
[GSW99]	Griffin,	Shepherd,	and	Wilfong,	“Policy	Disputes	in	Path-Vector	
Protocols,”	Proc.	of	Int’l	Conf.	on	Network	Protocols	’99,	Nov.	1999	
	
[GR01]	Gao	and	Rexford,	“Stable	Internet	Routing	without	Global	
Coordination,”	IEEE/ACM	Trans.	on	Networking,	9(6):681-692,	Dec.	2001	
	
[GSW02]	Griffin,	Shepherd,	and	Wilfong,	“The	Stable	Paths	Problem	and	
Interdomain	Routing,”	IEEE/ACM	Trans.	on	Networking	(TON),	10(2):
232-243,	Apr.	2002		

Advanced!
Computer Networks

Internet	inter-AS	Routing:	BGP	
BGP	(Border	Gateway	Protocol),	released	07/94,	
is	de	facto	standard	for	inter-AS	routing	
	
BGP	provides	each	AS	a	means	to:	
• advertise	Address	Prefixes	(APs)	reachability	
information	to	neighboring	ASs	(with	eBGP)	
• propagate	AP-reachability	to	all	AS-internal	routers	
(with	iBGP)	
• determine	“good”	routes	to	APs	based	on	reachability	
and	policy	
•  inter-AS	routing	is	policy	driven,	not	load-sensitive,	generally	
not	QoS-based	

BGP	Routing	Policy	Example	

A,B,C	are	provider	networks	
X,W,Y	are	customers	(of	provider	networks)	
X	is	multi-homed:	attached	to	≥	2	networks	
X	does	not	want	to	route	from	B	via	X	to	C�
..	so	X	will	not	advertise	to	B	a	route	to	C

BGP	Routing	Policy	Example	

A	advertises	to	B	the	path	AW		
B	advertises	to	X	the	path	BAW		
B	does	not	advertise	to	C	the	path	BAW
• B	gets	no	“revenue”	for	routing	CBAW	since	
neither	W	nor	C	are	B’s	customers		
• B	wants	to	force	C	to	route	to	W	via	A
• B	wants	to	route	only	to/from	its	customers!	

Path	Attributes	&	BGP	Routes	
BGP	associates	BGP	attributes	with	each	AP	

Two	important	attributes:	
•  AS_PATH:	the	path	vector	of	ASs	through	which	the		
advertisement	for	a	prefix	passed	through	

•  NEXT_HOP:	the	specific	router	at	neighbor	AS		
(there	may	be	multiple	exits	from	current	AS	to	neighbor	AS)	

Sample	BGP	routing	table	entry:	
AP NEXT_HOP AS_PATH
198.32.163.0/24 202.232.1.8 2497 2914 3582 4600

• address	prefix	198.32.163.0/24	is	in	AS	4600
• to	get	there,	send	to	router	at	address	202.232.1.8
• the	path	goes	through	ASs	2497,	2914,	3582,	in	order

BGP	Policy	Tools	
Export	policies:	in	addition	to	AS_PATH,	an	AS	can	set	
these	additional	attributes	when	advertising	an	AP:	
• multiple-exit	discriminator	(MED):	an	AS	can	tell	a	neighbor	its	
preferred	ingress	point	
• community	set	(c_set):	an	AS	can	tag	certain	APs	as	
belonging	to	the	same	group,	e.g.,	customer,	peer,	back-up	

Import	policies:	an	AS	may	learn	of	more	than	one	
routes	to	some	APs	
•  local_preference:	an	AS	
can	specify	its	preferred	
egress	point	for	an	AP,	e.g.,	
prefer	customer	over	peer	

AT&T	 Sprint	

Customer	

Tier-2

Tier-3

Local-pref	=	100

Local-pref	=	90

BGP	Implicit	Policies	
Implicit	import	policies:	
• sets	NEXT_HOP	and	local	preference	
• discards	some	route	announcements,	to	prevent	routing	
loop,	configuration	mistakes,	and	attacks	
•  discard	route	if	AS	already	appears	in	AS_PATH
•  discard	route	if	AP	advertised	by	customer	is	not	owned	by	customer	
•  discard	customer	advertisement	that	contains	other	large	ISP	in	its	
AS_PATH	

