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Big Data

The volume of data businesses want to make sense of is increasing

Increasing variety of sources
• Web, mobile, wearables, vehicles, scientific, …

Cheaper disks, SSDs, and memory

Stalling processor speeds

Big Datacenters for Massive Parallelism
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Data-Parallel Applications

Multi-stage dataflow
• Computation interleaved with communication

Computation Stage (e.g., Map, Reduce)
• Distributed across many machines
• Tasks run in parallel

Communication Stage (e.g., Shuffle)
• Between successive computation stages Map Stage

Reduce Stage

A communication stage cannot complete 
until all the data have been transferred



Communication is Crucial

Performance

As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

1. Based on a month-long trace with 320,000 jobs and 150 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.

Facebook jobs spend ~25% of runtime on average in intermediate comm.1

Faster
Communication

Stages:
Networking

Approach
“Configuration should be handled 

at the system level”

Flow
Transfers data from a source 
to a destination

Independent unit of allocation, 
sharing, load balancing, and/or
prioritization
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Independent flows cannot capture the collective communication 
behavior common in data-parallel applications
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Solutions focusing on flow 
completion time cannot further 

decrease the shuffle completion time 

Improve Application-Level Performance1
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1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011.

Slow down faster 
flows to accelerate

slower flows
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Data-Proportional Allocation

Coflow Communication abstraction for 
data-parallel applications to 
express their performance goals

1. Minimize completion times,
2. Meet deadlines, or 
3. Perform fair allocation.



Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

Single Flow

How to 
schedule 
coflows 
online …

… for faster
#1 completion

of coflows?

… to meet
#2 more

deadlines?

… for fair
#3 allocation of

the network?
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Datacenter

Varys Enables coflows in 
data-intensive clusters

1. Coflow Scheduler Faster, application-aware data transfers 
throughout the network

2. Global Coordination Consistent calculation and enforcement of 
scheduler decisions

3. The Coflow API Decouples network optimizations from 
applications, relieving developers and end users

1. Efficient Coflow Scheduling with Varys, SIGCOMM’2014.

1
Communication abstraction for 
data-parallel applications to 
express their performance goalsCoflow

1. The size of each flow, 
2. The total number of flows, and 
3. The endpoints of individual flows.



Benefits of
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1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.
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Concurrent Open Shop Scheduling1

• Examples include job scheduling and 
caching blocks

• Solutions use a ordering heuristic
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1. A Note on the Complexity of the Concurrent Open Shop Problem, Journal of Scheduling, 9(4):389–396, 2006
1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

Inter-Coflow Scheduling is NP-Hard
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Concurrent Open Shop Scheduling 
with Coupled Resources
• Examples include job scheduling and 

caching blocks
• Solutions use a ordering heuristic
• Consider matching constraints
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is NP-Hard

Varys Employs a two-step 
algorithm to minimize 
coflow completion times

1. Ordering heuristic Keep an ordered list of coflows to be scheduled, 
preempting if needed

2. Allocation algorithm Allocates minimum required resources to each coflow 
to finish in minimum time
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Allocation Algorithm

A coflow 
cannot finish 
before its 
very last flow

Finishing flows 
faster than the 
bottleneck cannot 
decrease a coflow’s 
completion time

Allocate minimum 
flow rates such 
that all flows of a 
coflow finish 
together on time

Varys Enables coflows in 
data-intensive clusters

1. Coflow Scheduler Faster, application-aware data transfers 
throughout the network

2. Global Coordination Consistent calculation and enforcement of 
scheduler decisions

3. The Coflow API Decouples network optimizations from 
applications, relieving developers and end users
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Varys Architecture

Centralized master-slave architecture 
• Applications use a client library to 

communicate with the master
Actual timing and rates are determined 
by the coflow scheduler

Put Get Reg

Varys Master

Coflow Scheduler

Topology
Monitor

Usage
Estimator

Network Interface 

(Distributed) File System

f
Comp. Tasks calling
Varys Client Library

TaskName

Sender Receiver Driver

Varys 
Daemon

Varys 
Daemon

Varys 
Daemon

1. Download from http://varys.net

Varys Enables coflows in 
data-intensive clusters

1. Coflow Scheduler Faster, application-aware data transfers 
throughout the network

2. Global Coordination Consistent calculation and enforcement of 
scheduler decisions

3. The Coflow API Decouples network optimizations from 
applications, relieving developers and end users

The Coflow API

• register

• put

• get

• unregister
mappers

reducer
s

sh
uf

fle

driver 
(JobTracker)

br
oa

dc
as

t

@mapper
b.get(id)
…

@reducer
s.get(idsl)
…

@driver
b register(BROADCAST)

id b.put(content)
…

ids1       s.put(content)
…

s.unregister()
b.unregister()

1. NO changes to user jobs
2. NO storage management

s register(SHUFFLE)

1. Does it improve performance?
2. Can it beat non-preemptive solutions?
3. Do we really need coordination? YES

Evaluation
A 3000-machine trace-driven 
simulation matched against a 
100-machine EC2 deployment



Better than Per-Flow Fairness

Sim.

