
MASE User’s Guide 1

MASE User’s Guide MASE User’s Guide
(part of SimpleScalar version 4.0)(part of SimpleScalar version 4.0)

Eric Larson and Todd M. Austin
{larsone, austin} @eecs.umich.edu

Advanced Computer Architecture Laboratory
University of Michigan

December, 2001

MASE User’s Guide 2

Part 1: MASE OverviewPart 1: MASE Overview

MASE User’s Guide 3

MASE overviewMASE overview
• MASE is a new performance simulation infrastructure for

SimpleScalar. It serves as a replacement to sim-outorder.

• Summary of new features in MASE:
– Checker improves validation support.
– Oracle allows for “perfect” studies.
– Micro-functional performance model increases accuracy.
– Speculative state management facilities simplify aggressive speculation.
– Callback interface permits sophisticated memory system simulation.

• Installation directions are found in the file INSTALL. The MASE
simulator is called sim-mase.

MASE User’s Guide 4

MASE software architectureMASE software architecture

Instruction State Queue (ISQ)

Functional
Units

Memory
simulator

IF ID

Oracle

CT

Checker

Reorder Buffer (ROB)

callback
interface

MASE User’s Guide 5

Checker and oracleChecker and oracle

• Permit “perfect” studies and improved validation.
• Oracle executes in fetch and places values into ISQ.
• Checker uses ISQ values to validate core computation.
• Checker will fix any core bug, reducing burden of correctness in core.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface

MASE User’s Guide 6

MicroMicro--functional performance modelfunctional performance model

• Trace-driven techniques cannot accurately model timing-dependent
computation.
– For example, mispeculation and shared memory race conditions.

• Instructions are now executed in the core with proper timing.
• Further improves validation, intertwining timing and correctness.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface

MASE User’s Guide 7

Support for aggressive speculationSupport for aggressive speculation

• SimpleScalar lacks arbitrary instruction restart. Only branches can
restart.

• MASE allows any instruction to mispeculate and restart core.
• Several data structures (such as the ROB and ISQ) were modified to

support arbitrary rollback.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface

MASE User’s Guide 8

Memory system with callback interfaceMemory system with callback interface

• SimpleScalar’s memory system requires that instruction latency be
known at issue.

– Not representative of modern memory systems.
– For example, DRAM accesses can be reordered to increase page hit rates.

• Instructions use callback interface to asynchronously declare their
(remaining) latency.

Instruction State Queue (ISQ)

F. Units

Memory Sim

IF ID

Oracle

CT

Checker
Reorder Buffer (ROB)

callback
interface

MASE User’s Guide 9

Memory system with callback interfaceMemory system with callback interface

Performance
Simulator

Memory
System

1. Issue load
2. Call mase_cache_access with:
callback = cb_fn, rid = 5

3. Return mem_unknown

4. Determine latency

5. Call cb_fn with:
rid = 5, lat = 15

6. Schedule
completion for load

MASE User’s Guide 10

Other improvementsOther improvements
• Algorithm for detecting when store data can be forwarded to loads has

been improved (more aggressive).
• Register update unit (RUU) has been split into a reorder buffer (ROB)

and reservation stations (RS).
• Added a scheduler queue.

– Scheduler predicts the latency of each instruction.
– Instructions are replayed if the prediction is too small.

• Added a front-end queue.
– Improves misprediction delay accuracy.
– Can simulate additional stages in the front-end pipeline.