	

Implicit	export	policies:		
•  sets	MED	values	
• prepends	AS	to	AS_PATH

BGP	Policy	in	Play	
How	an	AS	sets	the	attributes	of	it	advertisements	
influences	its	neighbors’	behavior	

• AS	prepending:	artificially	inflate	the	AS	path	length	(by	
repeating	the	AS	number	in	AS_PATH)	to	convince	
neighbors	to	use	a	different	AS	

• cold-potato	routing:	AS1	sets	MED	in	
advertisement	for	AP	d	to	prefer	traffic	
ingress	closest	to	d

• hot-potato	routing:	AS2	prefers	egress	
(local_preference)	closest	to	traffic	
source	(ignoring	the	other	AS’s	MED)	

d

d

d

s

AS1

AS2

BGP	Policy:	Implementation	

Best	Route	
		Selection		

Apply	Import	
		Policies	

Best	Route		
		Table	

Apply	Export	
		Policies	

Install	forwarding	
entries	for	best	
routes	

Receive	
BGP	
Updates	

Best	
Routes	

Transmit	
BGP		
Updates	

Apply	Policy	=	
filter	routes	&		
tweak	attributes	

Based	on	
Attribute	
Values	

IP	Forwarding	Table	

Apply	Policy	=	
filter	routes	&		
tweak	attributes	

Open	ended	programming,	constrained	
only	by	vendor	configuration	language	

[Rexford]	

BGP	route	selection	in	order:	
1.  highest	local_preference
2.  shortest	AS_PATH
3.  lowest	MED	value	
4.  tie	break	by	NEXT_HOP	

IP	address	

Policy	Disputes	
BGP	allows	path	choices	to	be	dictated	by	policy	
instead	of	distance	metric	

Each	AS	sets	its	own	policy,	without	any	global	
coordination	

Problem:	there	are	unsafe	collections	of	routing	
policies	that	can	cause	BGP	to	diverge	(exchanging	
BGP	routing	messages	indefinitely)	

Griffin,	Shepherd,	and	Wilfong	present	sufficient	
conditions	on	routing	policies	that	guarantee	BGP	
safety	[GSW99]	

Policy	Safety	
Steps	to	ensure	a	collection	of	policies	is	safe:		
1. model	BGP	as	Simple	Path	Vector	Protocol	(SPVP)		

2. check	for	dispute	cycle	(or,	equivalently,	dispute	wheel)	
in	an	SPVP	specification	

3. no	dispute	wheel	means	an	SPVP	spec	is	safe	

	
Simple	Path	Vector	Protocol	(SPVP):	
• a	formal	system	designed	to	capture	the	underlying	
semantics	of	BGP	

• strips	away	all	but	the	essentials	of	BGP,	leaving	only:	
•  permitted	paths	to	a	destination	

•  the	ranking	of	those	paths	

SPVP	and	Solvability	
Simple	Path	Vector	Protocol	(SPVP)	specification:		
• each	node,	representing	an	AS,	has	a	set	of	permitted	paths	to	
a	single	destination	
• and	a	ranking	function	that	ranks	its	permitted	paths	by	
preference	

Solutions	to	an	SPVP	specification	are	routing	trees	
that	satisfy	certain	stability	conditions	
• static	solvability	of	SPVP	is	still	NP-complete	
• but	a	dynamic	evaluation	heuristic	grows	a	stable	path	
assignment	(a	routing	tree)	in	a	greedy	manner	[GSW02]	
• the	stable	states	of	the	dynamic	evaluation	are	solutions	to	the	
SPVP	specification	

Terminology	

G(V, E)	a	network	of	nodes,	V = {0, 1, 2, ..., n}
Node	0:	the	origin,	a	special	node	that	is	the	destination	
node	to	which	all	other	nodes	attempt	to	establish	a	path	
	
Permitted	path	(P):	a	path	that	has	not	been	filtered	out	
by	policy	along	the	way	

