SRR: An O(1) Time-Complexity Packet Scheduler for Flows in Multiservice Packet Network Ghuanxiong Guo
 IEEE/ACM Transaction on Networking, Vol.12, No.6, December 2004

Presenters: Taeju Park, Yibo Pi

Intro to Fair Queueing

First in first out (FIFO): no isolation among different flows
w_{1}

In each round, Flow 1: w_{1} bits Flow 2: w_{2} bits Flow 3: w_{3} bits

Introduction

- Different types of services on the Internet:
- Delay insensitive: email
- Delay sensitive: video and audio conferencing
- Resource isolation is needed to provide quality of service (QoS)
- Flows are served based on their requirements
- Packet Scheduler
- Decide which packet to be transmitted when the output link is idle
w_{1}

Fairness: the number of bits served for each flow is proportional to their weights.

Packetized Queueing Schemes

- Weighted fair queueing (WFQ)
- Deficit round robin (DRR)

GPS: ideal fairness, but not practical to use

Packetized Queueing Schemes

- Weighted fair queueing (WFQ)
- Deficit round robin (DRR)

How to improve DRR?

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

Packetized Queueing Schemes

- Weighted fair queueing (WFQ)
- Deficit round robin (DRR)

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
4 packets
Problems of DRR: 1) bursty output and 2) short-term unfairness

How to improve DRR?

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR?

	Deficit counter				
$\mathrm{w}_{1}=1$			120	100	Quantum = 100
$w_{2}=2$		100	150	100	
$w_{3}=4$	150	100	150	0	

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

$\mathrm{w}_{1}=1$	Deficit counter				
			120	100	Quantum = 100
$\mathrm{w}_{2}=2$		100	150	100	
$w_{3}=4$	150	100	150	200	

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR?

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

$\mathrm{w}_{1}=1$	Deficit counter			
		120	100	Quantum = 100
$\mathrm{w}_{2}=2$	100	150	200	
$\mathrm{w}_{3}=4$	150	100	50	

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

$\mathrm{w}_{1}=1$			Deficit counter	
		120	100	Quantum = 100
$\mathrm{w}_{2}=2$		100	50	
$\mathrm{w}_{3}=4$	150	100	50	

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR

Sequence of service: flow1, flow2, flow3, flow3, flow3, flow3
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3

How to improve DRR?

sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3
\# service of flow 1:1 2 packets 1 packet 2 packets

The design goal of Smoothed Round Robin

Weighted Fair Queueing

Pro: Short-term fairness
Con: high complexity O(\# of active flow)

Round robin

Pro: low complexity O(1)
Con: short-term unfairness

Smoothed Round robin

Short-term fairness + low complexity O(1)

Weight Spread Sequence (WSS)

- WSS is a specially designed sequence that distributes the output traffic of each flow evenly.
- A set of WSSs is defined recursively as follows:
- $S^{1}=1$
- $S^{k}=\left\{a_{i}^{k}\right\}=S^{k-1}, k, S^{k-1}$
- Total number of terms in $k^{\text {th }}$ WSS is $l e n_{k}=2^{k}-1$
- WSS Example
$\cdot S^{3}=\left\{\frac{1,2, D, 3,1,2, D}{S^{2}} k_{k}^{S^{2}}\right\}$
$\cdot S^{5}=\{1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1\}$
- len $_{5}=2^{5}-1=31$

Weight Matrix

- Each flow is assigned a weight in proportion to its reserved rate.
$\cdot\left(r_{1}=64 \mathrm{~kb} / \mathrm{s}, r_{2}=256 \mathrm{~kb} / \mathrm{s}, r_{3}=512 \mathrm{~kb} / \mathrm{s}, r_{4}=192 \mathrm{~kb} / \mathrm{s}\right)=>\left(w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3\right)$
- Weight of flow $_{f}$ is encoded as binary number $\left(4=100_{2}\right)$ in weight matrix

$$
W M=\left[\begin{array}{c}
W V_{1} \\
\vdots \\
W V_{N}
\end{array}\right]=\left[\begin{array}{ccc}
a_{1,(k-1)} & \cdots & a_{1,0} \\
\vdots & \ddots & \vdots \\
a_{N,(k-1)} & \cdots & a_{N, 0}
\end{array}\right] \text { If weight is } 10, \text { then }\left[\begin{array}{lll}
10010] \\
\text { column number }
\end{array}\right) \text { where } \mathrm{k}=4
$$