MASE User’s Guide 11

Part 2: MASE ImplementationPart 2: MASE Implementation

MASE User’s Guide 12

Summary of MASE filesSummary of MASE files
• mase.c: main simulator loop, loading of program, fast forwarding
• mase-fe.c: fetch and dispatch, rename table management
• mase-exec.c: execution core, issue, lsq_refresh, event queue and ready queue

management
• mase-commit.c: writeback, commit, some recovery functions
• mase-checker.c: oracle and checker
• mase-debug.c: functions for the DLite debugger
• mase-mem.c: memory interface functions
• mase-opts.c: option and statistic management
• mase-decode.h: decoding macros
• mase-macros-oracle.h: execution macros for oracle
• mase-macros-exec.h: execution macros for core
• mase-structs.h: common structure definitions

MASE User’s Guide 13

Fetch: mase_fetch() in maseFetch: mase_fetch() in mase--fe.cfe.c
1. Updates program counter (fetch_PC! fetch_pred_NPC)
2. Fetch from I-cache, stalling on any miss. (only one cache line

can be accessed per cycle).
3. Call the oracle to execute the instruction.
4. Access branch predictor to get next PC (fetch_pred_NPC).
5. Place fetched instruction into the instruction fetch queue.

• The steps above are repeated until a stall condition occurs.
(fetch bandwidth met, cache miss, etc.)

MASE User’s Guide 14

Dispatch: mase_dispatch() in maseDispatch: mase_dispatch() in mase--fe.cfe.c
1. Checks to make sure there is an available reservation station, ROB entry, and

LSQ entry (if it’s a memory operation) to hold the instruction.
2. Fetch instructions from the IFQ.
3. Decode the instruction. Some decode information is pre-computed by the oracle

and passed along in the IFQ.
4. Determine if there is a misfetch – the target address predicted by the BTB does

not match the correctly decoded target address.
5. Initialize the ROB entry (and LSQ entry for memory operations) for the

instruction.
6. Access the rename table to see where the instruction gets it input:

architected register file: the value is read from directly from the register file
creator has completed: the value is transferred from the creator’s ROB entry.
creator has not completed: instruction is added to the creator’s output dependence chain.

• The steps above are repeated until a stall condition occurs. (decode bandwidth
met, ROB is full, etc.)

MASE User’s Guide 15

Load Scheduling: lsq_refresh() in maseLoad Scheduling: lsq_refresh() in mase--exec.cexec.c
• Scans the LSQ starting at the head looking for loads that have their

operands ready. Earlier stores can prevent execution of such loads.
• A store with an unknown address prevents all future loads from being

scheduled (unless perfect disambiguation or blind load speculation is used).
In perfect disambiguation, all stores have “known” addresses using oracle
data.

• A store with a known address but unknown data blocks any future load that
reads from the address. This is true for perfect disambiguation and blind
load speculation.

• A store with a known address and known data, will transfer its store data to
any future load that reads from that address.

• Loads that are not blocked and have their operands ready are placed into
the ready queue.

MASE User’s Guide 16

Scheduling: ready_queue in maseScheduling: ready_queue in mase--exec.cexec.c
• The ready queue serves as the instruction scheduler.
• Instructions are inserted into the ready queue when all of its input

operands are ready. This occurs in either dispatch if the operands are
ready immediately, at writeback when a dependent operation finishes,
or in lsq_refresh which determines when loads are allowed to execute.

• Long-latency operations are inserted at the head of the queue to give
them priority. Other instructions are inserted in program order with
older instructions placed towards the head of queue.

MASE User’s Guide 17

Issue: mase_issue() in maseIssue: mase_issue() in mase--exec.cexec.c
1. Check for delays due to latency mispredictions.
2. Get instruction from the head of the ready queue.
3. If the instruction requires a functional unit, a functional unit is reserved. If

there is not an available functional unit, the instruction cannot issue and is
placed back into the ready queue.

4. If the instruction is a load, the instruction will access the DTLB and D1 data
cache.

5. Instruction is issued into scheduler queue. For instructions with
deterministic latency, an event is scheduled at the time when the instruction
completes (event_queue).

6. The reservation station used by instruction is reclaimed.
7. Issued instructions are executed in this routine but the output is not marked

valid until the instruction completes (writeback).
8. Instructions that do not issue are placed by in the ready queue.