Ranking	function	(λi(P)):	gives	node	i’s	ranking	of	
permitted	path	P	by	policy	preference;	larger	λ()	means	
higher	preference	

Terminology	and	Notation	
A	path	in	G,	P = vk, vk−1, ..., v1, v0,	s.t.	∀	i > 1, {vi, vi−1} ∈ E

PQ:	concatenation	of	P	and	Q,	the	last	node	in	P	must	be	
the	same	as	the	first	node	in	Q		

(u, vk)P = u, vk, vk−1, ..., v0	(vk	must	be	the	first	node	in	P)	

εP = Pε = P,	ε	empty	path	

P[vi, vj]:	subpath	vi, vi−1, ..., vj	of	simple	path	P	

P v:	set	of	permitted	paths	from	v	to	the	origin	

For	P1,	P2	∈	P
v,	and	λv(P1)	<	λv(P2),	then	P2	is	said	to	be	

preferred	over	P1	(larger	λ(),	higher	preference)	

SPVP	
For	P	=	∪v∈V	P

v,	the	set	of	all	permitted	paths	to	the	
origin,	and	Λ={λv|v ∈ V	−{0}},	the	set	of	all	ranking	
functions,	an	SPVP	specification	is	S = (G, P, Λ)
	
Restrictions	on	Λ	and	P:		
• for	each	v ∈ V,	ε ∈ P v	(it’s	ok	not	to	have	a	path)	
• for	each	v ∈ V,	λv(ε) = 0	
• If	λv(P1)	=	λv(P2),	then	P1	=	P2	or	P1	= (v, u)P’1	
and	P2	= (v, u)P’2	(P1	and	P2	have	the	same	next	hop)	

• if	path	P	∈	P v,	P	is	a	simple	path	(no	repeated	nodes)		
• if	path	P	∈ P v,	and	node	w≠0	is	in	P,	then	P[w, 0] ∈	Pw	

(consistency:	tail	of	a	permitted	path	must	be	a	permitted	path)	

Stability	and	Solvability	
A	routing	tree	T = (P1, P2, ..., Pn)	is	a	vector	of	paths	
with	Pi	∈	P

i	s.t.	the	union	of	these	paths	is	a	tree	
	
Node	i	is	stable	with	respect	to	T	if	λi((i, j)Pj)	≤	λ

i(Pi)	
whenever	(i, j)Pj	∈	P

i,	i.e.,	an	alternate	permitted	
path	is	not	preferred	over	current	path	
	
T	is	stable	if	every	node	is	stable	
	
S	is	solvable	if	∃	a	stable	T	⇒	T	is	a	solution	to	S		

Example	1:	GOOD	GADGET	

SPVP	specification:	
a	routing	tree/solution:	
no	node	could	pick	a	
more	preferred	path	

Solution	to	specification:	

path	ranking	
highest	preference	
lowest	preference	�

(1 3 0)
(2 0)
(3 0)

(4 3 0)

Dynamic	Evaluation	
Now	consider	collection	of	permitted	paths	
at	all	nodes	at	any	one	time	as	a	state	
	
A	state	for	SPVP	S	is	a	vector	s = (P1, P2, ..., Pn),	
where	Pi	∈	P

i	
• s	is	not	always	a	tree	(could	be	cyclic)	
	
In	dynamic	evaluation, Eval(S),	the	SPVP	moves	from	
one	state	to	another	where	each	“activated”	node	(a	
node	that	must	recompute	path):	
• processes	all	neighbors’	updates	
• computes	any	changes	to	preferred	routes	
• and	sends	updates	to	its	neighbors	

(1 3 0)
(2 0)
(3 0)

(4 3 0)

Example	1	

(1 0)
(2 0)
(3 0)

(4 3 0)

(1 3 0)
(2 1 0)
(3 0)

(4 3 0)

(1 3 0)
(2 0)
(3 0)

(4 3 0)

unstable	
initial	state	

nodes	1	and	2	
prefer	higher	
ranked	paths	
available	

node	2	lost	preferred	
path,	accepting	
lower	ranked	path:	
solution	stabilizes:	
no	node	could	pick	a	
more	preferred	path	

