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Advanced!
Computer Networks


Querying	a	Network	

What	is	the	degree/connectivity	
distribution	of	nodes	in	a	P2P	network?	
	
How	many	friends	in	an	online	social	
network	like	X?	
	
What	is	the	average	temperature	reading	
in	a	sensor	network?	
	
What	is	the	average	speed	of	cars	on	a	
vehicular	network?	

If	We	Have	a	Central	List	of	Nodes	

For	an	accurate	estimate,	we	must	sample	
uniformly	at	random	
	
Generate	a	set	of	uniformly	distributed	random	
numbers	
	
Use	the	random	numbers	as	indices	into	the	list	
	
Access	the	nodes	at	those	locations	to	obtain	its	
readings	

With	or	Without	Replacement?	
Do	we	allow	for	multiple	samplings	of	the	same	node?	
Or	do	we	only	sample	unique	node	each	time?	

With	dynamic	graphs,	where	nodes	come	and	go,	
sampling	without	replacement	can	lead	to	bias	
towards	short-lived	nodes	

Example	[S+09]:	
• we	want	to	know	the	average	number	of	files	per	node	
•  half	of	the	nodes	is	long-lived	and	hold	a	lot	of	files	
•  the	other	half	is	short-lived	and	hold	only	a	few	files	
• without	replacement,	we	will	sample	more	of	the	short-lived	
nodes	and	conclude	erroneously	that	most	nodes	hold	only	a	
small	number	of	files	



Without	a	Central	List	
How	do	you	estimate	various	characteristics	of	a	
network,	G = (V, E),	with	no	central	list	of	nodes?	
V:	vertices,	E:	edges	
	
Random	walk:	start	at	any	node,	
•  choose	one	of	its	neighbors	uniformly	at	random	
Transition	function	from	x	to	y:	
	
	
	
•  step	to	chosen	neighbor	
•  repeat	
•  some	portion	of	visited	nodes	are	selected	as	samples	

	

P(x, y) =
1

degree(x)
, y	is	a	neighbor	of	x

0, otherwise

Problem	with	Random	Walk	

Higher-degree	nodes	visited	more	often	

Stationary	distribution,	π(x),	at	any	
particular	node	x	is	the	probability	of	
being	at	node	x	(how	often	x	is	visited)	

Stationary	distribution	of	the	walk	at	any	
particular	node	x	is	proportional	to	the	
degree	of	x,	π(x) ∝ degree(x)	

How	to	correct	for	this	inherent	bias?	

Metropolis-Hastings	Algorithm	
Correct	for	the	bias	by	modifying	the	
random	walk,	by	altering	the	transition	
function	to	any	desired	stationary	
distribution,	e.g.,	uniform,	π(x) = 1/|V|

	

Q(x, y) =
P(x, y)min degree(x)

degree(y)
,1⎛

⎝⎜
⎞
⎠⎟
, if	x ≠ y

1− Q(x, z)
z≠x∑ , if	x = y

tentatively	select	a	neighbor	
uniformly	at	random	

probability	of	accepting	
transition,	correcting	the	bias	

probability	of	remaining	at	
current	node	(taking	a	self-edge)	

Problem	with	Metropolis-Hastings	
Random	walk	can	get	“stuck	in	a	cul-de-
sac”	for	network	with	highly-skewed	
node	degrees	and	highly	skewed	local	
clustering	coefficients	(tiered	or	transit-
stub	networks)	

Local	clustering	coefficient	of	a	vertex:	how	
well	connected	are	the	vertex’s	immediate	
neighbors	to	each	other	



Respondent-driven	Sampling	
Instead	of	modifying	the	random	walk,	
reweight	the	sampled	values	

An	importance	sampling	estimator	
weighted	by	the	(actual)	stationary	
distribution	π		

Importance	sampling:	sample	more	frequently	
those	values	that	have	more	impact,	resulting	
in	biased	sampling,	but	reweight	the	samples	
to	correct	the	bias	

Respondent-driven	Sampling	
Given	property	of	interest	X,	partition	all	possible	
values	of	X	into	m	groups:	{R1, . . . , Rm}	

V	is	accordingly	also	partitioned	into	m	groups:	
{V1, . . . , Vm},	where	Vi = {v ∈ V: X(v) ∈ Ri}

Example:	X	is	positive	integer	value	and	we	group	by	
value:	Vi = {v ∈ V: X(v) = i}	

	 