MASE User’s Guide 18

Execute: maseExecute: mase--macrosmacros--*.h*.h
• Instructions are executed twice: Once by the oracle in checker_exec (mase-

checker.c) and once by the core in execute_inst (mase-exec.c).
• The file machine.def indicates how to execute the instruction and is used by both the

oracle and the core. The next slide tells more about the format of this file.
• machine.def uses macros such as that are defined in mase-macros-oracle.h and

mase-macros-exec.c. Examples of the macros are:
GPR(N) Returns the value of general purpose register N.
SET_GPR(N,EXPR) Writes EXPR to general purpose register N.
READ_WORD(ADDR, FAULT) Read word from memory at address ADDR.
WRITE_WORD(ADDR, DATA, FAULT) Write DATA to memory at address ADDR.
• The macros for the oracle (mase-macros-oracle.h) are straightforward can directly

read and write the pre-update register file and memory.

MASE User’s Guide 19

Execute: maseExecute: mase--macrosmacros--exec.h, maseexec.h, mase--exec.cexec.c
• The macros for executing in the core (mase-macros-exec.h) access the values

stored in the ROB_entry.
• For register read operations: The appropriate value from the idep_value array is

returned. (see read_idep_list)
• For register write operations: The appropriate element from the odep_value array is

written. (see set_odep_list)
• For load operations: If data was transferred via store forwarding, the value is in

mem_value and is merely returned. Otherwise, architected memory is accessed to
return the proper value. (see read_load_data)

• For write operations: The store data is placed into the mem_value field of the
ROB_entry. (see read_store_data)

• NOTE: This implementation causes the following restrictions on instruction definitions
in machine.def:

– Registers cannot be read a register once a value has been written.
– Output registers cannot be read unless they are specifically indicated as an input.
– There can be at most one memory (read or write) operation per instruction.

MASE User’s Guide 20

Execute: machine.defExecute: machine.def
• Used to define the instructions including dependencies and semantics.
• Can be used to generate decoders, dependency analyzers, functional

components, disassemblers, appendices, etc.
• Instruction definition example:

#define ADDQ_IMPL { \
SET_GPR(RC, GPR(RA) + GPR(RB)); \

}
DEFINST(ADDQ, 0x00,

“addq”, “a,b,c”,
IntALU, F_ICOMP,
DGPR(RC),DNA, DGPR(RA), DGPR(RB), DNA)

opcode

assembly
instruction

FUs required

output deps input deps

semantics

inst flags

assembly template

MASE User’s Guide 21

Writeback: mase_writeback() in maseWriteback: mase_writeback() in mase--commit.ccommit.c
• Looks at each instruction that completes that cycle.
• The outputs created by the instruction are marked valid.
• If the instruction is a mispredicted branch, a recovery occurs (more

information on recovery later).
• The output dependence chain of the instruction is traversed

– Mark the input operand for each dependent instruction as ready.
– If all dependencies of a dependent instruction are now satisfied, the instruction is

ready to execute and placed into the ready queue. Note: This does not occur for
loads as memory dependences need to be checked which occurs later in
lsq_refresh.

MASE User’s Guide 22

Commit: mase_commit() in maseCommit: mase_commit() in mase--commit.ccommit.c
1. Checks to see if the oldest instruction in the ROB has completed. If

the oldest instruction is a memory operation, the corresponding LSQ
entry must also be complete.

2. Store instructions access the TLB and data cache.
3. The instruction is checked by the checker and the results are

committed to architected state. If the results do not match the
checker, the oracle data is committed to architected state and a
recovery occurs.

4. The rename table entry is removed.
5. The ROB and LSQ entries are all cleared and reclaimed.

MASE User’s Guide 23

Main Simulator Loop: simMain Simulator Loop: sim--main() in mase.cmain() in mase.c

• Walks pipeline from Commit to Fetch.
– Backward pipeline traversal eliminates relaxation problems providing correct

inter-stage latch synchronization
• Loop is exited via a longjmp() to main() when simulated program

executes an exit() system call or the function simply returns when the
maximum number of instructions has been met.

for (;;) {
mase_commit();
mase_writeback();
lsq_refresh();
mase_issue();
mase_dispatch();
mase_fetch();

