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Need better throughput prediction

e Accurate throughput prediction helps two aspects.

Initial bitrate selection
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m  Higher bitrate with no rebuffering or short startup time.

o  Midstream bitrate adaptation o

m When the error is <= 20%, N-QoE of MPC is close to optimal >85%. 5
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Introduction

Bitrate selection and adaptation is critical to ensure good quality-of-experience
(QoE) for Internet video.

Initial startup latency
The amount of rebuffering during the session
Average bitrate of the rendered video
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Dataset

Throughput variability across sessions and within a session

proprietary dataset
iQlYI, leading commercial video provider in China (over 219 million users)

Over 20 million sessions covering 3 million unique client IPs and 18 server IPs over 8 days
The client spans 736 cities and 87 ISPs in China.

Within each session, they have recorded the average throughput for each 6 second “epoch”
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Observations from dataset

o (Observation 1) There is a significant amount of throughput variability within a

video session

Observation from dataset

e (Observation 3) Sessions with similar features exhibit similar initial throughput
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Observations from dataset

o (Observation 2) The evolution of the throughput within a session exhibits
stateful/persistent characteristics.
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(a) An example session (b) Throughput variation at
two consecutive epochs

Observations from dataset

e (Observation 4) The relationship between session features and throughput is
quite complex.
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Figure 6: The throughput variation of sessions match-

ing all and a subset of three features: X=ISP, Y=City,
Z=Server.
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CS2P Workflow
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Figure 1: Overall workflow of CS2P.

Modeling behavior

e HMM-based predictor capturing the state-transition behavior in each cluster.
o Throughput depends on the hidden state (e.g, the number of users at a bottleneck link)
o Given the hidden state, assume pdf of throughput is Gaussian  W;|X; = @ ~ N(jz, 02)

o Learn HMM parameters (Initial probability, transition probability, emission probability) through

expectation-maximization(EM) algorithm.
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Figure 7: Overview of HMM model.
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Figure 8: Example of hidden-markov model of session
clusters.

Session Clustering

e How to cluster similar session?

o Choice the key features and time range which minimize prediction error

Test all possible feature set

Trainingset

P
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N + Time range (e.g, 5, 10 min ~~ 10 hr)

Table 2 Summary of stathtcsfrom the datet.
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Online prediction

A new session is mapped to the most similar session in the training dataset
Throughput prediction for initial epoch

Predited vi7 — Median(Agg(M?, s))

throughput

e Throughput prediction for midstream epoch
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Figure 7: Overview of HMM model.
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Bitrate Selection

e Midstream bitrate selection

1. Throughput prediction i
2. Current bitrate — Model Predictive —————— Next bitrate

3. Buffer occupancy Control (MPC)

Key idea: maximize quality of experience (QoE)

e |[nitial bitrate selection
o MPC cannot be used used due to lack of current bitrate
o Highest bitrate below predicted initial throughput

Experiment Implementation

1. Send a POST request for throughput prediction

Video player Server
2. Send back predicted throughput

Multiple bitrate algorithms:

1. MPC,

2. Rate-based (RB)

3. Buffer-based (RB) ------ BBA

Session clustering
HMM model building
Online throughput prediction

Evaluation:
Data-driven simulation and pilot deployment

Player Integration

« How to use CS2P?
o Server-side solution

m Centralized server computes bitrates for each video session

m Advantage: simple, no modifications on the clients

m Disadvantage: the server is a potential bottleneck

o Client-side solution

m Each client downloads their own HMM and initial throughput
m Advantage: quickly detect performance change and respond
m Disadvantage: clients need to maintain HMM

Data-driven simulation

e Baseline solutions . . g:lw;l
o History-based predictors 7= Ftmtotn el |
m LS (Last Sample) / =
m HM (Harmonic mean) P
m AR (auto regression) ———— Xt =c+ Z‘PiXt*i té

o Machine-learning predictors
m SVR (Support vector regression)
m GBR (Gradient Boosting Regression)

i=1



Data-driven simulation

e Model configuration
o Cross-validation for design parameter selection
m Divide sessions in a day into 4 subsets
m 3 subsets train and 1 subset test
m Resulting parameters
e G6-state HMM
e group size (# of sessions in a cluster) 100
o Limitation
m Throughput data from fixed bitrate video download
e Video parameters: video length (260s) and 5 bitrate levels

Improvement in prediction accuracy

Impact of look-ahead horizon
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CS2P: median error < 20%
Others: median error > 35%

CS2P: 75th percentile < 20%
Others: 75th percentile > 30%

Improvement in QoE: Overall QoE
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Initial chunk: 61% sessions have >90% QoE
Midstream chunk: 81% sessions have > 90% QoE



Improvement in QoE: Overall QoE

Initial Midstream

AvgBitrate| GoodRatio| AvgBitrate| GoodRatio
AR [ NULL NULL 3.31Mbps | 96.6%
LS NULL NULL 4.08Mbps | 93.2%
HM | NULL NULL 3.80Mbps | 97.2%
CFA | 1.93Mbps | 87.9% NULL NULL
SVR | 1.52Mbps | 81.4% 4.64Mbps | 92.6%
GBR | 2.09Mbps | 93.8% 4.28Mbps | 98.0%
[ CS2P| 4.27Mbps | 98.5% 4.97Mbps | 99.1% |

Table 3: Comparing AvgBitrate vs. GoodRatio among

different predictors.

Figure 11:

AvgBitrate: average value of selected birates
GoodRatio: percentage of chunks with no re-buffering

Pilot Deployment

e FEvaluate in the wild
e Scale: 200+ client video players from 5 university campuses

Pareto frontier

Avg. Bitrate (Mbps)
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Tradeoff between AvgBitrate and GoodRatio.

Metrics vs. HM+MPC | vs. BB
AvgBitrate 10.9% 9.3%
GoodRatio 2.5% 17.6%

" Bitrate Variability 2.3% 5.6%
Startup Delay 0.4% | -3.0%
Overall QoE 3.2% 14.0%

Table 4: QoE improvement by CS2P +MPC compared
with HM+MPC and BB in a real-world experiment in 4
cities of China.
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Sensitivity Analysis
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Figure 12: Sensitivity analysis of CS2P parameters.

Pilot Deployment

e Deploymentin video on

Generally independent of
measurement granularity??

demand (VoD) service

e Estimate total rebuffering time at the beginning of fixed-bitrate sessions
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Discussion

e Weakness
o States from the training set cannot capture unexpected situations
m Training set only contains limited situations
o High complexity of feature selection
m 6 static features + large amount of possible window sizes
e Extensions
o Clustering clients based on other features (e.g., throughput)
m Attributes (city, ISP) of clients may be wrong
o Other methods for choosing initial throughput
m Instead of median, how about other models, e.g., regression?



