture 11:
* 3D Transforms
* Rodrigues Formula
* Change of Basis

z Right-handed Left-handed
We will use a right-handed system

Generally 2D transforms extendsto 3D in a
straightforward manner: just add on the z-
dimension to points, vectors, and matrices

Only rotation is a bit complicated . . .

3D Transforms 3D Rotation

Translation . . .
:} ? 8 2 AR More involved than translation or scaling O
N ol oy || v+ .
p=Te=l e Also more complex thanin 2D
Z+l:)) 2D
000 1 |L1! 1 « 2D: only need to specify amount of rotation _
Scaling « 3D: need amount and axis of rotation A 2D rotation
s, 00 0 , 5,T « 3D rotation is about a vector, not just about a point implicitly
o s 00 y s,y « there are many more 3D rotations about a point rotates about z
p'=Sp= 0 0 s 01 z || sz than in 2D: rotations can cover the whole 3D space
0 o 0 1 1 1 around a given point, not just a plane around the point
Shear .
D) o I 3D rotations are orthonormal:
) I 1. T+ h,y+h,.z cRI_RT — _
h, U h. 0y hox+y+h.z R'=R"; [R[=1=-1
p'=Hp= : = :
h, h, 1 0| z
o o o 1 1!

hox+hyy+z Y § Preserve lengths and distance to origin
1
] 3D rotations do not commute! 1D
shear zbyy ’ Jameso7
z z

Popovicog O’Brieno8, Jameso7

Axis Aligned 3D Rotation

Axis of Direction of

. " . Common names
rotation positive rotation

@ ytoz lean/pitch/tilt

turn/yaw/

Y ttow heading/pan

% ztoy roll/bank

Positive rotation is counter-clockswise:

looking down one coordinate axis, a 90°
counter-clockwise rotation transforms

one positive axis into another X

Merrello8
O'Brieno8

[N

Rotation About Arbitrary Axis

Rotate 6 degrees about some line I: p’ = R(9,1)p
y

. I

x

z
We only know how to rotate about the coordinate

axes, so use similar trick as in 2D:
1. translate the rotation axis to the origin
2. rotate the rotation axis around until
it coincides with one of the coordinate axes
3. rotate the object, and

4. rotate and translate the rotation axis back
Merrello8

Axis-AIi_gned 3D Rotations

roll cos¢ —sing 0 0
Ri(p)=| Sn¢ cos¢ 00
0 0 10
. 0 0 0 1 |
tilt/pitch 1o 0 0
Rigy=| O 0 om0
1o sing cos¢ O
| 0 0 0 1 |
panfyaw cos¢ 0 sing 0
0 1 0 O

R =
y(9) _ing 0 cosp O
. 0 0 0 1
a.k.a. “direction-cosine” matrices

Jamesoy

Rotation About Arbitrary Axis

Translate to get a point on Ito the origin:

y y

p=(p,. py. p.)

Merrello8

Rotation About Arbitrary Axis

Rotate to get / onto a coordinate plane:
rotate —« about the z-axis to put the line in the zz plane:

y

.)
cos(—a) —sin(—a) 0 O cos(aw) sin(e) 0 O
R (—a): sin(—a) cos(-a) 0 O —sin(a) cos(a) 0 O
) 0 0 10 0 0 10
0 0 0 1 0 0 0 1

Merrello8

Rotation About Arbitrary Axis

Perform desired rotation (rotate by 8 about z-axis)

y
0
x 1
z

1 0 0 0

RI(9)= 0 c9s49 —sinf 0
0 sinf cosf O

0 0 0 1

Merrello8

Rotation About Arbitrary Axis

Rotate to get / onto a coordinate axis:
rotate 3 about the y axis to put line on x axis:
y y

B
z)
cos@ 0 sing O
0 1 0 0
R (B)=
iy (%) —sin3 0 cosB3 0
0 0 0 1

Merrello8

Rotation About Arbitrary Axis

Inverse rotate to get I back into coordinate plane:

rotate — (3 about the y axis to put line back in 2z plane:
y

)
cos(-=3) 0 sin(-@) 0 cos@ 0 —sing 0
R(g)<| © 1 0 0l 0 1 0 0
7 —sin(=3) 0 cos(-=3) 0 sin3 0 cosB O
0 0 0 1 0 0 0 1