}

MASE User’s Guide 24

Part 3: MASE OptionsPart 3: MASE Options

MASE User’s Guide 25

Global Simulator OptionsGlobal Simulator Options
• These options are supported on all simulators:
-h print simulator help message
-d enable debug message
-i start up in DLite! debugger
-q terminate immediately
-seed <num> random number generator seed
-chkpt <fname> restore EIO trace execution
-redir:sim <fname> redirect simulator output
-redir:prog <fname> redirect simulated program output
-nice <num> priority of simulator
-max:inst <num> max number of instructions to execute

MASE User’s Guide 26

Miscellaneous OptionsMiscellaneous Options
-v verbose operation, prints instruction trace
-vr prints register file after every instruction

(-v must be specified)
-trigger:inst <num> instruction number to begin verbose operation

(-v must be specified)
-fastfwd <num> skips the first <num> instructions, then begins

the timing simulation

Note: For more information on using instruction tracing to debug
problems, see the file doc/tracing.readme

MASE User’s Guide 27

Configuration FilesConfiguration Files
• Configuration commands:

-config <file> - read configuration parameters from <file>
-dumpconfig <file> - save configuration parameters into <file>

• Generating a configuration file:
– specify non-default options on command line
– include “-dumpconfig <file>” to generate configuration file

• Comments allowed in configuration files:
– text after “#” ignored until end of line

• Configuration files may reference other configuration files
• Sample configuration files available in the config directory

MASE User’s Guide 28

Fetch ParametersFetch Parameters
-fetch:speed <num> (default: 1)

Speed of front end relative to the core. If the decode width is 4 and
the fetch speed is 3, (up to) 12 instructions will be fetched each cycle.

-fetch:mult_lines <true | false> (default: false)
Allows instructions to be fetched from multiple lines in the same cycle.
The default behavior is false. This option is included to be compatible
with sim-outorder v3.0.

-fetch:mf_compat <true | false> (default: false)
Turns on optimistic misfetch recovery. The default behavior is off. This
option is included to be compatible with sim-outorder v3.0.

MASE User’s Guide 29

Fetch Parameters (cont.)Fetch Parameters (cont.)
-ifq:size <num> (default: 32)

Size of the instruction fetch queue (IFQ) between the fetch and
dispatch stages.

-ifq:delay <num> (default: 3)
Number of cycles an instruction must wait in the IFQ before being
dispatch. This parameter replaces the –bpred:mplat and can be used
to add more stages to the front-end pipeline.

Note: For compatibly, the IFQ size in MASE should be greater than the
IFQ size in sim-outorder by (ifq:delay * decode:width * fetch:speed).

MASE User’s Guide 30

Specifying the Branch PredictorSpecifying the Branch Predictor
• Specifying the branch predictor type:

-bpred <type>

where <type> is:
nottaken always predict not taken
taken always predict taken
perfect perfect predictor
bimod bimodal predictor (BTB w/ 2 bit counters)
2lev 2-level adaptive predictor
comb combination of bimodal and 2-level predictor

• Configuring the bimodal predictor:
(only useful when “-bpred bimod” or “-bpred comb” is specified)

-bpred:bimod <size> size of direct-mapped BTB

MASE User’s Guide 31

Specifying the Branch Predictor (cont.)Specifying the Branch Predictor (cont.)
• Configuring the 2-level adaptive predictor:

(only useful when “-bpred 2lev” or “-bpred comb” is specified)

-bpred:2lev <l1size> <l2size> <hist_size>

where:
<l1size> size of the first level table
<l2size> size of the second level table
<hist_size> history (pattern) width

l1size

pattern
history

hist_size

branch
address

l2size
2-bit
predictors

branch
prediction

MASE User’s Guide 32

Specifying the Branch Predictor (cont.)Specifying the Branch Predictor (cont.)
• Configuring the combining predictor:

(only useful when “-bpred comb” is specified)

-bpred:comb <size> size of meta table

• Other branch predictor options:
-bpred:ras <num> size of return address stack
-bpred:btb <sets> <assoc> BTB config, specifies number of sets and assoc.
-bpred:spec_update <ID|WB> speculatively update branch predictor at decode

(ID) or writeback (WB), default is to update at
commit (CT).