EC2 1.85X 1.25X

3.21X 1.11X

Comm. Improv. Job Improv.

2.50X3.16X

3.39X4.86X

Comm. Heavy
Better than Per-Flow Fairness

Sim.

EC2 1.85X 1.25X

3.21X 1.11X

Comm. Improv. Job Improv.

Preemption is Necessary [Sim.]

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011
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Lack of Coordination Hurts [Sim.]

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011
2. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012
3. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013
4. Decentralized Task-Aware Scheduling for Data Center Networks, SIGCOMM’2014

Smallest-flow-first (per-flow priorities)
• Minimizes flow completion time

FIFO-LM4 performs decentralized 
coflow scheduling

• Suffers due to local decisions
• Works well for small, similar coflows
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Coflow

1. The size of each flow, 
2. The total number of flows, and 
3. The endpoints of individual flows.

! Pipelining between stages
! Speculative executions
! Task failures and restarts

Communication abstraction for 
data-parallel applications to 
express their performance goals

How to Perform Coflow Scheduling 
Without Complete Knowledge?

1. Current size is a good predictor of actual size 
2. Set priority that decreases by how much a coflow has sent
3. Discretize priority levels to blend in FIFO within each level

Aalo Efficiently schedules 
coflows without
complete and future 
information

1. Efficient Coflow Scheduling Without Prior Knowledge, SIGCOMM’2015

1



How to Perform Coflow Scheduling 
Without Changing the Applications?

1. Learn coflows online from traffic patterns
2. Error-tolerant scheduling to survive learning errors
3. Limited to jobs with single coflows

CODA Efficiently schedules 
coflows without
changing applications*

1. CODA: Toward Automatically Identifying and Scheduling Coflows in the Dark, SIGCOMM’2016

1

What About Fair Coflow Scheduling? 

1. Multi-resource fairness with high utilization
2. Fairness-utilization tradeoff results in prisoner’s dilemma

HUG Fairly schedules coflows 
instead of trying to 
minimize CCT

1. HUG: Multi-Resource Fairness for Correlated and Elastic Demands, NSDI’2016

1



NetworkingSystems MIND THE GAPME

Better capture application-level performance goals using coflows

Coflows improve application-level performance and usability
• Extends networking and scheduling literature

Coordination – even if not free – is worth paying for in many cases

mosharaf@umich.edu
http://www.mosharaf.com/

Improve Flow Completion Times
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1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.
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Traffic Sources
1. Ingest and replicate new data
2. Read input from remote machines, 

when needed
3. Transfer intermediate data
4. Write and replicate output
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Performance
Facebook jobs spend ~25% of runtime on average in intermediate comm.

Month-long trace from a 3000-
machine MapReduce production 
cluster at Facebook 

320,000 jobs
150 Million tasks
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Theoretical Results

Structure of optimal schedules
• Permutation schedules might not always lead to the optimal solution

Approximation ratio of COSS-CR
• Polynomial-time algorithm with constant approximation ratio (       )1

The need for coordination
• Fully decentralized schedulers can perform arbitrarily worse than the optimal

1. Due to Zhen Qiu, Cliff Stein, and Yuan Zhong from the Department of Industrial Engineering and Operations Research, Columbia University, 2014

64
3

1. Admission control Do not admit any coflows that cannot be completed 
within deadline without violating existing deadlines

2. Allocation algorithm Allocate minimum required resources to each coflow to 
finish them at their deadlines

Varys Employs a two-step 
algorithm to support 
coflow deadlines



More Predictable
EC2 DeploymentFacebook Trace Simulation

Met Deadline Not Admitted Missed Deadline

1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012
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Experimental Methodology

Varys deployment in EC2 
• 100 m2.4xlarge machines
• Each machine has 8 CPU cores, 68.4 GB memory, and 1 Gbps NIC
• ~900 Mbps/machine during all-to-all communication

Trace-driven simulation
• Detailed replay of a day-long Facebook trace (circa October 2010)
• 3000-machine,150-rack cluster with 10:1 oversubscription


