
Coflow
Recent Advances and What’s Next?

Mosharaf Chowdhury

Big Data

The volume of data businesses want to make sense of is increasing

Increasing variety of sources
• Web, mobile, wearables, vehicles, scientific, …

Cheaper disks, SSDs, and memory

Stalling processor speeds

Big Datacenters for Massive Parallelism

2005 2010 2015

MapReduce Hadoop

Spark

HiveDryad

DryadLINQ

Spark-Streaming

GraphXGraphLabPregel

Storm

Dremel

BlinkDB TensorFlow

Data-Parallel Applications

Multi-stage dataflow
• Computation interleaved with communication

Computation Stage (e.g., Map, Reduce)
• Distributed across many machines
• Tasks run in parallel

Communication Stage (e.g., Shuffle)
• Between successive computation stages Map Stage

Reduce Stage

A communication stage cannot complete
until all the data have been transferred

Communication is Crucial

Performance

As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

1. Based on a month-long trace with 320,000 jobs and 150 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.

Facebook jobs spend ~25% of runtime on average in intermediate comm.1

Faster
Communication

Stages:
Networking

Approach
“Configuration should be handled

at the system level”

Flow
Transfers data from a source
to a destination

Independent unit of allocation,
sharing, load balancing, and/or
prioritization

Existing Solutions

GPS RED

WFQ CSFQ

ECN XCP D2TCPDCTCP

PDQD3

FCP

DeTail pFabric

2005 2010 20151980s 1990s 2000s

RCP

Per-Flow Fairness Flow Completion Time

Independent flows cannot capture the collective communication
behavior common in data-parallel applications

Datacenter
Network

1

2

3

1

2

3

Why Do They Fall Short?
r1 r2

s1 s2 s3

r1 r2

s1 s2 s3

Input Links Output Links

Why Do They Fall Short?
r1 r2

s1 s2 s3

r1 r2

s1 s2 s3
Datacenter
Network

1

2

3

1

2

3

r1

r2

s1

s2

s3

Why Do They Fall Short?

Datacenter
Network

time
2 4 6

Link to r2

Link to r1

Per-Flow Fair Sharing
Shuffle

Completion
Time = 5

Avg. Flow
Completion
Time = 3.66

3
3

5

3
3

5

s1

s2

s3

r1

r2

1

2

3

1

2

3

Solutions focusing on flow
completion time cannot further

decrease the shuffle completion time

Improve Application-Level Performance1

Datacenter
Network

time
2 4 6

Link to r2

Link to r1

Per-Flow Fair Sharing
Shuffle

Completion
Time = 5

Avg. Flow
Completion
Time = 3.66

3
3

5

3
3

5

s1

s2

s3

r1

r2

1

2

3

1

2

3

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011.

Slow down faster
flows to accelerate

slower flows

time
2 4 6

Link to r2

Link to r1

Per-Flow Fair Sharing
Shuffle

Completion
Time = 4

Avg. Flow
Completion
Time = 4

4
4
4

4
4
4

Data-Proportional Allocation

Coflow Communication abstraction for
data-parallel applications to
express their performance goals

1. Minimize completion times,
2. Meet deadlines, or
3. Perform fair allocation.

Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

Single Flow

How to
schedule
coflows
online …

… for faster
#1 completion

of coflows?

… to meet
#2 more

deadlines?

… for fair
#3 allocation of

the network?

1

2

N

1

2

N

.

.

.

.

.

.

Datacenter

Varys Enables coflows in
data-intensive clusters

1. Coflow Scheduler Faster, application-aware data transfers
throughout the network

2. Global Coordination Consistent calculation and enforcement of
scheduler decisions

3. The Coflow API Decouples network optimizations from
applications, relieving developers and end users

1. Efficient Coflow Scheduling with Varys, SIGCOMM’2014.

1
Communication abstraction for
data-parallel applications to
express their performance goalsCoflow

1. The size of each flow,
2. The total number of flows, and
3. The endpoints of individual flows.

Benefits of

time2 4 6 time2 4 6 time2 4 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Coflow1 comp. time = 5
Coflow2 comp. time = 6