-bpred:rcvr_shadow <t|f> allows recovery in the shadow of another branch
misprediction, default is true.

MASE User’s Guide 33

Dispatch / Issue / Commit ParametersDispatch / Issue / Commit Parameters
-decode:width <num> (default: 4)

Maximum number of instructions that can be decoded and dispatched per cycle.

-issue:width <num> (default: 4)
Maximum number of instructions that can be issued per cycle.

-issue:inorder <true|false> (default: false)
Runs the pipeline with in-order issue.

-issue:wrongpath <true|false> (default: true)
Issues speculative instructions (instructions in the shadow of a mispredicted branch)
when set.

-commit:width <num> (default: 4)
Maximum number of instructions that can be committed per cycle.

MASE User’s Guide 34

Register Scheduler ParametersRegister Scheduler Parameters
-rob:size <num> (default: 16)

Number of entries in the reorder buffer (ROB).

-rs:size <num> (default: 16)
Number of reservation stations.

-scheduler:delay <num> (default: 0)
Number of cycles instruction must wait in the scheduler queue before
starting to execute.

-scheduler:replay <true|false> (default: false)
Turns on latency prediction. Instructions are replayed if the prediction
is too small.

MASE User’s Guide 35

Memory Scheduler ParametersMemory Scheduler Parameters
-lsq:size <num> (default: 8)

Number of entries in the load store queue (LSQ).

-lsq:perfect <true|false> (default: false)
Turns on perfect memory disambiguation. Allows loads to execute as
soon as its dependencies are satisfied. Stores with unknown
addresses do not block unless they write to the same address as the
load.

-lsq:blind <true|false> (default: false)
Turns on blind load speculation. Allows loads to execute as soon as
its dependencies are satisfied. If an earlier store with an unknown
address writes to the address of the load, a blind load misprediction
occurs.

MASE User’s Guide 36

Specifying Cache and TLB ConfigurationsSpecifying Cache and TLB Configurations
• All caches and TLB configurations are specified with this format:

<name>:<nsets>:<bsize>:<assoc>:<repl>

<name> - cache name (make this unique)
<nsets> - number of sets
<bsize> - block size
<assoc> - associativity (number of “ways”)
<repl> - set replacement policy:

l - for LRU
f - for FIFO
r - for RANDOM

• Examples:
il1:1024:32:2:l 2-way set-assoc 64k-byte cache, LRU
dtlb:1:4096:64:r 64-entry fully assoc TLB w/ 4k pages,

random replacement

MASE User’s Guide 37

Specifying Cache HierarchiesSpecifying Cache Hierarchies
• You can specify all cache parameters such that no unified levels

exist:

-cache:il1 il1:128:64:1:l
-cache:il2 il2:128:64:4:l
-cache:dl1 dl1:256:32:1:l
-cache:dl2 dl2:1024:64:2:l

• You can unify any level of the hierarchy, by “pointing” an I-cache
level into the D-cache hierarchy:

-cache:il1 il1:128:64:1:l
-cache:il2 dl2
-cache:dl1 dl1:256:32:1:l
-cache:dl2 ul2:1024:64:2:l

il1 dl1

il2 dl2

il1 dl1

ul2

MASE User’s Guide 38

Summary of Cache / TLB / Memory ParametersSummary of Cache / TLB / Memory Parameters
-cache:dl1 <config> - level 1 data cache configuration
-cache:dl1lat <cycles> - level 1 data cache hit latency
-cache:dl2 <config> - level 2 data cache configuration
-cache:dl2lat <cycles> - level 2 data cache hit latency
-cache:il1 <config> - level 1 instruction cache configuration
-cache:il1lat <cycles> - level 1 instruction cache hit latency
-cache:il2 <config> - level 2 instruction cache configuration
-cache:il2lat <cycles> - level 2 instruction cache hit latency
-cache:flush - flush all caches on system calls
-cache:icompress - remap 64-bit inst addr. to 32-bit equiv.
-tlb:itlb <config> - instruction TLB configuration
-tlb:dtlb <config> - data TLB configuration
-tlb:lat <cycles> - latency to service a TLB miss
-mem:lat <1st> <next> - memory access latency (first, rest)
-mem:width - width of memory bus (in bytes)