SPVP	specification:	
a	routing	tree/solution:	
no	node	could	pick	a	
more	preferred	path	

(1 3 0)
(2 0)
(3 0)

(4 3 0)

State	transition	diagram	
or	evaluation	digraph,

Eval(S)	

stable	
state	

GOOD GADGET	
is	safe	

path	ranking	
highest	preference	
lowest	preference	

�

Dispute	Cycle	

Captures	a	certain	type	of	circular	policy	inconsistency	
	
An	SPVP	specification	with	no	dispute	cycle	
always	has	a	unique	solution	and	is	safe	
• its	dynamic	evaluation	will	always	arrive	at	a	stable	state	

Example	2	

Has	no	solution,	dynamic	evaluation	diverges:	

(1 0)
(2 0)
(3 0)

()

(1 3 0)
(2 1 0)
(3 0)

(4 2 0)

(1 3 0)
(2 0)

(3 4 2 0)
(4 3 0)

(1 0)
(2 0)
(3 0)

(4 2 0)

(1 3 0)
(2 1 0)

(3 4 2 0)
(4 2 0)

(1 0)
(2 0)
(3 0)

()

SPVP	specification:	

{1, 2, 4} {2, 3, 4} {1, 3, 4} {1, 2, 3} {1, 2, 3, 4}

{1, 2, 4}

BAD GADGET	
is	not	solvable	

cycle	�	S	diverges	

path	ranking	
highest	preference	
lowest	preference	

�

Example	3	

SPVP	specification:	

Same	unique	solution	as	GOOD	GADGET:	
	
	
	
	
	
But	dynamic	evaluation	diverges:	

(1 3 0)
(2 0)
(3 0)

(4 3 0)

NAUGHTY
GADGET	is	
solvable	but	
not	safe	

path	ranking	
highest	
lowest	

�

Dynamic	Evaluation:	Formally	
Let:	
• A ⊆ V ≠ ∅	be	the	set	of	nodes	that	must	update	paths	
(activated	nodes),	
• s = (P1, ..., Pn)	be	the	SPVP	state	before	
the	updates,	and	
• s’ = (P’1, …, P’n)	be	the	SPVP	state	after	
nodes	in	A update	their	paths

	
Pi	if	i	∉	A	(i’s	path	doesn’t	change),	
P	∈	P i	s.t.	λi(P)	is	maximal	
	

s	→	s’	denotes	this	transition	

P’i =

A

(1 0)
(2 0)
(3 0)

(4 3 0)

(1 3 0)
(2 1 0)
(3 0)

(4 3 0)

{1, 2}

Stable	State	

A	state	s	is	stable	if	s	→	s	for	every	A,	i.e.,	no	node	
could	pick	a	better	path	than	its	current	path	
	
An	update	sequence	σ	is	a	function	s.t.	σ(t) ⊆ V, for	
each	t ≥ 0, i.e.,	σ(1) = A1, σ(2) = A2, …, σ(t) = At
	
σ(s0, t) = st: s0 → s1 → s2 → … → st

A

A1 A2 A3 At

Convergence	and	Safety	

S	is	said	to	converge	with	respect	to	σ	and	s0	if	
∃	t	s.t.	σ(s0, t)	is	stable		
	
Otherwise	it	is	said	to	diverge	with	respect	to	σ	and	s0
	
σ	is	fair	if	for	each	node	u,	u	∈	σ(t)	for	infinitely		
many	t’s	(σ	makes	progress)	
	
S	is	safe	if	it	converges	for	every	fair	σ	and	every	
initial	state	s0		

Dispute	Digraph	
A	dispute	digraph	of	S	(DD(S))	
consists	of	nodes	and	arcs	where:		
• each	node	represents	a	permitted	path	
• an	arc	is	either	a	transmission	arc	or	a	dispute	arc	
• transmission	arc	(-->)	:	a	permitted	path	at	one	node	
allowing	another	permitted	path	at	another	node		
• dispute	arc	(→):	policy	dispute	between	nodes	that	
disallow	a	permitted	path	at	one	of	the	nodes	

