

Leland et al., "On the Self-Similar Nature of Ethernet Traffic (Extended Version)," *IEEE/ACM Transactions on Networking*, 2(1):1–15, Feb. 1994

References

[ENW96] Erramilli, Narayan, and Willinger, "Experimental Queueing Analysis with Long-Range Dependent Packet Traffic," IEEE/ACM ToN, 4(2):209–223, Apr. 1996

[W+97] Willinger, Taqqu, Sherman, and Wilson, "Self-Similarity Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level," *IEEE/ACM ToN*, 5(1):71–86, Feb. 1997

Self-Similarity

Viewing scale not apparent from object appearance

Object features are statistically similar between object parts and the overall object

For example, we always see a jagged line no matter how close we look at a coastline

Comparable average packet size and arrival rate

Drastically different distribution across time scales

A Traffic Trace

Let X be a covariance stationary stochastic process

What is:

• a stochastic process:

a time series of a variable that changes randomly

• a stationary process:

a time series whose statistical properties: mean, variance, autocorrelation, stay constant over time

• covariance:

by how much two random variables move in tandem

By how much X_t and X_{t+h} move in tandem is not a function of time

Sample Mean

Let \boldsymbol{X} be a covariance stationary stochastic process

 $X^{(m)}$, a sample mean, is a new covariance stationary time series obtained by averaging the original series X over non-overlapping blocks of size m

Self-Similarity

A traffic trace is self-similar if (equivalently):

1. the variance of the sample mean remains large even as you sample at larger and larger samples (no smoothing out):

$$\operatorname{var}(X^{(m)}) \sim a_2 m^{-\beta}, m \to \infty, 0 < \beta < 1, a_2 > 0$$

vs.

$$\operatorname{var}(X^{(m)}) \sim a_4 m^{-1}, \, m \to \infty, a_4 > 0$$

Self-Similarity

A traffic trace is self-similar if (equivalently):

- 2. auto-correlation functions (acf) at various time scales are of the form: $r(k) \sim k^{-\beta}, k \to \infty, 0 < \beta < 1$
 - ⇒ the acf is non-summable, i.e., traffic exhibits long range dependence (LRD): $\sum_{\nu} r(k) \rightarrow \infty$

Short-range dependence: $r(k) \sim \rho^k$, $0 < \rho < 1 \Rightarrow \sum_k r(k) < \infty$

X is (exactly) second-order self-similar if: $r^{(m)}(k) = r(k), k \ge 0$

and (asymptotically) second-order self-similar if: $r^{(m)}(L)$

 $r^{(m)}(k) \to r(k), m \to \infty$

White noise (not self-similar): $r^{(m)}(k) \rightarrow 0, m \rightarrow \infty$

Auto-correlation $\int_{k_1}^{\log d} \int_{k_2} \int_{k_2} \int_{k_3} \int_{k_4} \int_{k_4} \int_{k_5} \int_{k_6} \int_{$

Self-Similarity

A traffic trace is self-similar if (equivalently):

3. taking the time series into the frequency domain (Fourier transform), the low frequency components obeys a power-law near the origin (a low frequency is proportionally denser than its next higher frequency):

Cf. Zipf distribution

Self-Similarity

A traffic trace is self-similar if (equivalently):

4. the expected *rescaled adjusted range statistic*:

$$\mathbb{E}[R(n)/S(n)] \sim a_5 n^H, n \to \infty, a_5 > 0$$

- has Hurst parameter $\frac{1}{2} < H < 1$
- The Hurst parameter expresses the speed of decay of the acf
- + $H \leq \frac{1}{2}$: short-range dependent processes, e.g., Poisson, batch-Poisson, Markov-modulated Poisson
- H > 1: non-stationary process

Detecting LRD in Ethernet Trace

2 3 4 log10(m) (m: aggregation level)

 λ : frequency

Detecting LRD in Ethernet Trace

Or from periodogram, slope of 10% of the lowest frequencies, ${\rm near}\,0$

 $H = (1 + \gamma)/2$

Hurst parameter stays constant across traffic aggregation levels

log10(m) (m: aggregation level)

Detecting LRD in Ethernet Trace

H can also be estimated with maximum-likelihood estimator (MLE) based on the periodogram (Whittle estimator) with the advantage of computing 95% confidence interval

Implication

Long-range dependent traffic effects queueing delay: it makes buffer sizing ineffectual

How do we know LRD causes ineffectual buffering [ENW96]?

- external shuffle experiment: divide traffic into *m* blocks and shuffle the blocks around preserving the sequence inside each block: destroys LRD, preserves SRD
- internal shuffle experiment: same blocks, shuffle traffic inside each block, keeping the block order: destroys SRD, preserves LRD

Detecting LRD in Ethernet Trace

H increases as traffic load increases!

Remain true over time (89-92)

Implication

Resulting queue occupancy statistics:

What can we do about it?

- frequency domain view: traffic can be decomposed into high (spikes), mid (ripples), and low (swells) frequencies
- network must have enough capacity to handle peak rate of low frequency
- buffer space should be used only to handle high-frequency traffic

[ENW96]

Heavy-tailed Distributions

Causes of LRD

Aggregation of ON/OFF traffic with heavy-tailed OFF time distribution [W+97]

- human "think" time
- effect of TCP congestion avoidance (cwnd)
- multimedia sources can also be modeled as ON/OFF

1-p(ON)

1-p(OFF)

ON

p(ON)

OFF

Why does long-tailed ON/OFF distributions cause LRD?

- long OFF time means autocorrelation of bursts at large k, hence $\sum r(k) \rightarrow \infty$
- long ON time increases the probability of seeing other traffic

10% 20% 50% log10(P[Exponential > x]) -0.5 -0.5 og10(P[Pareto > x]) <u>-1</u> <u>-1</u> Exp Pareto -2.5 2.5 -4 -2 ο 2 0.5 1.0 1.5 2.0 log10(x) log10(x) Generated

2.0

Modeling LRD

Aggregation of ON/OFF traffic

with heavy-tailed OFF time distribution [W+97]

Advantage: parsimonious, only one parameter, α

 $P[X > x] \sim x^{-\alpha}, x \to \infty, 0 < \alpha < 2$

Alternative models:

- by fitting multiple short-range dependent processes: parameter explosion, no physically meaningful interpretations
- fractional Gaussian noise: does not model short-range dependencies
- fractional ARIMA:
- can model both short- and long-range dependencies,
- but still does not provide physical explanation of self-similarity
- plus, known parameter estimation techniques too expensive

Discussions

Gold standard of measurement study and analysis

Prior to this paper, traffic modeling assumes Poisson distribution

After this paper, traffic modeling uses power law distributions (Pareto, Weibul, Zipf)

A flurry of follow-on papers found power-law distribution everywhere in the network . . .