Yi Sun et al. "CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction", in SIGCOMM 2016

Taeju Park, Yibo Pi

Introduction

- Bitrate selection and adaptation is critical to ensure good quality-of-experience (QoE) for Internet video.
 - Initial startup latency
 - The amount of rebuffering during the session
 - Average bitrate of the rendered video

Need better throughput prediction

- Accurate throughput prediction helps two aspects.
 - Initial bitrate selection
 - Higher bitrate with no rebuffering or short startup time.
 - Midstream bitrate adaptation
 - When the error is <= 20%, N-QoE of MPC is close to optimal >85%.

Dataset

- Throughput variability across sessions and within a session
- Use proprietary dataset
 - iQIYI, leading commercial video provider in China (over 219 million users)
 - Over 20 million sessions covering 3 million unique client IPs and 18 server IPs over 8 days
 - The client spans 736 cities and 87 ISPs in China.
 - Within each session, they have recorded the average throughput for each 6 second "epoch"

Observations from dataset

• (Observation 1) There is a significant amount of throughput variability within a video session

Observations from dataset

• (Observation 2) The evolution of the throughput within a session exhibits stateful/persistent characteristics.

Observation from dataset

• (Observation 3) Sessions with similar features exhibit similar initial throughput and evolution pattern.

Observations from dataset

• (Observation 4) The relationship between session features and throughput is quite complex.

Figure 6: The throughput variation of sessions matching all and a subset of three features: X=*ISP*, Y=*City*, Z=*Server*.

CS2P Workflow

Session Clustering

- How to cluster similar session?
 - \circ ~ Choice the key features and time range which minimize prediction error

Modeling behavior

- HMM-based predictor capturing the state-transition behavior in each cluster.
 - Throughput depends on the hidden state (e.g, the number of users at a bottleneck link)
 - Given the hidden state, assume pdf of throughput is Gaussian $W_t|X_t = x \sim N(\mu_x, \sigma_x^2)$
 - Learn HMM parameters (Initial probability, transition probability, emission probability) through expectation-maximization(EM) algorithm.

Online prediction

- A new session is mapped to the most similar session in the training dataset
- Throughput prediction for initial epoch

 $\underset{\text{throughput}}{\text{Predicted}} \ \hat{W}_1 = Median(Agg(M_s^*,s))$

• Throughput prediction for midstream epoch

Bitrate Selection

Midstream bitrate selection

- Initial bitrate selection
 - MPC cannot be used used due to lack of current bitrate
 - Highest bitrate below predicted initial throughput

Player Integration

- How to use CS2P?
 - Server-side solution
 - Centralized server computes bitrates for each video session
 - Advantage: simple, no modifications on the clients
 - **Disadvantage:** the server is a potential bottleneck
 - Client-side solution
 - Each client downloads their own HMM and initial throughput
 - Advantage: quickly detect performance change and respond
 - Disadvantage: clients need to maintain HMM

Experiment Implementation

Evaluation: Data-driven simulation and pilot deployment

Data-driven simulation

- History-based predictors $H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}} = \left(\frac{\sum_{i=1}^n x_i^{-1}}{n}\right)^{-1}$ LS (Last Sample)
 HM (Harmonic mean) Baseline solutions
 - - AR (auto regression)
 - Machine-learning predictors
 - SVR (Support vector regression)
 - GBR (Gradient Boosting Regression)

Data-driven simulation

- Model configuration
 - Cross-validation for design parameter selection
 - Divide sessions in a day into 4 subsets
 - 3 subsets train and 1 subset test
 - Resulting parameters
 - 6-state HMM
 - group size (# of sessions in a cluster) 100
 - Limitation
 - Throughput data from fixed bitrate video download
- Video parameters: video length (260s) and 5 bitrate levels

Improvement in Prediction Accuracy

Improvement in prediction accuracy

Impact of look-ahead horizon

Initial chunk: 61% sessions have >90% QoE Midstream chunk: 81% sessions have > 90% QoE

Improvement in QoE: Overall QoE

 Table 3: Comparing AvgBitrate vs. GoodRatio among different predictors.

Figure 11: Tradeoff between AvgBitrate and GoodRatio.

Pareto frontier

0.9

Good Ratio

AvgBitrate: average value of selected birates GoodRatio: percentage of chunks with no re-buffering

Sensitivity Analysis

Generally independent of measurement granularity??

Pilot Deployment

- Evaluate in the wild
- Scale: 200+ client video players from 5 university campuses

Metrics	vs. HM+MPC	vs. BB
AvgBitrate	10.9%	9.3%
GoodRatio	2.5%	17.6%
Bitrate Variability	-2.3%	5.6%
Startup Delay	0.4%	-3.0%
Overall QoE	3.2%	14.0%

Table 4: QoE improvement by CS2P +MPC compared with HM+MPC and BB in a real-world experiment in 4 cities of China.

Pilot Deployment

- Deployment in video on demand (VoD) service
- Estimate total rebuffering time at the beginning of fixed-bitrate sessions

Figure 13: Prediction error on total rebuffering time.

Discussion

- Weakness
 - States from the training set cannot capture unexpected situations
 - Training set only contains limited situations
 - High complexity of feature selection
 - 6 static features + large amount of possible window sizes
- Extensions
 - Clustering clients based on other features (e.g., throughput)
 - Attributes (city, ISP) of clients may be wrong
 - \circ $\;$ Other methods for choosing initial throughput
 - Instead of median, how about other models, e.g., regression?