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Input-queued Switch

- Maximum size matching
- Maximum weight matching




Iterative Scheduling Algorithms

@ Maximal size matching (MSM) is simpler
E as no backtracking on established connections.

@ [terative scheduling algorithms are good for finding
MSM, and hardware implementation.

@ Each iteration consists of 3 phases:

E Request: Inputs send matching requests to outputs
E Grant: Each output grants at most one request
B Accept: Each input accepts at most one grant

1) An iterative MSM algorithm guarantees maximal size matching in
N iterations, where N is the switch size.

2) In practice, only a small fixed number of iterations are used.
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PIM (Parallel Iterative Matching)
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Maximal size: 3

A matching is of maximal size if “no input or output is left unnecessarily idle”. ©

DRRM (Dual RR Matching®)
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@ Single request from each input

B Not to unnecessarily attract > 1 grants (but ..)

B A grant is guaranteed to be accepted => 2-phase, simpler
@ Single-iteration performance comparable to iSLIP-1

*Yihan Li, Shivendra Panwar and H. Jonathan Chao, “On the Performance of a Dual 8
Round-Robin Switch,” IEEE INFOCOM 2001, vol. 3, pp. 1688-1697, April 2001



SRR (Synchronous RR*)
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@ Single request from each input based on a global RR (gRR) schedule.

E Implicit; no local RR arbiters, simpler
@ Scheduling priority is given to
B preferred I/O pair first, and longest VOQ next.
@ Outperforms iSLIP-1 & DRRM under uniform traffic

* A. Scicchitano, A. Bianco, P. Giaccone, E. Leonardi and E. Schiattarella, “Distributed 9
scheduling in input queued switches” IEEE ICC 2007, June 2007, Glasgow, Scotland.
Rank-based Priority: HRF
@ Each input ranks its N
VOQs according to queue PUt Rank (R(ij): Output
size. 32
1 2 > 1
E Nranks (1to N) 1
B A special rank, R(i,j) = 0, is , 2
reserved for empty VOQ :
= log (N+1) bits 3
2
E In arbitration, priority is given 8 !
to VOQ with the highest rank, ;
i.e. HRF 4 9
2

B Rank-based priority vs
queue-based priority
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Iterative Scheduling Algorithms

Non-weighted matching:

@ iSLIP*/DRRM/ ... Our goal: A single-iteration
@ Rotating priority via local RR arbiters | Scheduling algorithm that is
@ TDM:-like high-load performance S|mplel to implement and

. i better in performance.
Weighted matching:

o iLQF*/

@ Queue-based priority, where the LQF is always served first
@ But difficult to implement, and size is limited

Hybrid:

@ SRR ~gRR (size) + LQF (weight)

@ What is the right balance between size and weight?

(A minor change can have a big impact on performance!)

* N. McKeown, “Scheduling algorithms for input-queued cell switches,” PhD. Thesis,
University of California at Berkeley, 1995.

R HRF-Basic
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E.g. under uniform traffic

@ HRF-basic vs iLQF-1

B Rank-based priority is BaslsHRE
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HRF-Refined

@ Request: If output j is the preferred output and
VOQ(i,f) > 0, input i sends 1 to output jand 0 to

all others. Otherwise, send R(i,j) to all.

@ Grant: An output grants the request from its
preferred input first. If no preferred request,
grants the request with the highest rank.

@ Accept: Input accepts the grant from its preferred
output. If no preferred grant, accepts the grant

with the highest rank.

Note: Rank 0 = “empty”

HRF-Refined

9 gRR (as in SRR):

B Each input has a distinct preferred output in each slot.

E Each input prefers each output exactly once in every N

slots.

E Input / at time slot {, its preferred output j is given by

j=(i+t)mod N
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@ Scheduling priority is given to
E preferred input-output pair first, and
E highest rank VOQ next.
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E.g. under uniform traffic

@ HRF-refined vs

HRF-basic

B High-load
performance is
improved

@ HRF-refined vs

SRR
E HRF + gRR
B + gRR
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HRF with Request Coding (HRF-RC)

@ Multiple-bit request =» single-bit request

X=X
@ Idea: use the single-bit request
(X;) to indicate the increase or @
decrease of the VOQ rank i o
E vs “empty” or “non-empty” g - '

X=1

@ Maintaining full-rank info at @ @
each input? X0

B HRF-basic: successful VOQs X=0 X~

ranked high
B Our approach: 3 ranks
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E.g. X,X,,="01"

@ All possible state changes for X; X, ,=“01”

Initial Initial Initial
Time state state state
slot
2

A 2

Ranks | Empty Empty Others | Longest
Others Longest

Request Coding & Decoding

X=X,
- \X/O
X=0
X=1
longest
X=
X0 Pl
@ Based on the value of X; X,
XX, 00 01 10 11

Ranks | Empty Empty Others | Longest
Others Longest

Priority: Lowest ------------mmommee s > Highest 18

HRF-RC

@ Request: If an input’s preferred output is backlogged
at slot t, sends X;= 1 to output j and X;= 0 to others.
Otherwise, using the original RC.

@ Grant: Each output decodes X, from

B its preferred input as an occupancy indicator (VOQ(i,j) = 0 or
not), and
E other inputs using the X,,X; decoding table

@ Accept: Each input accepts the grant from its
preferred output first. Otherwise, accept the grant with
the highest rank.
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Properties of HRF-RC

Three states:

Single-bit

2
@ Simple to implement: i\reguests;
E Three VOQ states/ranks

2
E Single-bit request g é
E Two-bit comparators g 2

2
2

B iSLIP & DRRM ensures no starvation.

R
0
%ﬁ @1: Requests

@ HRF-RC is stable if each flow’s arrival rate < 1/N.
B iSLIP & DRRM are stable under uniform traffic (< 1/N).
@ HRF-RC satisfies the max-min fairness criteria.

Two-bit
comparators:
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* 8. Mneimneh, “Match form the first iteration: an iterative switching algorithm for input queued 23

switch,” IEEE/ACM Trans. on Networking, Vol. 16, Issue 1, pp. 206 — 217, Feb. 2008.
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with a Speedup of 2-1/N,” Accepted by IEEE/ACM Transactions on Networking, Feb. 2016.
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@ Burst size = 30 cells
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“Output” Hotspot

@ Each input has a distinct hotspot output.
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“Input” Hotspot

@ Input 1 is always fully loaded.

Conclusions
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@ We reviewed existing work on iterative
scheduling algorithm design.

@ We proposed a rank-based priority scheme
(HRF)

@ We designed a request coding scheme for
keeping single-bit request
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