For	stationary	distribution	π(x), 	0 ≤ π(x) ≤1, 	 π(v)
v∈V
∑ = 1	

E 1
π(v)

X(v)⎛
⎝⎜

⎞
⎠⎟
= X(v)

v∈V
∑ ,	the	population	total

Respondent-driven	Sampling	

Consider	an	n-step	random	walk	that	visits	the	set	of	

nodes	T	=	{t1, . . . , tn}	starting	from	a	node	

randomly	selected	according	to	the	stationary	

distribution,	where	individual	node	may	be	visited	

more	than	once	(i.e.,	with	replacement),	and	let	

Ti = T ∩ Vi

The	Hanson-Hurwitz	Estimator	

	 

For	any	node	property	X ,	the	Hanson-Hurwitz	estimator	is:

Ŝ(X) := 1
n

X(v)
π(v)v∈T∑

Since	E X(v)
π(v)

⎛
⎝⎜

⎞
⎠⎟
= S(X), 	where	S(X) = X(v)

v∈V∑ 	is	the

population	total,	thus	E Ŝ(X)( ) = S(X)	and	Ŝ(X)	is	an
unbiased	and	consistent	estimator	of	the	population	total:

S(X) := X(v)
v∈V∑

[https://onlinecourses.science.psu.edu/stat506/node/15]



Respondent-driven	Sampling	
From	the	group	memberships	and	node	degrees	
observed	during	a	random	walk,	we	can	estimate	
pi  = |Vi|/|V|,	the	proportion	of	nodes	in	group	i	of	
node	property	X

When	X = IVi
	is	an	indicator	whether	a	node	is	in	

group	i,	i.e.,	
	
	
	
	
When	X = 1,	then											estimates	|V|

	

IVi (v) =
1, if	v∈Vi ,
0, otherwise,

then	Ŝ(IVi )	estimates	 Vi

Ŝ(1)

Respondent-driven	Sampling	

Given	π(x) ∝ degree(x),	we	can	estimate	pi	as	:	

	

	

	
	
	
   	is	consistent	(converges	to	the	true	value	of	pi)	
as	n	grows	
p̂i

 

p̂i =
Vi
V

=
Ŝ(IVi )
Ŝ(1)

=

1
π(v)v∈Ti

∑
1
π(u)u∈T∑

=

1
degree(v)v∈Ti

∑
1

degree(u)u∈T∑

Sampling	Techniques	Evaluation	
Use	synthetic	graphs	and	Gnutella	overlay	snapshots	
	
Synthetic	graphs	allow	for:	
1.  accurate	evaluation	since	the	distribution	of	the	sampled	
property	(ground	truth)	is	known	

2.  identify	separate	effects	of	graph	properties	and	graph	
dynamics	on	the	accuracy	and	efficiency	of	the	techniques	

Performance	metric:	Kolmogorov-Smirnov	(KS)	
statistic,	the	maximum	vertical	distance	between	the	
plots	of	two	functions	with	values	in	[0, 1],	such	as	the	
CDFs	of	estimated	and	actual	distributions	of	X

Degree	Distribution	

Better	estimates	as	number	of	
samples	increases	

Except	for	HSF	graph,	MH	
follows	a	similar	trend	as	RDS,	
but	with	2e-3	lower	accuracy

HSF	graph	has	“cul	de	sac”	
causing	MH	to	get	stuck	

Rewiring	removes	“cul	de	sac”	

even	by	
only	1%



Number	of	Walkers	vs.	Walk	Length	

Too	many	walkers	bias	towards	nodes	near	starting	point,	
resulting	in	low	accuracy	at	short	walk	length	

Longer	walks	see	more	churn	

Alternative:	start	sampling	only	after	r	steps,	for	
subsequent	n	steps	[GMS06]	

Lifetime-related	Properties	

Short-lived	nodes	usually	have	lower	node	degrees,	leading	to	
biased	sampling	even	with	RDS	if	churn	rate	is	too	high	(session	
length	below	10	mins)	

Properties	less	correlated	with	session	length,	such	as	RTT,	do	not	
show	similar	bias	

Snapshots	of	top-level	Gnutella	overlay	collected	back-
to-back	once	every	7	minutes	

	
	
	
	
	
	
	
MH	and	RDS	estimates	are	roughly	the	same,	
Gnutella	network	is	not	HSF	

Longer	walks	see	more	churn	

Gnutella	Snapshots	


