SRR: An O(1) Time-Complexity Packet Scheduler
for Flows in Multiservice Packet Network

Ghuanxiong Guo

|IEEE/ACM Transaction on Networking, Vol.12, No.6, December 2004

Presenters: Taeju Park, Yibo Pi

Intro to Fair Queueing
Scheduler

2 T T2T2] —_]

First in first out (FIFO): no isolation among different flows

Bit-by-bit round robin

b :] Scheduler
N
s b roundl

round2
round3

Generalized Processor Sharing (GPS)

GPS: ideal fairness, but not practical to use

In each round,
Flow 1: w; bits
Flow 2: w, bits
Flow 3: w; bits

Introduction

* Different types of services on the Internet:
* Delay insensitive: email
* Delay sensitive: video and audio conferencing

* Resource isolation is needed to provide quality of service (QoS)
* Flows are served based on their requirements

* Packet Scheduler
* Decide which packet to be transmitted when the output link is idle

Fairness: the number of bits served for
each flow is proportional to their weights.

Wi @\Scheduler
w T 17 >

ws [1

Packetized Queueing Schemes

* Weighted fair queueing (WFQ)
* Deficit round robin (DRR)

Deficit counter

wi=1 [| 120 | 100 Quantum = 100

w,=2 [100] 150 | [200]

150] [o]

Packetized Queueing Schemes

* Weighted fair queueing (WFQ)

Packetized Queueing Schemes

’ Wel.g.hted fair qu?uemg (WFQ) * Deficit round robin (DRR)
* Deficit round robin (DRR)
Deficit counter
Deficit counter et | “-120 " — Quantum =100
wi=1 [[120] 100 Quantum =100 v — : >
- | =% w3 =4 0

Sequence of service: flowl, flow2, flow3, flow3, flow3, flow3

(250 J[100][00][50]
1

4 packets

Problems of DRR: 1) bursty output and 2) short-term unfairness

How to improve DRR? How to improve DRR?

Deficit counter Deficit counter

wy=1 l [[120 | [o] Quantum = 100 wy=1 [120 100 Quantum = 100
wy=2 [100] 150 | [o] wy=2 [100] 150 | [o]
ws=4 [150 J[100][150 | [o] ws=4 [150 J[100][150 | [o]

sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3 sequence of service: flow1,

How to improve DRR? How to improve DRR?

Deficit counter Deficit counter

w =1 [[120] 100 Quantum = 100 wy=1 [[120] 100 Quantum = 100
wy=2 [100] 150 | [(100] wy=2 [100] 150 | [(100]
w=4 [D0 Jio] m0] [0 w=4 [0 Jio] 0] [100]

sequence of service: flow1, flow2 sequence of service: flowl, flow2, flow3

How to improve DRR How to improve DRR

Deficit counter Deficit counter

wi=1 l [[120] 100 Quantum = 100 wy=1 [[120 | 100 Quantum = 100
wy=2 [100] 150 | [100 | wy=2 [100] 150 | [100 |
w;=4 [150 J[100] 150 | [200 | w; =4 [150][100]] (50 |

sequence of service: flow1, flow2, flow3, flow3 sequence of service: flow1, flow2, flow3, flow3

How to improve DRR

Deficit counter

wy=1 [[120] 100 Quantum = 100
wy=2 [100] 150 | [200 |
ws=4 [150 J100] 50

sequence of service: flowl, flow2, flow3, flow3, flow2,

How to improve DRR

Deficit counter

wy=1 [[120 100 Quantum = 100
wy=2 [100 || [50 |
wy=4 [150 J[100] 150

sequence of service: flowl, flow2, flow3, flow3, flow2, flow3

How to improve DRR

Deficit counter

w;=1 l (120] 100
wy=2 [200 [0 |
wy=4 [150][100]] [s0]

sequence of service: flowl, flow2, flow3, flow3, flow2

How to improve DRR

Deficit counter

wy=1 l [120] 100
wy=2 [100] [[50]
wi=4 [150 || [50 |

sequence of service: flowl, flow2, flow3, flow3, flow2, flow3,

Quantum =100

Quantum =100

How to improve DRR How to improve DRR?

