
EVA: An Efficient Vision Architecture for Mobile Systems

Jason Clemons, Andrea Pellegrini, Silvio Savarese, and Todd Austin
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan 48109

{jclemons, apellegrini, silvio, austin}@umich.edu

Abstract
The capabilities of mobile devices have been increasing at a momen-
tous rate. As better processors have merged with capable cameras
in mobile systems, the number of computer vision applications has
grown rapidly. However, the computational and energy constraints
of mobile devices have forced computer vision application devel-
opers to sacrifice accuracy for the sake of meeting timing demands.
To increase the computational performance of mobile systems we
present EVA. EVA is an application-specific heterogeneous multi-
core having a mix of computationally powerful cores with energy
efficient cores. Each core of EVA has computation and memory ar-
chitectural enhancements tailored to the application traits of vision
codes. Using a computer vision benchmarking suite, we evaluate
the efficiency and performance of a wide range of EVA designs. We
show that EVA can provide speedups of over 9x that of an embedded
processor while reducing energy demands by as much as 3x.

Categories and Subject Descriptors C.1.4 [Parallel Architec-
tures]: Mobile Processors

General Terms Design, Performance

Keywords Computer Vision, Mobile, Architecture

1. Introduction
The technological growth and the commercial success of personal
mobile devices – such as smart phones and tablets – is a remarkable
success for computing history. Starting as devices which only pro-
vided basic features such as voice and text communications, mobile
platforms have evolved into complex devices capable of running
productivity applications and offering performance comparable to
some desktop computers.

Along with increasing processing capability, mobile devices have
seen improvements in peripherals that increase system capabilities.
Most modern smartphones and tablet computers embed one or
more cameras for taking photographs or HD videos [3, 19]. Such
powerful cameras, coupled with high performance microprocessors,
are giving rise to many new applications in mobile computing such
as Google Glass, which features glasses with a camera and display
in the lens that is connected to a mobile processor that can run a
full OS [2]. Google Glass implements augmented reality, which
allows users to point their smart devices at a scene or images in
the real world and have useful information rendered with objects
in the 3D scene [7]. Computer vision algorithms, once practical
only on high performance workstations, are now becoming viable
in the mobile space thanks to the technological improvements made
in portable devices. As computer vision applications continue to
make their way into mobile platforms, there is a growing demand
for processors that can tackle such computationally intensive tasks.
Unfortunately, mobile processor performance is limited by cost and
energy constraints [15]. While desktop processors can consume 100

Figure 1: Computer Vision Example The figure shows a sock
monkey where a computer vision application has recognized its face.
The algorithm would utilize features such as corners and use their
geometric relationship to accomplish this.

Watts over 250 mm2 of silicon, typical mobile processors are limited
to a few Watts with typically 5 mm2 of silicon [4] [22].

To meet the limited computation capability of mobile proces-
sors, computer vision application developers reluctantly sacrifice
image resolution, computational precision or application capabili-
ties for lower quality versions of vision algorithms. Thus there is an
unsatiable demand for high-performance vision computing in the
mobile space. To meet the performance, cost and energy demands
of mobile vision, we propose EVA, a novel architecture that utilizes
an application-specific design, tailored to the specific application
characteristics of mobile vision software.

1.1 Our Contribution
We present EVA, our solution for efficient vision processing in the
mobile domain. EVA is a heterogeneous multicore architecture with
custom functional units designed to increase processing performance
for a wide range of vision applications. Our design leverages a
heterogenous multicore architecture, where more powerful cores
coordinate the tasks of less powerful, but more energy efficient cores.
Both types of cores are enhanced with specific custom functional
units specially designed to increase the performance and energy
efficiency of most vision algorithms. Furthermore, EVA develops
a novel, flexible, memory organization which enables efficient
access to the multidimensional image data utilized in many vision
workloads. We also examine the thread-level parallelism available in
vision workloads and evaluate the tradeoff between number of cores,
energy and speedup. This work makes three primary contributions:

• The EVA application-specific architecture includes a selection
of custom functional units tailored to mobile vision workloads
including a novel accelerator for improved performance on
decision tree based classification.