Fair Sharing Smallest-Flow First1,2 The Optimal

Coflow1 comp. time = 3
Coflow2 comp. time = 6

L1

L2

L1

L2

L1

L2

1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

Link 1

Link 2

3 Units

Coflow 1

6 Units

Coflow 2

2 Units

Inter-Coflow Scheduling

time2 4 6

Coflow1 comp. time = 6
Coflow2 comp. time = 6

Fair Sharing

L1

L2

time2 4 6

Coflow1 comp. time = 6
Coflow2 comp. time = 6

Flow-level Prioritization1

L1

L2

time2 4 6

The Optimal

Coflow1 comp. time = 3
Coflow2 comp. time = 6

L1

L2

Concurrent Open Shop Scheduling1

• Examples include job scheduling and
caching blocks

• Solutions use a ordering heuristic

Link 1

Link 2

3 Units

Coflow 1

6 Units

Coflow 2

2 Units

1. A Note on the Complexity of the Concurrent Open Shop Problem, Journal of Scheduling, 9(4):389–396, 2006
1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

Inter-Coflow Scheduling is NP-Hard

Inter-Coflow Scheduling

1

2

3

1

2

3

Input Links Output Links

Datacenter

Concurrent Open Shop Scheduling
with Coupled Resources
• Examples include job scheduling and

caching blocks
• Solutions use a ordering heuristic
• Consider matching constraints

Link 1

Link 2

3 Units

Coflow 1

6 Units

Coflow 2

2 Units

3

6

2

is NP-Hard

Varys Employs a two-step
algorithm to minimize
coflow completion times

1. Ordering heuristic Keep an ordered list of coflows to be scheduled,
preempting if needed

2. Allocation algorithm Allocates minimum required resources to each coflow
to finish in minimum time

Ordering Heuristic

Datacenter
13

O3

O2

Time

O1

C2 endsC1 ends

3

C1 C2 C3

Length 3 5 6

Shortest-First
19

C3 ends

(Total CCT = 35)

1

2

3

1

2

3

3

3

3

6

5

5

Ordering Heuristic

Datacenter

1

2

3

1

2

3
13

O3

O2

Time

O1

C2 endsC1 ends

3

Shortest-First
19

C3 ends

16

O3

O2

Time

O1

C2 ends C1 ends

19

Narrowest-First

6

C3 ends

C1 C2 C3

Width 3 2 1

3

3

3

6

5

5

(Total CCT = 41)
(35)

Ordering Heuristic

Datacenter

1

2

3

1

2

3
16

O3

O2

Time

O1

C2 ends C1 ends

19

Narrowest-First

6

C3 ends

19

O3

O2

Time

O1

C2 endsC1 ends

9

Smallest-First

6

C3 ends
C1 C2 C3

Size 9 10 6

3

3

3

6

5

5

(41)

(34)

13

O3

O2

Time

O1

C2 endsC1 ends

3

Shortest-First
19

C3 ends

(35)

Ordering Heuristic

Datacenter

1

2

3

1

2

3

19

O3

O2

Time

O1

C2 endsC1 ends

9

Smallest-First

6

C3 ends

19

O3

O2

Time

O1

C2 endsC1 ends

3

Smallest-Bottleneck
9

C3 ends
C1 C2 C3

Bottleneck 3 10 6

3

3

3

6

5

5

(34) (31)

16

O3

O2

Time

O1

C2 ends C1 ends

19

Narrowest-First

6

C3 ends

(41)
13

O3

O2

Time

O1

C2 endsC1 ends

3

Shortest-First
19

C3 ends

(35)

Allocation Algorithm

A coflow
cannot finish
before its
very last flow

Finishing flows
faster than the
bottleneck cannot
decrease a coflow’s
completion time

Allocate minimum
flow rates such
that all flows of a
coflow finish
together on time

Varys Enables coflows in
data-intensive clusters

1. Coflow Scheduler Faster, application-aware data transfers
throughout the network

2. Global Coordination Consistent calculation and enforcement of
scheduler decisions

3. The Coflow API Decouples network optimizations from
applications, relieving developers and end users

The Need for Coordination

1

2

3

1

2

3

4

3
O3

O2

Time

O1

C2 endsC1 ends

4

C1 C2

Bottleneck 4 5

Scheduling
with

Coordination

5
4 9

(Total CCT = 13)