MASE User’s Guide 39

Resource ParametersResource Parameters
-res:ialu number of integer ALUs
-res:imult number of integer multiplier/dividers
-res:memports number of first-level cache ports
-res:fpalu number of FP ALUs
-res:fpmult number of FP multiplier/dividers

MASE User’s Guide 40

Resource Parameters (cont.)Resource Parameters (cont.)
• MASE allows the latencies of the functional units to be specified. For

each type of functional unit, there is an oplat (operation latency) and
islat (issue latency). oplat refers to how long an instruction takes
to execute. islat refers to how long it takes before the functional
unit can initiate another request.

• Examples:
-res:fmul_oplat 4 FP multiplies take 4 cycles to execute and a
-res:fmul_islat 1 new request can be initiated each cycle.

-res:fdiv_oplat 12 FP divideds take 12 cycles to execute and a
-res:fdiv_oplat 9 new request can be initiated after 9 cycles.

MASE User’s Guide 41

Checker ParametersChecker Parameters
-chk:inject_err <true|false> (default: false)

Randomly injects errors into core results. Can be used to verify if the checker and
recovery are working correctly. The type of error can be changed by the programmer
to anything they want in mase-commit.c.

-chk:print_err <true|false> (default: false)
Prints error messages associated with checker errors.

-chk:stop_on_err <true|false> (default: false)
Aborts the simulation when encountering a checker error.

-chk:threshold <num> (default: 1.000)
Specifies a threshold of num %. If the percentage of checker errors exceeds the
threshold, a warning message is printed. This can be used to make sure the number
of checker errors does not impact the performance of the program.

MASE User’s Guide 42

PCPC--Based Statistical ProfilesBased Statistical Profiles
• Produces a text segment profile for any integer statistical counter.
• Specify a statistical counter to be monitored using “-pcstat” option.

Works on any integer counter registered with the stats package,
including those added by users.

• Example applications:
-pcstat sim_num_insn - execution profile
-pcstat sim_num_refs - reference profile
-pcstat il1.misses - L1 I-cache miss profile
-pcstat bpred_bimod.misses - br pred miss profile

• View with the textprof.pl Perl script, it displays pc-based
statistics with program disassembly:

textprof.pl <dis_file> <sim_output> <stat_name>

MASE User’s Guide 43

PCPC--Based Statistical Profiles (cont.)Based Statistical Profiles (cont.)
• Example usage:

sim-profile -pcstat sim_num_insn test-math >&! test-
math.out
objdump -dl test-math >! test-math.dis
textprof.pl test-math.dis test-math.out sim_num_insn_by_pc

• Example output:
00401a10: (13, 0.01): <strtod+220> addiu $a1[5],$zero[0],1
strtod.c:79
00401a18: (13, 0.01): <strtod+228> bc1f 00401a30

<strtod+240>
strtod.c:87
00401a20: : <strtod+230> addiu $s1[17],$s1[17],1
00401a28: : <strtod+238> j 00401a58 <strtod+268>
strtod.c:89

00401a30: (13, 0.01): <strtod+240> mul.d $f2,$f20,$f4
00401a38: (13, 0.01): <strtod+248> addiu $v0[2],$v1[3],-48

00401a40: (13, 0.01): <strtod+250> mtc1 $v0[2],$f0

{

{

{

executed
13 times

never
executed

MASE User’s Guide 44

PipetracesPipetraces
• Pipetrace produces detailed history of all instructions executed, including instruction

fetch, retirement, and stage transitions.
• Use the “-ptrace” option to generate a pipetrace:

-ptrace <file> <range>

• Example usage:
-ptrace FOO.trc : - trace entire execution to FOO.trc
-ptrace BAR.trc 100:5000 - trace from inst 100 to 5000
-ptrace UXXE.trc :10000 - trace until instruction 10000

• Consult the “Execution Ranges” section to learn what can be specified using the <range>
parameter.