The number of columns = order of WSS

Smoothed Round Robin

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights ($w_{1}, w_{2}, w_{3}, w_{4}$)
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3$
- Corresponding WSS, $S^{4}=\{1,2,1,3,1,2,1,4,1,2,1,3,1,2,1\} \quad W M=\left[\begin{array}{l}W V_{2} \\ W V_{3} \\ W V_{4}\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
- Three asynchronous action
- Schedule, Del_flow, Add_flow

Deficit counter
$L_{\max }=100$

	100	100	50

Smoothed Round Robin Scheduler

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3$
- Corresponding WSS, $S^{4}=\underline{(1) 2,1,3,1,2,1,4,1,2,1,3,1,2,1\}}$
- Basic Idea of Smoothed Round Robin (SRR) Scheduler

1. scan WSS sequence term by term
2. When the value of the term is i, column $_{k-i}$ of the $W M$ is chosen.
3. In the column, the scheduler scan the terms from top to bottom.
4. If the term is 1 , the scheduler serve the corresponding flow.

Smoothed Round Robin

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights ($w_{1}, w_{2}, w_{3}, w_{4}$)
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3$
\cdot Corresponding WSS, $S^{4}=(1,2,1,3,1,2,1,4,1,2,1,3,1,2,1\} \quad W M=\left[\begin{array}{l}W V_{2} \\ W V_{3} \\ W V_{4}\end{array}\right]=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
- Three asynchronous action
- Schedule, Del_flow, Add_flow

Smoothed Round Robin

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3$
$W M=\left[\begin{array}{l}W V_{1} \\ W V_{2} \\ W V_{3} \\ W V_{4}\end{array}\right]=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
- Corresponding WSS, $S^{4}=\{1,2,1,3,1,2,1,4,1,2,1,3,1,2,1\}$
- Three asynchronous action
- Schedule, Del flow, Add flow

Smoothed Round Robin

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3$
- Corresponding WSS, $\left.S^{4}=(1) 2,1,3,1,2,1,4,1,2,1,3,1,2,1\right\} \quad W M=\left[\begin{array}{l}W V_{2} \\ W V_{3} \\ W V_{4}\end{array}\right]=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
- Three asynchronous action
- Schedule, Del_flow, Add_flow

Smoothed Round Robin

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3$
- Corresponding WSS, $\left.S^{4}=12,1,3,1,2,1,4,1,2,1,3,1,2,1\right\} \quad W M=\left[\begin{array}{l}W V_{2} \\ W V_{3} \\ W V_{4}\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
- Three asynchronous action
- Schedule, Del_flow, Add flow

Smoothed Round Robin

- Four flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ with corresponding weights ($w_{1}, w_{2}, w_{3}, w_{4}$)
- $w_{1}=1, w_{2}=4, w_{4}=3$
- Corresponding WSS, $S^{3}=\{1,2,1,3,1,2,1\}$
- Three asynchronous action
- Schedule, Del_flow, Add_flow

Smoothed Round Robin

- Five flows with fixed packet size $\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$ with corresponding weights $\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right)$
- $w_{1}=1, w_{2}=4, w_{3}=8, w_{4}=3, w_{5}=17$ => Corresponding WSS, $S^{5}{ }^{2}$
- Three asynchronous action
- Schedule, Del_flow, Add_flow

Deficit counter

Deficit counter					
$L_{\text {max }}=100$	0	$\mathrm{w}_{1}=1$	100		
	100	$\mathrm{w}_{2}=4$	100		150
	50	$\mathrm{w}_{3}=8$	150	100	100
	0	$w_{3}=3$	100	100	50
	0	$w_{5}=17$	100	100	50

Properties of SRR: Fairness

- Lemma2 (Long-term fairness): For any pair of backlogged flows f and g, at the end of a round in SRR, then

$$
\left.\frac{V_{f}(0, \tau)}{w_{f}}-\frac{V_{g}(0, \tau)}{w_{g}} \right\rvert\,=0
$$

$V_{f}(0, t)$ is the number of times that flow $_{f}$ is visited by SRR from time 0 to t

- Corollary1(Short-term fairness): For any pair of backlogged flows f and g in SRR, we have

$$
\left|\frac{S_{f}(0, t)}{w_{f}}-\frac{S_{g}(0, t)}{w_{g}}\right|<\frac{(k+2) L_{\max }}{2 \min \left(w_{f}, w_{g}\right)}
$$