Deficit counter Deficit counter
wy=1 [[120] 100 Quantum = 100 wy=1 | [120 | 100 Quantum = 100
wy=2 [100 || [50 | wy=2 [100 || [50 |
wi=4 [150 | [150 | ws=4 | 0
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3
‘ Y - Y
sequence of service: flow1, flow2, flow3, flow3, flow2, flow3, flow3 # service of flow 1: 1 2 packets 1 paLket 2 packets
service of flow 2: 2
service of flow 4: 4 4 consecutive packets from flow 3 = 2 consecutive packets from flow 3

The design goal of Smoothed Round Robin Weight Spread Sequence (WSS)

Weighted Fair Queueing * WSS is a specially designed sequence that distributes the output traffic of
Pro: Short-term fairness each ﬂow evenly‘

Con: high complexity O(# of active flow
& plexity Of) . * A set of WSSs is defined recursively as follows:
Smoothed Round robin

Combine the pros of ' es1—1
. WFQ and round robin Short-term fairness + ok _ (K _ k-1 k-1
Round robin low complexity O(1) st ={ai} =51 ks
Pro: low complexity O(1) * Total number of terms in k" WSS is len;, = 2k — 1
Con: short-term unfairness * WSS Example
- 5% =234,

§2 k S?
+5°={1,21312,141213121512,1,3,1,2,1,4,1,2,13,1,2,1}
eleng=25-1=31

Weight Matrix

* Each flow is assigned a weight in proportion to its reserved rate.

* (r, =64 kb/s, r, =256 kb/s, 3 =512 kb/s, r, =192 kb/s) => (w; =1, w, =4, w3 =8, w, =3)

* Weight of flowy is encoded as binary number (4 = 100;) in weight

matrix

5 Row: weight vector of a flow

Column number

The number of columns = order of WSS

Smoothed Round Robin

* Four flows with fixed packet size (f1, f2, f3, f4) With corresponding
weights (wy, Wy, w3, W)

wv 0
*wp = 1'W2 = 4"W3 = 8'W4 =3 WM = |:3:‘\?:| = (1)
* Corresponding WSS,5% = {1,21,3,1,2,14,1,2,1,3,1,2,1} ij

* Three asynchronous action

¢ Schedule,
Deficit counter
o] w=1 [100 |
Lyna = 100 [0] w=4 (100 [150 | \Sche:duller
[0] w=8 [150 J[100][100][50]
o] w-=3 [100][100][50]]

If weight is 10, then [1 0 1 0] where k=4

o oC

— oo

Smoothed Round Robin Scheduler

* Four flows with fixed packet size (f1, f2, f3, f4) With corresponding

weights (wy, wy, wg, w,) W S
Wy = 1,W2 = 4',W3 = 8,W4 =3 WM = |:VVV_>:| { 1
WVs 0
* Corresponding WSS,5% = @2,1,3,1,2,1,4-,1,2,1,3,1,2,1} WV, \o/ o
scan ¢
* Basic Idea of Smoothed Round Robin (SRR) Scheduler
1. scan WSS sequence term by term
2. When the value of the term is i, columny,_; of the WM is chosen.
3. Inthe column, the scheduler scan the terms from top to bottom.
4. |If the termis 1, the scheduler serve the corresponding flow.
Smoothed Round Robin
. Foqr flows with fixed packet size (f1, f2, f3, f4) with corresponding
weights (wy, wy, wg, w,) wvi1 o\ o
Wy = 1,W2 = 4',W3 = 8,W4 =3 WM = |:VVV_>:| _ 1
WVs 0
* Corresponding WSS,5% = @2,1,3,1,2,1,4-,1,2,1,3,1,2,1} WV, \o/ o
* Three asynchronous action
¢ Schedule,
Deficit counter
[0] w=1 [100]
Lomae = 100 (0] w=4 [100] 150] Scheduler
0] wo=s [0 [wo]mel[se] —
[o] w-=3 [100 |[100][50]]