• The EVA memory system introduces the tile cache, a cache
with a flexible prefetcher capable of handling both 1D and 2D
memory access patterns efficiently.

• Using the MEVBench [15] mobile vision benchmark suite and
full-system simulation, we explore various configurations of
the EVA design and demonstrate that it can provide significant
energy and performance improvements while being held to the
tight cost constraints of mobile systems.

978-1-4799-1400-5/13/$31.00 ©2013 IEEE

Typical Vision Application

Image Capture

Image

Preprocessing/

Filtering

Feature Extraction
Feature/Object

Classification
Expert Reasoning

Figure 2: Vision Software Pipeline The figure shows a typical computer vision software pipeline. The image is captured using an imaging
device such as a camera. The captured image is filtered to eliminate noise. Then, features are extracted from an image. The features are
”classified” based on prior knowledge. Expert reasoning is utilized to generate knowledge about the scene.

We begin with a computer vision primer in Section 2. Section 3
discusses the computational traits of mobile vision applications.
Section 4 details our architectural solution for efficient mobile vision
computation. In Section 5 we discuss our experimental setup, and
in Section 6 we present our experimental results. In Section 7 we
look at related works. Finally in Section 8, we conclude and discuss
future work.

2. Background On Mobile Vision Applications
The field of computer vision is a synergy between image process-
ing, artificial intelligence, and machine learning. Computer vision
algorithms analyze, process and understand the objects found in im-
age data. For example, Figure 1 shows a picture where a computer
vision application utilized a feature detection algorithm to locate
the monkey’s face. There is a wide variety of applications that can
benefit from computer vision, such as defense, surveillance, and
autonomous vehicles.

A typical computer vision software pipeline can be seen in
Figure 2. This pipeline consists of five components: image capture,
image preprocessing, feature extraction, feature/object classification,
and expert reasoning. A challenge in optimizing for the vision
pipeline’s computation lies in the great variety of computational
characteristics within the key kernels.

The first phase (image capture) involves capturing the imaging in-
formation from a sensor. In mobile vision applications the processor
typically retrieves an image from the camera. This step is commonly
an API call to the device driver although more capabilities are be-
ing exposed to user applications through software libraries such as
FCAM [1]. The second phase (image filtering) involves applying
filtering techniques to the imaging data to increase the discernibility
of information in the data. Commonly, this phase is merged with
the third phase (feature extraction). Feature extraction consists of
the localization of salient image characteristics, such as corners
or brightness contrast, and the generation of unique signatures for
the located features. These signatures are commonly stored as one
dimensional vectors referred to as feature vectors. Feature extraction
has been shown to be highly compute-intensive [15].

The fourth phase (classification) utilizes machine learning al-
gorithms to determine what objects could be represented by the
features located in the image. Classification results are used for
semantic and relational processing to better understand the com-
ponents of the scene. For example, a feature may be classified as
belonging to a known object. The final phase (expert reasoning) uti-
lizes the information from the previous phases to generate specific
knowledge about the original scene. This task may be as simple as
recognizing a face in the scene, or as complex as a predicting where
a group of people are headed. The expert reasoning phase can iterate
with the classification component to refine its outcome, and this
process is ultimately responsible for the output of the vision system.
This iterative loop allows the developer to improve the quality of
the result given sufficient computation capability.

3. Application Traits
To build optimized computing platforms, it is imperative to fully
understand the underlying algorithms and the traits of their compu-
tation. Through analysis of the MEVBench mobile vision bench-
marks [15], we present three underlying characteristics that can
be exploited in hardware to improve the performance of a mobile

vision codes. These characteristics are: frequent vector reduction
operations, diverse parallel workloads, and memory locality that
exists in both one and two dimensions.