	DD(GOOD GADGET):	

Dispute	Cycle	

A	cycle	in	the	dispute	digraph	

0

Dispute	Wheel	
Generalization	(“long-distance”)	and	formalization	
of	dispute	cycle	used	to	prove	solvability	and	
safety	of	SPVP	specification	

Dispute	wheel	constructed	from	a	set	
of	nodes	where	each	node	uk	has	two	
permitted	paths	Qk and	Rk Qk+1where	
the	path	through	the	neighbor	is	
preferred	over	the	other λ

uk(Qk)	≤	λuk(Rk Qk+1)	
• neighbor	in	dispute	wheel	is	not	necessarily	neighbor	in	
actual	network,	i.e.,	the	path	R	can	have	length	> 1	

(Non-)existence	of	dispute	wheel	is	then	used	to	
prove	solvability	and	safety	of	SPVP	specification	

Example	

A	dispute	wheel	of	both	BAD	
and	NAUGHTY	GADGETs	

Another	dispute	wheel	of	
NAUGHTY	GADGET	

[GSW02]	

λu0 (Q0) ≤ λu0(R0Q1)

λu1(Q1) ≤ λu1(R1Q2)

λu2(Q2) ≤ λu2(R2Q0)

λu0(Q0) ≤ λu0(R0Q1)

λu1(Q1) ≤ λu1(R1Q0)

0

R1

Theorems	

A	specification	S	has	a	dispute	wheel	iff	DD(S)	
contains	a	cycle	

If	S	has	no	dispute	wheel,	S	is	solvable,	i.e.,	∃	a	
stable	routing	tree	for	S		

Divergence	implies	a	dispute	wheel:	if	∃	a	non-
trivial	cycle	(contains	no	self-loops)	in	the	
evaluation	digraph	of	S, Eval(S),	S	contains	a	
dispute	wheel	

Theorems	

Sufficient	condition:	if	S	has	no	dispute	wheel, Eval(S)	
has	no	non-trivial	cycles,	and	S	is	safe	

¬(Necessary	condition):	if	S	has	a	dispute	wheel,	
Eval(S)	may	or	may	not	contain	a	cycle		
	
Example:	BAD	BACKUP	has	
a	dispute	wheel	that	is	not	
realizable	in	the	evaluation	
and	is	safe	

BAD BACKUP

Summary	
Authors	present	sufficient	conditions	on	routing	
policies	that	guarantee	BGP	safety	

Dispute	cycle	captures	a	circular	set	of	
relationships	between	ranking	functions	
	
An	SPVP	specification	with	no	dispute	cycle	
always	has	a	unique	solution	and	safe	
• specification	with	no	dispute	cycle	is	safe	
• its	dynamic	evaluation	will	always	arrive	at	a	stable	state	
(solution	to	the	SPVP	specification)	

Implication	of	SPVP	

Conjecture:	only	SPF	route	selection	is	provably	safe	
	
SPVP:	if	S	is	consistent	with	a	coherent	cost	function,	
such	as	SPF,	then	S	has	no	dispute	wheel	�	S	is	safe	
	
However,	S	being	safe	doesn’t	require	consistency	
with	a	coherent	cost	function	�	route	selection	can	
“violate”	distance	metric	and	remain	safe!		

Application	of	SPVP	
Static	evaluation	of	BGP	is	NP-hard,	even	of	SPVP	is	NP-
complete	[GSW99]	
	
How	do	we	ensure	BGP	convergence?	
	
Gao	and	Rexford	propose	a	set	of	policy	guidelines	that		
• imposes	a	partial	order	on	the	set	of	routes	to	each	destination	

• does	not	require	global	coordination	
• exploits	the	hierarchical	structure	of	the	Internet	and	the	
commercial	relationships	between	ASs	
• conveniently	already	conforms	to	common	practices	
�	why	we	haven’t	seen	BGP	divergence	on	the	Internet	[GR01]	

AS	Relationships	
Commercial	relationships	between	ASs:	
• peering:	peers	agree	to	exchange	traffic	for	free	(settlement	
free),	usually	when	traffic	exchange	is	balanced	(not	more	
than	1:3	ratio)	

