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Self-Similarity	
Viewing	scale	not	apparent	from	object	
appearance	
	
Object	features	are	statistically	similar	between	
object	parts	and	the	overall	object	
	
For	example,	we	always	see	a	jagged	line	no	
matter	how	close	we	look	at	a	coastline	

compound	Poisson	

Ethernet	
Traffic	…	

[W+97]	

Absence	of	a	
natural	length	of	
a	”burst”:	at	every	
time	scale	from	
msecs	to	minutes	
and	hours,	bursts	
consist	of	bursty	
subperiods	
separated	by	less	
bursty	subperiods	

Comparable	
average	packet	size	
and	arrival	rate		
	
Drastically	different	
distribution	across	
time	scales	



A	Traffic	Trace	
Let	X	be	a	covariance	stationary	stochastic	process	
What	is:	

• a	stochastic	process:	
a	time	series	of	a	variable	that	changes	randomly	

• a	stationary	process:	
a	time	series	whose	statistical	properties:	mean,	variance,	
autocorrelation,	stay	constant	over	time	

• covariance:	
by	how	much	two	random	variables	move	in	tandem	

By	how	much	Xt	and	Xt+h	move	in	tandem	is	not	a	
function	of	time	

Sample	Mean	
Let	X	be	a	covariance	stationary	stochastic	process	
X(m),	a	sample	mean,	is	a	new	covariance	stationary	
time	series	obtained	by	averaging	the	original	series	
X	over	non-overlapping	blocks	of	size	m

X: 1, 3, 6, 2, 5, 1, 8, 3, 2, . . .
X(2): 2, 4, 3, 5.5, . . .
X(3): 3.3, 2.6, 4.3, . . .
X(4): 3, 4.25, . . .

Self-Similarity	
A	traffic	trace	is	self-similar	if	(equivalently):	
1. the	variance	of	the	sample	mean	remains	large	even	as	you	
sample	at	larger	and	larger	samples	(no	smoothing	out):	

	

vs.	

	

	 var(X
(m ) ) ~ a2m

−β , 	m→∞,0 < β <1,a2 > 0

	var(X
(m ) ) ~ a4m

−1, 	m→∞,a4 > 0

Self-Similarity	
A	traffic	trace	is	self-similar	if	(equivalently):	
2. auto-correlation	functions	(acf)	at	various	time	scales	are	of	
the	form:	

�	the	acf	is	non-summable,	i.e.,	traffic	
exhibits	long	range	dependence	(LRD):	

	
Short-range	dependence:	
	
X	is	(exactly)	second-order	self-similar	if:	

and	(asymptotically)	second-order	self-similar	if:	

	
White	noise	(not	self-similar):	

	 r(k) ~ k
−β , 	k→∞,0 < β <1

r(k)
k
∑ →∞

	r
(m ) (k) = r(k), 	k ≥ 0

	r
(m ) (k)→ r(k), 	m→∞

	r
(m ) (k)→ 0, 	m→∞

	 
r(k) ~ ρ k , 	0 < ρ <1⇒ r(k)

k
∑ < ∞



Auto-correlation	

time	

load	

k1

k2

k3

r(k1) = 1

r(k2) = 0

0 < r(k3) < 1

Self-Similarity	
A	traffic	trace	is	self-similar	if	(equivalently):	
3. taking	the	time	series	into	the	frequency	domain	(Fourier	
transform),	the	low	frequency	components	obeys	a	power-
law	near	the	origin	(a	low	frequency	is	proportionally	denser	
than	its	next	higher	frequency): �
�
�
�
�
�
�
�
Cf.	Zipf	distribution	

 	

f (λ) ~ a3λ
−γ , 	λ→ 0,0 < γ <1,a3 > 0

γ = 1− β

λ:	frequency	

f(λ):	density	

Self-Similarity	
A	traffic	trace	is	self-similar	if	(equivalently):	
4. the	expected	rescaled	adjusted	range	statistic:	

has	Hurst	parameter	½ < H < 1	

The	Hurst	parameter	expresses	the	speed	of	decay	of	the	acf	
•  H ≤ ½:	short-range	dependent	processes,	
e.g.,	Poisson,	batch-Poisson,	Markov-modulated	Poisson	

•  H		>		1:	non-stationary	process	

	 E R(n) / S(n)[ ] ~ a5nH , 	n→∞,a5 > 0

slope	= –1

slope	≈ �0.4
H ≈ 0.8

(m:	aggregation	level)	

Detecting	LRD	in	Ethernet	Trace	
H	can	estimated	directly	from	
R/S	statistic	

	

	

	

Or	from	variance	time	plot	
• slope	–β, 0 < β < 1
• H = 1 – β/2	

slope	= ½ 

slope	= 1

H	≈ 0.79



Detecting	LRD	in	Ethernet	Trace	
Or	from	periodogram,	slope	of	
10%	of	the	lowest	frequencies,	
near	0
H = (1+γ)/2

