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Observed: Periodic Packet Losses

Similar periodic losses have also been observed on
other networks running other routing protocols

What could cause
the periodic losses?
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Fig. 3. Periodic packet losses at 30-second intervals on network running RIP.

synchronized routing

Observed: Periodic Packet Losses

Experiment sending 1000 pings between Berkeley
and MIT, at 1 sec. interval
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Fig. 1. Periodic packet losses Fig. 2. The autocorrelation of roundtrip times.

Example of Synchronized Processes

Two pendulum clocks hanging on the same wall end
up swinging in synch

Male Thai fireflies gathering at dusk in trees by the
riverside flash on and off unsynchronized, but as the
night progresses whole trees of fireflies flash in
synch for hours




Weak Coupling and Synchronization

Pulse-coupled oscillator systems, e.g., pendulum
clocks on wall, fireflies on tree, exhibit weak
coupling between components

Weak-coupling leads to synchronization of
dynamic systems

What kind of weak coupling causes
synchronization of periodic routing messages?

Timing Model of Route Updates

When an update timer expires,

« router A prepares and sends its routing updates
(we'll assume that updates are streamed out)

* neighbor B receives first packet of updates T, (= 0) secs later
« it takes T, secs for A to process an outgoing update
« it also takes T secs for B to process A's updates

« if B's route update timer expires during T, it waits until the end
of T, before handling the timer (takes T, = T, secs)

« if a neighbor's update arrived within T, processes update at
the end of T, (also takes T, = T, secs)

« after finish processing both updates, A and B set next update
timerto T, (= 30) secs later
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Weak Coupling of Route Updates

Hypothesis: setting periodic route update timers
after processing updates from other routers
provides the weak coupling between routers that
lead to synchronized route updates

Hard to test this hypothesis on real system: too
many uncontrolled variables

Approach: create a simulation model
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Fig. 5. An enlargement of the simulation in Fig. 4. Fig. 6. The cluster graph, showing the largest cluster for each round.

How to Break-up Synchronization?

Starting with synch-ed updates, perhaps due to
triggered updates or routers reboot, 7, = 2.8T.
manages to break up synchronization
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How big must T, be?

Use a Markov Chain model to formally analyze
how long it takes for a cluster of size k to form and
to break up

Results explanatory not
predictive, analytical
model shows the same
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Fig. 14. Expected time to go from cluster size 1 to cluster size .\, and vice
versa, as a function of T,




How big must T, be? Synchronization is a Phase Transition
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Analytical model simplifies reality even further, it
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Choos'ng Tr as .5 Tp, i.e., maxra ndomlzatlon, Fig. 18. The fraction of time synchronized versus the random component T
larger than T, will become in-phase again, should
eliminate synchronization
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Models and Network Dynamics Reporting Results
Simple, innocuous behavior can cause (unsuspected) emerging Simulation results can depend on random seed used
coordination among entities that leads to complex global
structure g ——= -

Be honest in reporting

Given the observed complex behavior/structure, need to isolate negative cases

the simple innocuous behavior that gives rise to it
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Hypotheses on network dynamics can only be studied within a
very simplified model of the real system
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COan rm Obse rVationS from mOdeI on real netWOrk Fig. 7. A simulation showing unsynchronized routing messages.



Reporting Results

Analytical model may be over simplified and quantitatively off
by several factors, but is still useful to explain behavior

Be honest in reporting loose bounds
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Fig. 13. The expected time to reach cluster size i, starting from cluster size
N, for T; = 0.3 seconds.
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Fig. 12. The expected time to reach cluster size 7, starting from cluster size
1, for T = 0.1 seconds.

Reporting Results

Double check sensitivity of results to

parameter values:

- different network topologies: point-
to-point networks
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Fig. 15. Expected time 10 go from cluster size 1 to cluster size N, and vice
versa, as a function of N and of