• customer-provider:	customer	pays	for	access	
• backup	

AS100

AS22

AS0 AS1

AS20

peer-to-peer

provider-customer

tier-1

tier-2

backup

Peering	Relationship	
Peers	exchange	traffic	of	their	customers		
• AS	exports	only	its	customers’	APs	to	a	peer	

• AS	exports	a	peer’s	APs	only	to	its	customers	

• Peers	don’t	advertise	APs	learned	from	other	peers	or	providers	
(no	transit)	

peer	peer	

Traffic	to/from	the	peer	and	its	customers	

d

announcements

traffic	

[Rexford]	
customer	customer	

Customer-Provider	Relationship	
Customer	needs	to	be	reachable	by	everyone	
• provider	tells	all	its	neighbors	how	to	reach	the	customer	
• prefer-customer	over	peer	in	case	of	multi-homed	customer	

Customer	needs	to	reach	everyone	
• provider	advertises	all	APs	to	customer	

[Rexford]	

d

d

provider	

customer	

customer	

provider	

Traffic	to	the	customer	 Traffic	from	the	customer	

announcements	

traffic	

announcements	
traffic	

Valley-Free	Routing	
Customer	does	not	want	to	provide	transit	service	
•  customer	only	advertises	its	own	Aps	

•  not	APs	from	peers	nor	other	providers	
(in	case	of	multi-homing)	

AS100

AS22

AS0 AS1

AS20

peer-to-peer

provider-customer

tier-1

tier-2

backup

✗

✗

Policy	Guidelines	
Guideline	A:	Prefer-Customer	
• prefer	routing	via	customer	over	routing	via	peer	or	provider	

•  results	in	stable	path;	prove	by	induction:	
•  Phase	1:	activate	ASs	in	customer-to-provider	DAG	in	linear	order	

•  Phase	1	is	stable:	
•  customer	itself	is	stable	

•  assume	stable	after	k	hops	to	provider	
•  k+1	hop	is	stable	because	its	options	are	stable	

•  Phase	2:	activate	provider-to-customer	DAG	in	linear	order	

•  Phase	2	is	stable:	
•  first	AS	(provider)	is	stable	

•  assume	stable	after	I	hops	from	provider	

•  k+1	hop	is	stable	because	its	options	are	stable	

Policy	Guidelines	
Guideline	B:	
• allow	routing	via	customer	or	peer	with	equal	preference,	
but	over	routing	via	provider	

•  results	in	stable	path	if	after	clustering	peers	into	clusters,	
the	clusters	form	a	DAG	
•  prove	by	induction	in	two	phases	similar	to	Guideline	A,	but	
additionally	assume	activation	in	linear	order	of	the	cluster	DAG	

•  and	note	that	an	AS	always	prefers	a	customer	route	with	a	shorter	
AS	path	to	a	peer	route,	ensuring	preference	for	the	customer-
provider	DAG	with	shorter	route	

Policy	Guidelines	
Guideline	C:	
• use	backup	link	only	if	there’s	no	customer,	peer,	or	provider	
link	

•  requires	coordination	between	ASs	
•  to	mark	backup	path	using	community	set	

• set	all	backup	paths	the	same	local_preference	value	

•  to	ensure	safety,	activate	backup	paths	in	shortest	path	first	order	

Policy	Guidelines	
ASs	can	have	different	relationship	for	different	APs,	
guidelines	apply	per	destination	AP	
	
During	relationship	change	(customer	to	peer	or	
customer	to	provider—unlikely),	modify	provider’s	
policy	configuration	first	

BGP	Routing	Policy	Loop	
Current	approach	to	prevent	BGP	policy	loops:		
• ISPs	register	their	policy	with	Internet	Routing	Registry	(IRR)	
• Policy	specified	in	a	standard	language		
• Conflicts	can	be	checked	
	
Problems:		
• Policies/relationships	must	be	revealed	and	updated		
• Static	checking	for	convergence	is	NP-hard	
• BGP	may	not	converge	under	router/link	failure	or	policy	changes	