N
o

o oC

o oC

— oo

— oo

Smoothed Round Robin

* Four flows with fixed packet size (f1, f», f3, f4) with corresponding

weights (wy, wy, wg, w,) wvi1 fo\o o 1
cwi=1Lw,=4w;=8w,=3 WM_[WV_;}_ 100
WVs 000
* Corresponding WSS,5% = @2,1,3,1,2,1,4-,1,2,1,3,1,2,1} WV, No/o 1 1
* Three asynchronous action
¢ Schedule,
Deficit counter
0 wy=1 [100 |
Linax = 100 0 wy=4 [100 | 150 Scheduler
50 wy=8 [150][100] 100]| —
[0] ws=3 [100][100][50]]
Smoothed Round Robin
* Four flows with fixed packet size (f1, f», f3, f4) with corresponding
weights (wy, wy, wg, w,) w1 {0\ o 0 1
cwi=1Lw,=4w;=8w,=3 WM_[WV_;}_ 100
WVs 000
* Corresponding WSS,5% = @2,1,3,1,2,1,4-,1,2,1,3,1,2,1} WV, ho/ 0 1 1
* Three asynchronous action
Del_flow,
Deficit counter
0 wy=1 [100 |
Linax = 100 0 wy=4 [100 | 150 Scheduler
T wes oy | —
[0] wa=3 [100 |[100][50]]

Smoothed Round Robin

* Four flows with fixed packet size (f1, f», f3, f4) with corresponding

weights (wy, wy, ws, wy) Wi, fo\ o o0 1
*wy=1Lw, =4,w3=8w, =3 WM = [37“2} B fl) 8 8}
* Corresponding WSS,5% = @2,1,3,1,2,1,4-,1,2,1,3,1,2,1} WV, ho/ 0 1 1

* Three asynchronous action
Del_flow,

Deficit counter

Lo] w=1 [100 |

Lnax = 100 [0] w=4 [100] 150 || Scheduler
ws=8 o] —
(0] wn=3 [100 [100][50]]

Smoothed Round Robin

* Four flows with fixed packet size (f1, f», f3, f4) with corresponding
weights (wy, Wy, w3, W)

wv; 00 1
cwy=1w,=4w, =3 WM =|WV[=|1 0 0}
; 3 _ wvsl lo 11
* Corresponding WSS,S° = {1,2,1,3,1,2,1}
* Three asynchronous action
Del_flow,
Deficit counter

Lo] w=1 [100 |
Linax = 100 [0] w=4 (100 [150 | Scheduler

(o] w=3 [100 [100][50]

Smoothed Round Robin

* Five flows with fixed packet size (f1, f2, f3, fa, f5) with corresponding
weights (Wy, Wy, W3, Wy, Ws)
*wy =1, w, = 4,w3 = 8,w, = 3,ws = 17 => Corresponding WSS,S>

* Three asynchronous action wv, ad(cj:do 00 1

Add_flow wM = %[2 _lo]? 00 0

Deficit counter WV, 0/0 0 1 1

E] w1 [100 " WVs 00 0 1
100 | w,=4 [100] 150 |

Linax = 100 ws=8 [150 J[200[100]] Scheduler

[0 w=3 (100][100][50]
[o] w=17 [100 |[100][50]

Properties of SRR: Fairness

* Lemma2 (Long-term fairness): For any pair of backlogged flows f and
g, at the end of a round in SRR, then

End of a round
oD _GL06]_
Wr wy |

V¢ (0, t) is the number of times that flowy is visited by SRR from time 0 to ¢

* Corollary1(Short-term fairness): For any pair of backlogged flows f
and g in SRR, we have

|Sf(0, t) _ S4(0, t)| (k + 2)Lax
wr wy | 2min(wys, wy)

S¢(0,) is service received by flows f from time O to t

Properties of SRR

* Work-conserving
« If there are active flows, the SRR always forward it.