• View pipetrace file with the pipeview.pl Perl script. It displays the pipeline for
each cycle of execution traced:

pipeview.pl <ptrace_file>

MASE User’s Guide 45

Pipetraces (cont.)Pipetraces (cont.)
• Example usage:

sim-outorder -ptrace FOO.trc :1000 test-math
pipeview.pl FOO.trc

• Example output:
@ 610

gf = `0x0040d098: addiu r2,r4,-1'
gg = `0x0040d0a0: beq r3,r5,0x30'

[IF] [DA] [EX] [WB] [CT]
gf gb fy fr\ fq
gg gc fz fs

gd/ ga+ ft
ge fu

{new inst
definitions

{new cycle
indicator

{current
pipeline
state

inst being
fetched, or in
fetch queue

inst being
decoded, or
awaiting issue

inst
executing

inst writing
results into
RUU, or
awaiting retire

inst retiring
results to
register file

pipeline event:
(misprediction
detected), see output
header for event defs

MASE User’s Guide 46

Part 4: Additional TopicsPart 4: Additional Topics

MASE User’s Guide 47

DLite!, the Lite DebuggerDLite!, the Lite Debugger
• DLite! is a very lightweight symbolic debugger that can be activated with the

“-i” option (interactive).
• In MASE, the debugger resides in commit. A step will stop at the retirement

of the next retired instruction or the next cycle, whatever comes first.
• Program symbols and expressions may be used in most contexts, for

example: “break main+8”
• Many structures specific to MASE have dump routines. See “help mstate”.
• Use the “help” command for complete documentation.
• Main features of DLite!:

– break, dbreak, rbreak: set text, data, and range breakpoints
– regs, iregs, fregs: display all, int, and FP register state
– dump <addr> <count>: dump <count> bytes of memory at

<addr>

– dis <addr> <count>: disassemble <count> insts starting at
<addr>

– mstate: display machine-specific state
– print <expr>, display <expr>: display expression or memory

MASE User’s Guide 48

DLite!, the Lite Debugger (cont.)DLite!, the Lite Debugger (cont.)
• Breakpoints:

– code:
• break <addr>

• Examples: break main, break 0x400148
– code:

• rbreak <range>

where range is a range (see Execution Ranges section)
• Examples: rbreak @main:+279, rbreak 2000:3500

– data:
• dbreak <addr> {r|w|x}

where r == read, w == write, x == execute
• Examples: dbreak stdin w, dbreak sys_count wr

• DLite! expressions:
operators: +, -, /, *
literals: 10, 0xff, 077
symbols: main, vfprintf
registers: $r1, $f4, $pc, $fcc, $hi, $lo

MASE User’s Guide 49

Execution RangesExecution Ranges
• specify a range of addresses, instructions, or cycles
• used by range breakpoints and pipetrace
• format:

address range: @<start>:<end>
instruction range: <start>:<end>
cycle range: #<start>:<end>

• the end range may be specified relative to the start range
• both endpoints are optional, and if omitted the value will default to the

largest/smallest allowed value in that range
• e.g.,

– @main:+278- main to main+278
– #:1000 - cycle 0 to cycle 1000
– : - entire execution (instruction 0 to end)

MASE User’s Guide 50

Additional InformationAdditional Information
• MASE is part of SimpleScalar release 4.0. Source code is available

for non-commercial use at:

http://www.simplescalar.com

• The above website also contains documentation, related tools, and
information on SimpleScalar mailing lists.

• ISPASS paper:
Eric Larson, Saugata Chatterjee, and Todd Austin, “MASE: A Novel Infrastructure for
Detailed Microarchitectural Modeling”, 2001 IEEE International Symposium on
Performance Analysis of Systems and Software, November 2001.

