
Sherwood,	R.,	et	al.,	”	Can	the	Production	Network	Be	
the	Testbed?”	Proc.	of	the	9th	USENIX	Symposium	on	
OSDI,	2010	
	
Reference:	
[C+07]	Cascado	et	al.,	“Ethane:	Taking	Control	of	the	
Enterprise,”	ACM	SIGCOMM	‘07,	37(4):69-74,	Oct.	2007	

Advanced!
Computer Networks

Slicing	a	Network	
Want	to	create	virtual	networks	from	slices	of	
physical	network	
	
Each	virtual	network	forwards	traffic	at	line	speed:	
no	extra	overhead	in	packet	forwarding	(data	
plane),	no	extra	overhead	in	the	forwarding	rule	
specifications	(control	plane)	
	
Slicing	isolates	bandwidth,	switch	CPU,	and	flow	
table	entries	between	virtual	networks	

FlowVisor	
Assumes	software-defined	network	
with	separate	control	and	data	planes	

Built	on	OpenFlow	switches:	NC	and	
switches	communicate	using	OpenFlow	
protocol	

Provides	network	slicing	by	adding	a	layer	
between	the	control	and	data	planes	

Extra	overhead	in	the	communication	between	
an	OpenFlow	switch	and	the	centralized	NC	

[C+07]	

Software-Defined	Network	(SDN)	
Centralized	Network	Control	(NC)	
• monitors	and	approves	all	traffic	
• allows	for	complete	policy-based	control	of	the	network	

• creates	and	populates	switches	
with	forwarding	rules	

• access	controls	built	in	
• network	understands	users,	
hardware,	topology,	and	policies	

Flow	Setup	Process	
1. UserA	tries	to	connect	to	UserB	

2. UserA-to-UserB	“flow”	isn’t	in	Switch	1’s	flow	table,	so	the	
packet	is	queued	and	the	NC	“notified”	

3. NC	either	approves	or	denies	route	

4. If	approved,	NC	adds	a	new	rule	into	Switch	1’s	and	Switch	
2’s	flow	tables	to	establish	a	flow	from	UserA	to	UserB	

[C+07]	

Switch	forwarding	controlled	by	NC	
• communicates	with	controller	over	a	secure	channel	
• OpenFlow	is	an	open	standard	NC-switch	communication	
protocol	

Assume	simple,	off-the-shelf	switches	
• minimal	on-board	logic	
•  “flow”	table	lookup	only	
• only	stores	active	flows	
• no	understanding	of	network	topology	
• no	NAT	knowledge	

• OpenFlow	standard	specifies	
lowest	common	denominator	
hardware	features	exposed	
to	NC’s	control	

SDN	Switches	and	OpenFlow	

Flow	Table	Entry �
Type	0	OpenFlow	Switch	

Switch	
port	

MAC	
src	

MAC	
dst	

Eth	
type	

VLAN	
ID	

IP	
src	

IP	
dst	

IP	
prot	

TCP	
sport	

TCP	
dport	

Rule	 Action	 Stats	

1.  Forward	packet	to	port(s)	
2.  Encapsulate	and	forward	to	controller	
3.  Drop	packet	
4.  Send	to	normal	processing	pipeline	

+	mask	

Packet	+	byte	counters	

Network	Slice	Definition	
A	network	slice	is	specified	in	terms	of	topology,	
bandwidth,	switch	CPU	rate,	forwarding	table	quota,	
and	the	set	of	flows	that	the	slice	controls	

Traffic	handled	by	a	slice	is	defined	by	bit	patterns	in	
packet	headers	(flowspace)	

Each	slice	has	its	own	control	plane	that	defines	how	
packets	are	forwarded	and	rewritten	in	the	slice,	e.g.,	
Bob’s	HTTP	load-balancer	slice	specifies:	
•  topology:	encompassing	the	web	servers	
•  flowspace:	comprising	flows	with	port	80

Slice	set	up	is	done	manually	in	the	prototype	

Network	Slice	Implementation	
FlowVisor	intercepts	and	rewrites	OpenFlow	
messages	between	NC	and	switches	to	enforce	that:	
• NC	→ switch:	
•  forwarding	rules	only	apply	to	
the	traffic	and	topology	of	the	
slice	and	observe	resource	quota	