* Theorem1: flowy is visited wy times by SRR in a round

* The number of received service by scheduler of each flow is proportional to
its weight

* The number of the occurrences of element i in S¥(1 < i < k) is 2%~¢
* The number of element 3 is in §5 is 2573 = 4

1,2,13)1,2,1,4,1,2,13)1,2,1,5,1,213)1,2,1,4,1,2,13)1,2,1}

Properties of SRR: Scheduling Delay Bound

* Scheduling Delay Bound (Df)

* Scheduling delay: time between queuing packet and transmitting the packet.

* Theorem3: The scheduling delay bound of flowy is
Df < 2Lmax +@2L?ux

* Inverse proportional to the weight, proportional to total number of
active flows
* Cannot provide a strictly rate-proportional delay bound.
* They claim that the delay bound is much better than that of DRR.

N: the number of active flows

Properties of SRR: Scalability

* Different rate ranges can be accommodates by WSS of the same order
by adjusting the rate granularity
* 1 kb/s rate granularity
* 1 Mb/s rate granularity

* SRR can be used for variable bandwidth capacity

* SRR works well regardless of the number of flows.
* Time complexity is O(1)

Evaluation

Simulation tool: NS2

multiple constant bit rate (CBR) flows
@ &>
deog\rea%ﬂows o

2 ftp flows

Properties of SRR: Complexity

* Space complexity
e len, = 2k — 1 becomes very large if k is large number.
* They claim that K;;,q,, = 32 is enough
* It can provide 4 Tb/s rate with granularity of 1 kb/s
« Since (2k)t" WSS can be constructed by using k* WSS and (k + 1)t wss,
the space complexity of SRR is 217 + O (N XKpnax)
* Time Complexity To store K4, double links.
* 0(1) time to choose a packet for transmission

* 0(k) time to add or delete a flow, where k is the order of WSS currently used
by SRR.

Weights of CBR flows are powers of 2

0.25 WG 04
035
& =
> 2o
)
& &
b $ 02
El o
] 2
$ $°
% god
g b h é 01
= SRR better than WFQ 005 SRR worse than WFQ
0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Flow rate (kbps) Flow rate (kbps)
(a) (b)

Fig. 4. (a) Mean delays of the CBR flows. (b) Maximum delays of the CBR flows. The weights of the CBR flows are randomly chosen.

Weights of CBR flows are randomly chosen Weights of CBR flows are equal

TABLE III
025 WEG —o— 04 WFQ —o— MAXIMUM AND MEAN DELAYS OF THE 10 CBR FLOWS WITH RATE 100 kb/s
SRR —+—
DRR —&— 0.35
I — WFQ SRR (DRR)
= 02 O
% 2z 03 Flow 7{1)((m\éx Mean (ms) Yfax (m§\ Mean (ms)
S ° number
< 015 0%
] 5 02 1 272 23.7 31.2 222
i<} ¥
‘.é‘ 01 5 015 2 278 243 / 316 \22.7
7] c
c —a ° 3 28.6 24.9 31.9 3.2
é 005 SRR better than WFQ é 0.1 SRR worse than WFQ n { 3 \25 = { 250 =
. . 3. .
005 ((;
5 l 29.7 26.1 l 327 ’z4.s
0 0 50 100 150 200 250 300 350 0 0 50 100 150 200 250 300 350 6 \ 304 26.7 \ 33.1 F5.3
Flow rate (kbps) Flow rate (kbps) ~ —
(a) (b) 7 30.7 273 \ 333 /25.8
8 314 28.0 33.8 26.2
Fig. 5. (a) Mean delays of the CBR flows. (b) Maximum delays of the CBR flows. The weights of the CBR flows are randomly chosen.
9 1.8 28.7 34.3 26.7
10 3*9\7 293 3&8 273

Discussion

* Weakness 5@ _$0.0| _ (k+2)lmax
| wr wy | 2min(wy, wy)

* The paper is not well written
* Bad worst-case fairness
* Ignore time overhead to construct high order WSS (32”‘ WSS) using low

order (16" & 17t WSS) cox e e o o
1 al =
re(pllace af with Sht1; O(Lenj)
elze
; = af + ks
* Extension e

« Single scheduler to multi-scheduler fairness?
* Singe resource (bandwidth) to multi-resource fairness?
* Queue-independent fairness to queue-dependent fairness?