Merrello8

Rotation About Arbitrary Axis

Inverse rotate to take / out of the coordinate plane:

rotate v about z:
y

cosa —sina 0 O
R()_ sina cosaa 0 O
‘ 0 0 1 0
0 0 0 1

Merrello8

Rotation About Arbitrary Axis

The complete transformation:
R, = TR (R, (DR (DR (H) R (~)T(-p)

This method specifies rotation about arbitrary axis
as rotations about 3 angles, called Euler Angles

Problems with Euler Angles:

« result is non-unique, :
order dependent —

+ can't add rotations :
(90° cw 4 90° ccw = 0O, not I),
can’t compose rotations

+ Gimbal lock

- difficult to interpolate
angles in animation

Merrell,Watt

Rotation About Arbitrary Axis

Invert the initial translation to ?et the point
at the origin back to its original location:

y

) p=®, p,. p.)

Merrello8

G Im ba I LOC k 90° rotation in one axis, reduces degree of
freedom by one: rotating around y
becomes the same as rotating around z

Hoffmanno2

Coordinate Systems

The use of coordinate systems is fundamental to
computer graphics

» to describe the locations of points and directions in space
- different ones represent the same point in different ways

y r

X

- some operations are easier in one system than in another

- multiple coordinate systems make graphics algorithms easier
to understand and implement

Chenney

Rodrigues Formula Rotate(6, aju

Look at the problem different:
change the basis!

Define a “natural” basis for rotation
in terms of three defining vectors: a

« the rotation axis a, normalized

- the vector being rotated u u <>
- a vector perpendicular to both:
=axu

Rotate(d, a)u = cos O u + =axu

(1-cosf)(a-uwa +
sin 6

Lozano-Perez&Popovic

Rodrigues Formula

Direct representation of arbitrary rotation

A.k.a. axis-angle, exponential map, or , Rotate(6, a)u
angular displacement vector

Rotate 6 degrees about some axis a

Prevents Gimbal lock (but still has
the angles interpolation problem)

[\]

Used in OpenGL glRotate (0, a,, a,, a,)

Rodrigues Formula

a
Vector u has two parts:
* u | that remains stationary u u, ‘>
« u, that rotates like a 2D point i
[
a u, (a =axu
u®
Uge
|
u I
front view top view

O'Brien

Rodrigues Formula

=axu

wl=Jaxu
=|al|u[siny, a normalized

Ju|
[yl

front view

—Julsin g =]u

:‘“J

O'Brien

Rodrigues Formula

a
u'=u +u,cos 6+ wsin 0 u u; ' <>
ups

u :(aou)a
u =u-u;=u-(a-wa

u=(a-uwa+ (u-(a-u)a)cosf + wsin b

Rotate(d, a)u = cos #u + (1 —cos) ()a + sin 0

\ “natural” basis of u /

rotating around a

O'Brien

=axu

Rodrigues Formula

, 42 u u
, T u’ = Rotate(d, a)u u cosf=u, | ——=
YR —ug o]
Pluyy U Fuwy L
=u) +u,cos+ wsinf u (u -u
side view = B
[[]
top view _ u, [LUJ
1
Jeniiqionl

U wu,cosg, a

= Proj(u, Jon norm(u,)

wsin 6 Similarly, Proj(u’ ;) onw,

ll’. given |W| _ ’“ﬂ, is
w cos (/2 — 0) = w sin 6

O'Brien

EECS 487: Interactive
Computer Graphics

Lecture 11:

* Change of Basis

What are Transformations?
(Alternate Take)

Transformations convert points between
coordinate systems

What are Transformations?

Transformations modify an object’s shape and/or
location in one coordinate system

2,3) o1
y |y —p —1 y .(1’2) ([] R P. . v [J
py p) ps y Y pv:pyfl p
p,=p, +1 = u
! I’ pfl;_plt+1 -—
| S Seal | : | : b —p 1

This is the common understanding of

transformations and one we will generally use This interpretation sometimes makes graphics

algorithms easier to understand and implement

Chenney Chenney

Translation as Change of Basis Linear Transform as
Change of Basis

E.g., negative translation means either move point

backward (_Tp)' or move coordinate system Think of a linear transformation as Ph
forward (T-'1) ,
a change of coordinate systems:
p'=Tp p=T"'p’ P Py py P
Ip’=(Thp Ip = (T-'Dp’ "'ZM":[d e } r, v 4 Py
| u P
e
=[]{ r]=p, +p \Pail} 4o
p=Q2.0 p=(2.0) Py boo pai p,