$S_{f}(0, t)$ is service received by flows f from time 0 to t

Properties of SRR

- Work-conserving
- If there are active flows, the SRR always forward it.
- Theorem1: flow $_{f}$ is visited w_{f} times by SRR in a round
- The number of received service by scheduler of each flow is proportional to its weight
- The number of the occurrences of element i in $S^{k}(1 \leq i \leq k)$ is 2^{k-i}
- The number of element 3 is in S^{5} is $2^{5-3}=4$
$\{1,2,131,2,1,4,1,2,131,2,1,5,1,2,131,2,1,4,1,2,131,2,1\}$

Properties of SRR: Scheduling Delay Bound

- Scheduling Delay Bound $\left(D_{f}\right)$
- Scheduling delay: time between queuing packet and transmitting the packet.
- Theorem3: The scheduling delay bound of flow $_{f}$ is

$$
D_{f}<\frac{2 L_{\max }}{w_{f}}+N-1 \frac{2 L_{\max }}{C} \quad \mathrm{~N} \text { : the number of active flows }
$$

- Inverse proportional to the weight, proportional to total number of active flows
- Cannot provide a strictly rate-proportional delay bound.
- They claim that the delay bound is much better than that of DRR.

Properties of SRR: Scalability

- Different rate ranges can be accommodates by WSS of the same order by adjusting the rate granularity
- $1 \mathrm{~kb} / \mathrm{s}$ rate granularity
- $1 \mathrm{Mb} / \mathrm{s}$ rate granularity
- SRR can be used for variable bandwidth capacity
- SRR works well regardless of the number of flows.
- Time complexity is O(1)

Properties of SRR: Complexity

- Space complexity
- len $_{k}=2^{k}-1$ becomes very large if k is large number.
- They claim that $K_{\max }=32$ is enough
- It can provide $4 \mathrm{~Tb} / \mathrm{s}$ rate with granularity of $1 \mathrm{~kb} / \mathrm{s}$
- Since $(2 k)^{\text {th }}$ WSS can be constructed by using $k^{\text {th }}$ WSS and $(k+1)^{\text {th }}$ WSS, the space complexity of SRR is $2^{17}+O\left(N \times K_{\max }\right)$
- Time complexity To store $K_{\max }$ double links.
- $O(1)$ time to choose a packet for transmission
- $O(k)$ time to add or delete a flow, where k is the order of WSS currently used by SRR.

Evaluation

Simulation tool: NS2

Weights of CBR flows are powers of 2

Fig. 4. (a) Mean delays of the CBR flows. (b) Maximum delays of the CBR flows. The weights of the CBR flows are randomly chosen.

Weights of CBR flows are randomly chosen

Fig. 5. (a) Mean delays of the CBR flows. (b) Maximum delays of the CBR flows. The weights of the CBR flows are randomly chosen.

Discussion

- Weakness

$$
\left|\frac{S_{f}(0, t)}{w_{f}}-\frac{S_{g}(0, t)}{w_{g}}\right|<\frac{(k+2) L_{\max }}{2 \min \left(w_{f}, w_{g}\right)}
$$

- The paper is not well written
- Bad worst-case fairness
- Ignore time overhead to construct high order WSS ($32^{\text {th }} W S S$) using low order $\left(16^{\text {th }} \& 17^{\text {th }} W S S\right)$

$$
\begin{aligned}
& \begin{array}{c}
\text { for each term } a_{i}^{j} \text { of } S^{j} \\
\text { if }\left(n_{i}^{i}=1\right)
\end{array} \\
& \underset{\text { esplace } a_{i}^{i} \text { with } S^{k+1} ; O\left(\text { Len }_{j}\right)}{ }
\end{aligned}
$$

- Extension
- Single scheduler to multi-scheduler fairness?
- Singe resource (bandwidth) to multi-resource fairness?
- Queue-independent fairness to queue-dependent fairness?

Weights of CBR flows are equal

TABLE III
Maximum and Mean Delays of the 10 CBR Flows With Rate $100 \mathrm{~kb} / \mathrm{s}$

Flow number	WFQ		SRR (DRR)	
	Max (ms)	Mean (ms)	Max (ms)	Mean (ms)
1	27.2	23.7	31.2	22.2
2	27.8	24.3	31.6	22.7
3	28.6	24.9	31.9	23.2
4	29.2	25.5	33.0	24.1
5	29.7	26.1	32.7	24.8
6	30.4	26.7	33.1	25.3
7	30.7	27.3	33.3	25.8
8	31.4	28.0	33.8	26.2
9	31.8	28.7	34.3	26.7
10	32.7	29.3	34.8	27.3