•  rules	may	be	rewritten,	e.g.,	
all traffic	→	port 80
all ports	→	ports in slice

•  switch	→ NC:		
•  only	messages	from	switches	
in	the	slice’s	topology	are	
forwarded	to	its	NC	

•  port-related	messages	are	pruned	or	
rewritten	such	that	NC	only	sees	relevant	ports	

rules	may	be	rewritten	
to	apply	only	to	Bob’s	
traffic	and	topology	

FlowSpace	Definition	
Flowspace	specified	(manually)	as	an	ordered	list	
of	tuples	similar	to	firewall	rules,	example:	

Bob’s	HTTP	load-balancer	network:	
Allow: tcp-port: 80 and ip=Doug’sIP
Allow: tcp-port: 80 and ip=Eric’sIP

Implications:	

•  new	HTTP	flow	notifications	with	Doug’s	or	Eric’s	IPs	
(non-contiguous	flowspace)	are	all	sent	to	Bob’s	NC	

•  any	flow	table	entries	Bob’s	NC	tries	to	add	are	modified	
to	match	only	HTTP	traffic	with	Doug’s	or	Eric’s	IPs	

FlowSpace	Definition	

Alice’s	production	network:	
Deny: tcp-port:80 and ip=Doug’sIP
Deny: tcp-port:80 and ip=Eric’sIP
Allow: all ;	lowest	priority	rule	

Implications:	
•  only	OpenFlow	messages	not	intended	for	Bob’s	NC	are	
forwarded	to	the	production	network’s	NC	

•  the	production	network’s	NC	is	not	allowed	to	add	any	
forwarding	entries	for	HTTP	traffic	with	Doug’s	or	Eric’s	IPs

Resource	Isolation	

Bandwidth	isolation:	relies	on	hardware	capability	
exposed	to	OpenFlow	to	assign	fractional	link	
bandwidth	to	user-created	queue	
	
Flow	table	entry	isolation:	limit	the	number	of	
entries	per	slice,	must	take	into	account	any	
automatic	rule	expansion,	e.g.,	when	the	rule	
applies	to	multiple	input	ports	

Resource	Isolation	
switch	CPU	isolation:	hardware	capabilities	to	rate	
limit	CPU	usage	are	usually	not	exposed	to	
OpenFlow,	instead	relies	on	work	around:	
•  if	new	flow	arrivals	exceeds	some	threshold,	insert	a	
lowest	priority,	time-limited	forwarding	rule	to	drop	all	
packets	matching	the	rule	(e.g.,	drop	all	HTTPs	packets	
not	belonging	to	existing	flows)	

• manually	rate	limit	NC’s	OpenFlow	requests	to	switch	

•  rewrites	“slow-path”	forwarding	rules	to	one-time	
forwarding	rule	

• manually	tune	the	above	rate	limits	to	ensure	sufficient	
CPU	for	internal	bookkeeping	

Scaling	

FlowVisor	scales	linearly	with	new	flow	rate,	
number	of	rules/slice,	and	number	of	slices	

Performance	Overhead	
FlowVisor	adds	extra	overhead	only	to	OpenFlow	
messages:	
•  switch	→	NC:	new	flow	messages,	affects	connection	
setup	latency	
• NC	→	switch:	port	status	requests,	must	be	rewritten	to	
match	topology	

Isolation	

Hardware	bandwidth	isolation	works	

CPU	isolation	work	around	works	

rate	limiting	NC	requests	 capping	new	flow	setups	

lowest	priority	packet	
drop	rule	instantiated	

. . .

Deployment	Issues	

Incompatibilities	with	hardware	features,	e.g.,	
multiple	physical	interfaces	mapped	into	one	
logical	interface	

OpenFlow	spanning	tree	does	not	match	
underlying	spanning	tree	for	loop	detection	

Different	OpenFlow	messages	have	different	
costs	and	other	practical	realities	

Limitations	
Prototype	requires	a	lot	of	manual	set	up	

OpenFlow	doesn’t	expose	many	hardware	
capabilities	

FlowVisor	doesn’t	allow	for	deep	packet	
inspection	and	other	arbitrary	packet	
modification,	e.g.,	payload	processing	