®—o 0 P @
p'=(1) pE@D p'=(1

Ramamoorthio8

Rotation as Change of Basis

Consider a rotation transform R(y, 0)
operating on the standard basis

[:]
H)

The column space of a matrix is the
coordinate space formed by the columns
of the matrix, taken as basis vectors

* e.g., the column space of R(, 0) is
the space formed by vectors uand v

but these are just
the columns of R!

|

1
0

0
1

L
o

= any matrix transforms the standard basis vectors
into a set of vectors that form the columns of the
matrix (expressed in standard basis)

Transformation < Change of Basis

Transformations operate on the coordinates of point (p) or
vector (v) in one coordinate system: Mp or Mv

Or, transformations convert points or vectors between
coordinate systems: from the Cartesian standard space to
the column space of M

The column space of a matrix is the coordinate space
formed by the columns of the matrix, taken as vectors
(expressed in the standard basis)

w323}

v,

a b
d

b

e

a

d

e

u

Rotation as Change of Basis

p'=Rp
Ip'=(RDp
P = P=
p,
Pe
D,
p, | p’y P, oD
— VvV ‘\ py
X P,
u
AR
° p, 7 P
Inverse Rotation
Let s and t be the two rows of R(¢,0):
cosy —sing| | s
R(p,0)= | . |
Ising cosp| |t
s =[cosy —sinp]Tandt = [sinp cosp]”
cosy —sin 1 cos
R(po)s=| .~ 7
sinp cosy —singp
cos —sin | sin
y Rpot=| -~ 7
d sing cosy cosp

Inverse Rotation Inverse Rotation as Change of Basis

R0 s t] Since the rotation transform is an orthogonal matrix:

- R (5.0)= R’ cosp singp Pe
o . ,0)= =
_ Cosy Sme COoS Sme ¥ —sing cosy .
| sinp cosyp —siny Ccosy p=Rp’
|1 0 |_ I The row space of a matrix is the Ip=R"'Dp'
1o 1 | coordinate space formed by the rows - |
i ; i B cosy sing P,
of the matrix, taken as basis vectors R (p,0)p'= . '
~RR"=I=RR™ —singp cosp P

The inverse of an orthogonal matrix
=R'=R’ : |
= transforms the standard basis vectors :[o :I P

=p' s+p't
into the row space of the matrix P Px3TPy

= R is an orthogonal matrix! =p

OpenGL 2.1's Current
Transformation Matrix

OpenGL 2.1 maintains a current transformation matrix (CTM = C)
+ C defines the current coordinate system
+ all geometry is defined in the current coordinate system Assign matrix (main|y used to load identity);
+ all geometry is transformed by C .

glLoadIdentity ()

Matrix Operations

Specify which matrix:
glMatrixMode (mode)

Transformation matrices are post-multiplied with the CTM glLoadMatrix [£d] ()

« the last transform specified is the first performed .

. C’'=CT glLoadTransposeMatrix[fd] ()
OpenGL 2.1 has four CTMs: Compose matrix, post multiply:

- GL_MODELVIEW: contains the composite of modeling and viewing matrices glMultMatrix[£d] ()

* GL PROJECTION)
« GL_TEXTURE: stretching, moving, rotating texture glMultTransposeMatrix[£d] ()

+ GL_COLOR: for image processing - used in transforming normals, e.g.
+ to change a CTM, specify which one with g1MatrixMode (mode)

Akeleyoy

Modeling Transforms

Translate:

glTranslate[£fd] (x,vy,2)
Rotate:

glRotate[£fd] (angle, x,vy, 2)
Scale:

glScale[fd] (x,y,2)
Example:

glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity () ;

glScalef (..);

glRotatef (..);

glTranslatef (..);
glVertex3f (..);

// angle in degrees

Results
C

C—1I
C—1IS

C < ISR
C < ISRT
ISRTv

Matrix Stack and Stack Operations

The CTM may be pushed onto and popped from a stack
» Modelview stack: > 32 4 x4 matrices (e.g., Mac OS X: 40)
» Projection stack: > 2 4x4 matrices (e.g., Mac OS X: 4)

Matrix stack operation:
glPushMatrix (): pushesthe stack down by one, duplicating

glPopMatrix()

Useful for hierarchical modeling,
when different parts of an object
transform in different ways

the CTM, i.e., afteraglPushMatrix ()
call, the matrix on top of the stack is
identical to the one below it

OpenGL State