The Need for Coordination

1

2

3

1

2

3

O3

O2

Time

O1

C2 endsC1 ends

4

Scheduling
with

Coordination

9

O3

O2

Time

O1

C2 endsC1 ends

7

Scheduling
without

Coordination

12

Uncoordinated local decisions interleave coflows, hurting performance

4

3

5
4

(Total CCT = 13) (Total CCT = 19)

Varys Architecture

Centralized master-slave architecture
• Applications use a client library to

communicate with the master
Actual timing and rates are determined
by the coflow scheduler

Put Get Reg

Varys Master

Coflow Scheduler

Topology
Monitor

Usage
Estimator

Network Interface

(Distributed) File System

f
Comp. Tasks calling
Varys Client Library

TaskName

Sender Receiver Driver

Varys
Daemon

Varys
Daemon

Varys
Daemon

1. Download from http://varys.net

Varys Enables coflows in
data-intensive clusters

1. Coflow Scheduler Faster, application-aware data transfers
throughout the network

2. Global Coordination Consistent calculation and enforcement of
scheduler decisions

3. The Coflow API Decouples network optimizations from
applications, relieving developers and end users

The Coflow API

• register

• put

• get

• unregister
mappers

reducer
s

sh
uf

fle

driver
(JobTracker)

br
oa

dc
as

t

@mapper
b.get(id)
…

@reducer
s.get(idsl)
…

@driver
b register(BROADCAST)

id b.put(content)
…

ids1 s.put(content)
…

s.unregister()
b.unregister()

1. NO changes to user jobs
2. NO storage management

s register(SHUFFLE)

1. Does it improve performance?
2. Can it beat non-preemptive solutions?
3. Do we really need coordination? YES

Evaluation
A 3000-machine trace-driven
simulation matched against a
100-machine EC2 deployment

Better than Per-Flow Fairness

Sim.

EC2 1.85X 1.25X

3.21X 1.11X

Comm. Improv. Job Improv.

2.50X3.16X

3.39X4.86X

Comm. Heavy
Better than Per-Flow Fairness

Sim.

EC2 1.85X 1.25X

3.21X 1.11X

Comm. Improv. Job Improv.

Preemption is Necessary [Sim.]

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011

1.00
3.21

5.65 5.53

22.07

1.10

0

5

10

15

20

25

Varys Fair FIFO Priority FIFO-LM NC

O
ve

rh
ea

d
O

ve
r V

ar
ys

Varys Varys1 4Per-Flow
Fairness

Per-Flow
Prioritization

2,3

What
About

Starvation

NO

Preemption is Necessary [Sim.]

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011

1.00
3.21

5.65 5.53

22.07

1.10

0

5

10

15

20

25

Varys Fair FIFO Priority FIFO-LM NC

O
ve

rh
ea

d
O

ve
r V

ar
ys

Varys Varys1 4Per-Flow
Fairness

Per-Flow
Prioritization

2,3

What
About

Starvation

NO

Lack of Coordination Hurts [Sim.]

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011
2. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012
3. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013
4. Decentralized Task-Aware Scheduling for Data Center Networks, SIGCOMM’2014

Smallest-flow-first (per-flow priorities)
• Minimizes flow completion time

FIFO-LM4 performs decentralized
coflow scheduling

• Suffers due to local decisions
• Works well for small, similar coflows

1.00
3.21

5.65 5.53

22.07

1.10

0

5

10

15

20

25

Varys Fair FIFO Priority FIFO-LM NC

O
ve

rh
ea

d
O

ve
r V

ar
ys

Varys Varys1 4Per-Flow
Fairness

Per-Flow
Prioritization

2,3

Coflow

1. The size of each flow,
2. The total number of flows, and
3. The endpoints of individual flows.

! Pipelining between stages
! Speculative executions
! Task failures and restarts

Communication abstraction for
data-parallel applications to
express their performance goals

How to Perform Coflow Scheduling
Without Complete Knowledge?

1. Current size is a good predictor of actual size
2. Set priority that decreases by how much a coflow has sent
3. Discretize priority levels to blend in FIFO within each level

Aalo Efficiently schedules
coflows without
complete and future
information

1. Efficient Coflow Scheduling Without Prior Knowledge, SIGCOMM’2015

1

How to Perform Coflow Scheduling
Without Changing the Applications?