3.1 Frequent Vector Reduction Operations
Vector operations have been a common target for architectural
optimization for decades. From vector processors to digital signal
processors (DSP) to General Purpose Graphics Processing Units
(GPGPUs), there is a lot of work on the processing of vector
operations. This prior work has primarily focused on instructions
that perform the same operation on a set of data or single instruction
multiple data (SIMD) operations. While these operations are quite
common within many applications, there is another class for vector
operations that is not often considered.

During our investigation of mobile vision applications, we found
that vector reduction operations occur frequently. While vector
operations and vector reduction operations both take vectors as
inputs, the former produces a vector result while the latter produces
a scalar result. Current processors support SIMD instructions that
allow computation on vectors [5] [20]. These solutions perform
some functions similar to our accelerators, however they do not
typically include the reduction step. Examples of two common
vector reduction operations in vision codes are the dot product and
max operations. These operations are used in preprocessing, image
filtering, feature extraction, classification, application reasoning and
result filtering. Despite the prevalence of vector reduction operations,
most architectures primarily support the classical vector operations.
Figure 3 shows the frequency of the dot product operations in the
benchmarks. The figure also shows the size of the vectors these
operations are operating upon and the number of floating point
multiply-accumulates that result. We examined the run time of the
benchmarks to find hot spots and instrumented the calls to these
types of operations. We found dot products, monopoly compares,
tree compares and max compares to be the most common vector
operations.

The strict energy and performance constraints of mobile systems
create the need to optimize vector reduction operations in hardware.
In the mobile vision application space, these operations create
opportunities to decrease execution runtime while also reducing
energy. EVA provides first-class support to this architecturally
underserved class of operations.

3.2 Diverse Parallelism
Computer vision workloads have been shown to contain thread-level
parallelism by allowing multiple cores to work simultaneously to
increase performance [15]. Unfortunately, the workloads thread are
not typically well balanced.

Figure 4 shows the performance of the feature extraction and
classification benchmarks from MEVBench when running with
varied number of threads. The data for this figure was taken using an
ARM A9 and timing each thread separately. The time to complete
each benchmark is measured as the maximum time of all the
threads in the workload to complete. The average speedup of
both types of algorithms is plotted along with their geometric
mean for a given number of cores. This figure demonstrates the
duality of the workloads in vision applications. On one hand the
feature classification workloads scale well with the number of cores,
while on the other hand the feature extraction workloads quickly
reach an asymptotic limit. We found that the feature extraction

workloads are limited by the performance of the coordination
component more so than in the classification application. Most
vision applications show similar behavior to feature extraction,
resulting in applications having limited thread-level parallelism
due to coordination bottlenecks.

3.3 One and Two Dimensional Locality
Most mobile vision workloads utilize imaging data as input. The ini-
tial phase of processing typically involves analyzing the image data
in 2D pixel patches. We examined the source code of MEVBench
and found that the feature extraction algorithms often access im-
age data in two dimensions (e.g., when computing feature vectors),
while the classification algorithms work on one dimensional feature
vectors, confirming the result of [15]. Unfortunately, 2D locality
does not transfer well into the typical raster scan order of pixel
rows. When pixels are stored in raster scan order, two pixels that
are vertically adjacent are separated in memory by a step of at least
the width of the image in pixels times the size of a pixel. Thus,
the typical linear approach to storage can can lead to inefficient
access patterns, as they will often incur cache or DRAM row misses.
However, the typical next phase of the vision pipeline, classification,
utilizes linear vectors. In this phase 1D spatial locality is ample
and readily exploited by current cache architectures. In order to
optimize memory accesses in all phases of vision algorithms, the
system needs to efficiently support both 1D and 2D locality.

4. EVA Hardware
We have developed architectural features that provide capabilities
targeted to the characteristics of the mobile vision application space.
We add in accelerators for vector reduction operations such as dot

0

1000000

2000000

3000000

4000000

HoG KNN OBJ Recog SURF1

10

100

1000

10000

100000

1000000

10000000

T
h

o
u

sa
n

d
s

Number Of Dot Products Vector Size Number of Multiply Accumulates

Figure 3: Number of Dot Product Operations The figure shows
the number of dot product operations in the analyzed benchmarks
for a small input size. The floating point multiply operations take a
minimum of 5 cycles on ARM and thus each multiply accumulate
operation has a large impact on execution time.