Hurst	parameter	stays	constant	
across	traffic	aggregation	levels	

γ ≈ 0.64
H	≈ 0.82

(freq	decomposition)	

(m:	aggregation	level)	

	�:	periodogram	
◦ :	variance-time	plot	
�:	R/S	pox	plot	

H	≈ 0.8

Detecting	LRD	in	Ethernet	Trace	
H	can	also	be	estimated	with	
maximum-likelihood	estimator	
(MLE)	based	on	the	
periodogram	(Whittle	
estimator)	with	the	advantage	
of	computing	95%	confidence	
interval	

Whittle’s	periodogram-based	approximate	MLE	
along	with	R/S	and	variance-time	plot	of	packet	
count	

Detecting	LRD	in	
Ethernet	Trace	

H	increases	as	traffic	load	
increases!	

	

Remain	true	over	time	(89-92)	

Implication	
Long-range	dependent	traffic	effects	queueing	delay:	
it	makes	buffer	sizing	ineffectual	
	
How	do	we	know	LRD	causes		
ineffectual	buffering	[ENW96]?	
•  external	shuffle	experiment:	
divide	traffic	into	m	blocks	and	
shuffle	the	blocks	around	preserving	
the	sequence	inside	each	block:	
destroys	LRD,	preserves	SRD	
•  internal	shuffle	experiment:	same	
blocks,	shuffle	traffic	inside	each	
block,	keeping	the	block	order:	
destroys	SRD,	preserves	LRD	

Variance-time	plots	

external	shuffle	

internal	shuffle	

[ENW96]	



Implication	
Resulting	queue	
occupancy	statistics:	
	
	
	

What	can	we	do	about	it?	
• frequency	domain	view:	traffic	can	be	decomposed	
into	high	(spikes),	mid	(ripples),	and	low	(swells)	
frequencies	
• network	must	have	enough	capacity	
to	handle	peak	rate	of	low	frequency	
• buffer	space	should	be	used	only	to	
handle	high-frequency	traffic	

internal	shuffle,	
m = 25	

original	trace	

external	shuffle,	
m = 500

external	shuffle,	
m = 25

full	shuffle,	m = 1

[ENW96]	

Causes	of	LRD	
Aggregation	of	ON/OFF	traffic	with	
heavy-tailed	OFF	time	distribution	[W+97]	
• human	“think''	time	
• effect	of	TCP	congestion	avoidance	(cwnd)	
• multimedia	sources	can	also	be	modeled	as	ON/OFF	
	

Why	does	long-tailed	ON/OFF	
distributions	cause	LRD?	
•  long	OFF	time	means	autocorrelation	
of	bursts	at	large	k,	hence	

•  long	ON	time	increases	the	probability	
of	seeing	other	traffic	

r(k)
k
∑ →∞

OFF	ON	 p(OFF)

1–p(OFF)

1–p(ON)

p(ON)

Examples:	Pareto,	Weibul,	Zipf	
	
Pareto	distribution:	
	

	
α < 2:	trace	has	infinite	variance	
α < 1:	trace	has	infinite	mean	

Heavy-tailed	Distributions	

! 

p(x) = αkαx−α−1, !α!and!k > 0, !x ≥ k
F(X) = P[X ≤ x] = 1− (k / x)α

OFF	ON	 p(OFF)

1–p(OFF)

1–p(ON)

p(ON)

! P[X > x] ~ x−α, !x→∞, !0 < α < 2

Heavy-tailed	Distributions	

Trace	

Generated	

10%    20% 50%

[W+97]	

ON	 OFF	

Exp	 Pareto	



Modeling	LRD	
Aggregation	of	ON/OFF	traffic	
with	heavy-tailed	OFF	time	distribution	[W+97]	
Advantage:	parsimonious,	only	one	parameter,	α	
	
Alternative	models:		
• by	fitting	multiple	short-range	dependent	processes:	
parameter	explosion,	no	physically	meaningful	interpretations	
• fractional	Gaussian	noise:	
does	not	model	short-range	dependencies	
• fractional	ARIMA:	
•  can	model	both	short-	and	long-range	dependencies,	
•  but	still	does	not	provide	physical	explanation	of	self-similarity	
•  plus,	known	parameter	estimation	techniques	too	expensive	

OFF	ON	 p(OFF)

1–p(OFF)

1–p(ON)

p(ON)

! P[X > x] ~ x−α, !x→∞, !0 < α < 2
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compound	Poisson	

Discussions	
Gold	standard	of	measurement	study	and	analysis	

Prior	to	this	paper,	traffic	modeling	assumes	Poisson	
distribution	

After	this	paper,	traffic	modeling	uses	power	law	
distributions	(Pareto,	Weibul,	Zipf)	

A	flurry	of	follow-on	papers	found	power-law	
distribution	everywhere	in	the	network	.	.	.	