1. Learn coflows online from traffic patterns
2. Error-tolerant scheduling to survive learning errors
3. Limited to jobs with single coflows

CODA Efficiently schedules
coflows without
changing applications*

1. CODA: Toward Automatically Identifying and Scheduling Coflows in the Dark, SIGCOMM’2016

1

What About Fair Coflow Scheduling?

1. Multi-resource fairness with high utilization
2. Fairness-utilization tradeoff results in prisoner’s dilemma

HUG Fairly schedules coflows
instead of trying to
minimize CCT

1. HUG: Multi-Resource Fairness for Correlated and Elastic Demands, NSDI’2016

1

NetworkingSystems MIND THE GAPME

Better capture application-level performance goals using coflows

Coflows improve application-level performance and usability
• Extends networking and scheduling literature

Coordination – even if not free – is worth paying for in many cases

mosharaf@umich.edu
http://www.mosharaf.com/

Improve Flow Completion Times

Datacenter

1

2

3

1

2

3

r1

r2

s1

s2

s3

time
2 4 6

Link to r2

Link to r1

Per-Flow Fair Sharing
Shuffle

Completion
Time = 5

Avg. Flow
Completion
Time = 3.66

1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.

Smallest-Flow First1,2

time
2 4 6

Link to r2

Link to r1

Shuffle
Completion
Time = 6

Avg. Flow
Completion
Time = 2.66

1

1 6

42

2

0
0.2
0.4
0.6
0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f C

of
lo

w
s

Coflow Length (Bytes)

0
0.2
0.4
0.6
0.8

1

1.E+00 1.E+04 1.E+08

Fr
ac

. o
f C

of
lo

w
s

Coflow Width (Number of Flows)

0
0.2
0.4
0.6
0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f C

of
lo

w
s

Coflow Size (Bytes)

0
0.2
0.4
0.6
0.8

1

1.E+06 1.E+08 1.E+10 1.E+12 1.E+14

Fr
ac

. o
f C

of
lo

w
s

Coflow Bottleneck Size (Bytes)

Distributions of Coflow Characteristics

Traffic Sources
1. Ingest and replicate new data
2. Read input from remote machines,

when needed
3. Transfer intermediate data
4. Write and replicate output

30

1446

10Percentage of
Traffic by
Category at
Facebook

Distribution of Shuffle Durations

Performance
Facebook jobs spend ~25% of runtime on average in intermediate comm.

Month-long trace from a 3000-
machine MapReduce production
cluster at Facebook

320,000 jobs
150 Million tasks

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 Jo

bs

Fraction of Runtime Spent in Shuffle

Theoretical Results

Structure of optimal schedules
• Permutation schedules might not always lead to the optimal solution

Approximation ratio of COSS-CR
• Polynomial-time algorithm with constant approximation ratio ()1

The need for coordination
• Fully decentralized schedulers can perform arbitrarily worse than the optimal

1. Due to Zhen Qiu, Cliff Stein, and Yuan Zhong from the Department of Industrial Engineering and Operations Research, Columbia University, 2014

64
3

1. Admission control Do not admit any coflows that cannot be completed
within deadline without violating existing deadlines

2. Allocation algorithm Allocate minimum required resources to each coflow to
finish them at their deadlines

Varys Employs a two-step
algorithm to support
coflow deadlines

More Predictable
EC2 DeploymentFacebook Trace Simulation

Met Deadline Not Admitted Missed Deadline

1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012

0

25

50

75

100

Varys Fair EDF

%
 o

f C
of

lo
w

s

Varys 1

(Earliest-Deadline First)

0

25

50

75

100

Varys Fair

%
 o

f C
of

lo
w

s

Varys

Experimental Methodology

Varys deployment in EC2
• 100 m2.4xlarge machines
• Each machine has 8 CPU cores, 68.4 GB memory, and 1 Gbps NIC
• ~900 Mbps/machine during all-to-all communication

Trace-driven simulation
• Detailed replay of a day-long Facebook trace (circa October 2010)
• 3000-machine,150-rack cluster with 10:1 oversubscription