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

S
p

ee
d

u
p

Cores

GeomMean

Classification

Feature extraction

Figure 4: Thread-Level Parallelism Within Vision Algorithms
The figures shows the idealized performance of the feature extraction
and feature classification benchmarks from the MEVBench suite.
The figure shows the average speedup for each type of benchmark. It
also shows the geometric mean of the speedups. Speedups are closer
to linear for the feature classification while the feature extraction
speedups quickly begin to saturate. Thus a system needs to balance
both types of workload.

product and tree compares. We introduce a software-enabled 2D
locality prefetcher called the tile cache. Finally, we exploit diverse
parallelism through the introduction of heterogeneous cores.

4.1 EVA System Architecture
EVA is designed to efficiently handle mobile vision workloads. An
overview of a system with EVA can be seen in Figure 5. All cores
in EVA contain a set of custom accelerators to handle the common
vector reduction operations. In particular, EVA cores have units for
performing the dot product, monopoly compare, max compare, and
tree compare. These custom accelerators are designed to reduce both
the effenergy and latency of their target operations. EVA’s cache
has been modified to support both 2D and 1D locality in memory
accesses. This optimization permits improved memory performance
when accessing image data.

Our solution takes into account that many mobile vision applica-
tions can extract thread-level parallelism, thus EVA is designed as a
heterogenous multicore comprised of two types of ISA-compatible
cores. The first type of core, called coordinating core, is a powerful
4-wide out-of-order core designed to efficiently handle sequential
code that can not be parallelized effectively, such as that used to
coordinate the work of a group of threads. The second type of core,
called supporting core, is a low-power core that exploits thread-level
parallelism by efficiently running the worker threads. The support-
ing cores eliminate many of the costly architectural features of the
coordinating core. In particular, the supporting cores are 2-way su-
perscalar cores as opposed to the 4-way issue that the coordinating
core supports. They also have only 2 ALUs instead of the 4 found in
the coordinating core. Their physical register file is reduced in size
by 25% compared to the larger core. The ratio of coordinating to
supporting cores and the total number of EVA cores can be config-
ured based on the constraints of the system and the key application
characteristics.

In the example system of Figure 5, EVA’s cores are connected
through a bus with fast snoop controllers. We chose this intercon-
nect strategy due to its common usage in mobile designs such as
Tegra 3 [31]. Additionally, this design lends itself to the workload
characteristics of mobile vision where most of the time cores work
on local data, allowing for efficient use of the bus. EVA’s features do
not rely on a specific interconnection topology. For more than eight
cores, the bus would need to be replaced with a network-on-chip.
The interconnect allows EVA to utilize a shared memory multicore
architecture with a shared L2 cache that is non-inclusive. The cache
coherency protocol is MOESI. The EVA cores communicate uti-
lizing the Pthreads software library. Our system utilizes memory
mapped I/O to access external devices. External subsystems can
generate interrupts to the EVA cores and vice versa for coordination.
For example, once an image is captured the image subsystem can
produce an interrupt in the coordinator core alerting it of the new
data. The image can then be retrieved from memory.

4.2 Custom Accelerators
The EVA accelerators take advantage of 64 32-bit floating point
registers present in mobile SIMD units such as ARM NEON [5]. In
typical modern SIMD units for mobile platforms these registers can
be accessed individually or in groups of two or four single precision
registers. EVA’s accelerators require the extension of this ability to
groups of up to sixteen registers. EVA assumes the ability to read
the registers in groups of eight in one cycle, and that the register
operands that are aligned in groups of eight i.e., 0, 8, 16 etc.

4.2.1 Dot Product Accelerator
As shown in Figure 3, the dot product occurs often in many vision
codes. For example, the dot product is used to perform convolution
for image filtering and also to normalize vectors during feature
extraction. It is also a common operation in the classification phase
for comparing various feature vectors. The operation performed by
a dot product can be seen in Equation 1. The operation works by

Decod

e

(2

Inst)

Fetch

(2 Inst)

Issue

(4

Inst)

ALU

Mult
Float/

SIMDEVA

Units
Address

Writeba

ck

(up to

4)L1Cache/

Tile Cache

Supporting

Core
Decod

e

(2

Inst)

Fetch

(2 Inst)

Issue

(4

Inst)

ALU

Mult
Float/

SIMD
EVA Units

Address

Writeba

ck

(up to

4)L1Cache/Tile

Cache

Supporting

Core

Decode

(4 Inst)

Fetch

(4 Inst)

Issue

(8 Inst)

ALUx2

Multx2

Float/SIMD

EVA Units

Address

Writeback

(up to 8)

L1Cache/

Tile Cache

128-bit Bus @ 1GHz Supporting MOESI

Coordinating

Core

Shared L2 Controller

/Cache (Non-Inclusive)

LP
D

D
R

2
M

em
or

y
C

on
tr

ol
le

r

Decode

(2 Inst)

Fetch

(2 Inst)

Issue

(4 Inst)

ALU

Mult

Float/SIMD

EVA Units

Address

Writeback

(up to 4)

L1Cache/

Tile Cache

Supporting

Core

A
M

B
A

 B
us

DSP

Im
ag

in
g

S
ub

sy
st

em

Mobile

GPU

Figure 5: An EVA-based System Overview The figure shows an example of a mobile SoC with an EVA configuration as the primary
processor. EVA contains a set of cores made up of two types: coordinating cores and supporting cores. Coordinating cores are powerful
superscalar out-of-order processors who execute serial code, participate in parallel execution and coordinate the work of the supporting cores.
The supporting cores are smaller and more energy efficient but ISA compatible with the coordinating core. Both types of cores contain
accelerators for mobile vision applications. The EVA cores’ 1GHz bus connects them to a shared L2 cache. The L2 cache connects to a to a
LPDDR2 memory controller. EVA can communicate with external computing units using the AMBA bus. In the system configuration shown,
the OS primarily runs on the coordinating core and schedules applications across the EVA cores based on resource availability. Another viable
configuration is to execute the OS and non-vision applications on a separate mobile processor connected to EVA through the AMBA bus.

Table 1: EVA Accelerator Instructions The instructions added to utilize the EVA accelerators.

Instruction Operand A Operand B Operand C Result Instruction

MONOCMP F[m] F[n] to F[n+15] R[k] MONOCMP F[m], F[n], R[k]
Monopoly Compare Value Vector Results example: MONOCMP F[0], F[16], R[0]
TRECMP F[m] to F[m+6] F[n] to F[n+6] R[k] TRECMP F[m], F[n], R[k]
Tree Compare Feature Vector Tree Vector Node Value example: TRECMP F[0], F[8], R[0]
MXCMP F[m] to F[m+7] R[k] MXCMP F[m], R[k]
Maximum Compare Vector Index of Maximum example: MXCMP F[0], R[0]
DOTPROD F[m] to F[m+15] F[n] to F[n+15] F[k] DOTPROD F[m], F[n], F[k]
Dot Product Vector Vector Result example: DOTPROD F[0], F[16], F[32]
PATLOAD R[m] R[n]<31:16> R[n]<15:8,7:0> R[k] EVATCLD R[m], R[n], R[k]
Patch Load Address Patch Step <Width:Height> Loaded Value example: EVATCLD R[0], R[1], R[2]

multiplying corresponding vector entries and summing the result.
Figure 6 shows both the dot product pseudocode and the operation
of the accelerator.

result =
k−1

∑
i=0

Ai ∗Bi (1)

EVA supports the dot product with an the DOTPROD instruction
seen in Table 1. The first operand F[m] indicates the first register
in a sequence of 16 registers that will be used as the vector input.
For example, F[0] sets floating point registers 0 through 15 as the
input to the dot product unit. F[n] is the start index for the second
set of sixteen floating point registers to be used as input. F[k] is
the register to store the dot product’s scalar result. The dot product
example in Table 1 would result in registers 0 through 15 being the
first vector, registers 16 to 31 being the second vector and the scalar
result being placed in register 32.

In general, for the EVA accelerator instructions, the vector input
sizes have been fixed to a length specified for the instruction in
Table 1. If the output register overlaps with the input register, the
output will overwrite the value in the input register upon instruction
completion but the computation will be on the input. In the event of
an floating exception, the floating point exception flag is set, and it
is handled with the instruction in writeback.

4.2.2 Tree Accelerator
A commonly used data structure in the classification phase of com-
puter vision is the tree. Trees are used in classification algorithms
such as binary decision trees, Adaboost, and k-Nearest Neighbor

Classification. They are used to classify feature vectors based on the
feature vectors entries. Typically, tree data structures in computer
vision are computed offline and are accessed but never modified by
vision applications. It has been shown that collections of small trees
can be used to produce high quality classification results [10, 11].
Based on this application behavior, we have designed the tree com-
pare accelerator to accommodate a binary tree of depth three.

The tree compare accelerator is based on decision trees. Each
node of a decision tree utilizes a value, called a split, and compares
it to a specific feature entry to determine which child node should
be used during the classification phase. The leaf node determines

Original Code (450 Cycles):

dotProduct(A,B){

 sum = 0;

 for(i =0; i < 16; i++){

 sum += A[i] * B[i];}

 return sum;}

New Code (126 Cycles):

dotProduct(A,B){

 LOAD(A);

 LOAD(B);

 sum =DOTPROD(A+i,B+i);

 return sum;}

a. b. A0 A1 A15

*

A0*B0+A1*B1+...+A15*B15

* *

B0 B1 B15

...

...

*

Figure 6: Dot Product Accelerator Overview The figure shows
the operation of the dot production unit. (a) shows the pseudocode
of the dot product operation. (b) shows the operation it performs.
The unit performs a dot product operation which is multiplying all
the entries of two vectors and adding the results. The add component
is done using a tree to add each adjacent result until the final result
is computed.

Original Code (74 cycles):

classificationTree(tree, feat_vect){

 TreeNode* node = tree->get_root();

 while(node->left) {

 v_index = node->feat_vect_index;

 value = feat_vect[v_index];

 if(val < node->compare_val)

 node = node->left;

 else

 node = node->right;

 }

 return node;}

New Code (20 Cycles):

classificationTree(tree, feat_vect){

 nodeId=TRECMP(feat_vec,tree->node_vec);

 return tree->getNode(nodeId);

}

N0

V0 V1 V2 V3 V4 V5 V6

<V0 ?

N3 <V3 ?

R0

N4 <V4 ?

R1

N5 <V5 ?

R2

N6 <V6 ?

R3 R4 R5 R6 R7

N1 <V1 ? N2 <V2 ?

V0 V1 V2 V3 V4 V5 V6

N0 N1 N2 N3 N4 N5 N6

< < < < < < <

Decoder:

R0 if (N0<V0)&(N1<N1)&(N3<N3)

R1 if (N0<V0)&(N1<N1)&~(N3<N3)

R2 if (N0<V0)&~(N1<N1)&(N4<N4)

...

a. c.b.

Figure 7: Tree Compare Accelerator Overview The figure shows the operation of the tree compare accelerator. (a) shows the typical tree
comparison pseudocode used by vision algorithms, in particular classifiers. (b) shows how this looks relative to the tree. (c) shows how the
accelerator unrolls the compares and performs them all at once and then decodes the binary bit vector to output the proper index.

the classification of the feature vector. Figure 7a shows the code
for a tree compare operation of this type. We assume the feature
vector has been compressed to only entries used by the tree. This
compressed vector is passed into the tree comparison. The first entry
of the vector is compared against the split value at the root node.
Based on the result of the comparison, the left or right child node
is then evaluated. The applications we considered only require less-
than comparison. The feature vector index to compare to is stored
with the tree node data structure along with the value to be compared.
This traversal will continue until a leaf node is reached.

Figure 7b shows how the compressed feature vector and nodes
comparisons take place relative to the tree. In this case the seven
entries are placed in a vector based on which node they are to be
compared with. The feature vector has the entries arranged such that
the first entry is for the comparison to Node 0, the second entry is for
comparison to Node 1, and so on. This can be achieved by taking the
indices from the nodes and using them to put the entries in correct
order before passing them to the tree compare operation. The node
comparison values are also placed in an array in node order. The set
of indices, the node values, and their order are computed offline.

Figure 7c shows how EVA computes a tree compare with the
arrays. Values in the feature vector subset are compared in parallel
with the tree nodes. The result is an 7-bit vector which is decoded
to produce the index of the leaf node result. The leaf nodes are
numbered left to right. The executing application uses the produced
index to read the result value from an array which is computed
offline and is part of the user program.

The instruction for the tree compare can be seen in Table 1. The
first entry F[m] is the first register in a set of seven that will be used
as the first index. For example, F[0] sets floating point registers 0
through 6 as the feature vector input to the tree compare accelerator.
F[n] is the start index for the second set of seven floating point
registers to be used as the tree values. R[k] is the register to store the
result. For the tree compare example in Table 1, registers 0 through
7 contain the feature vector, registers 8 to 14 contain the tree vector
and the leaf node index result is placed in register 0.

Since a binary tree can be decomposed into subtrees [16], the
tree compare can be used for trees of arbitrary size by using the
output value as an index to determine the next subtree to load.

4.2.3 Max Compare
Computing the maximum of a set of numbers is a common operation
within mobile vision applications. This operation can be used for
performing dilation filtering on an image in preprocessing, or in
finding the largest histogram value in a feature extraction algorithm.
It is commonly used in a function called non-maxima suppression
to find the best scale/size or location of an object. Non-maxima
suppression locates the maximal response within a region or set.
This is a key operation in localizing features, objects, and responses.

Thus, EVA provides a maximum operation to speed up this common
computation.

The operation is utilized through a new instruction in the ISA
named Max Compare which can be seen in Table 1. The max
compare operates on small vectors with 8 or less entries and returns
the index of the maximum value within the vector. The only input,
F[m], is the first register in a set of eight that will be used as the
vector. For example, F[0] sets floating point registers 0 through 7
as the input to the max compare accelerator. R[k] is the register to
store the result. Table 1’s maximum compare example would result
in registers 0 through 7 being the vector and the index of maximum
value in the vector being placed in register 0.

4.2.4 Monopoly Compare
A common operation that takes place in vision applications is the
comparison of a single number to a large vector to determine if
the scalar is smaller or larger than all the numbers in the vector.
This operation is used in feature extraction to compare a single
pixel value to its neighbors in an image or to find the corners in an
image [28] [36]. This operation is quite frequent, and it is often a
gating operation to performing more computation [15]. It can also
be utilized during feature classification to track the top-N values.
Thus, it can be used throughout the entire computer vision software
pipeline. Given the potential benefits of speeding up this operation,
EVA has an accelerator to support this vector reduction operation.

The monopoly compare accelerator can be seen in Figure 8
along with pseudocode of its operation. It supports both less-than
and greater-than compares based on a bit in the opcode. The basic
instruction for the monopoly compare can be seen in Table 1. The
first entry F[m] is the value that will be compared to the vector. F[n]
is the start index for the set of sixteen floating point registers to be
compared against. R[k] is the register to store the binary results as
a single word. The example for the monopoly compare in Table 1
would result in the value in register 0 being compared using less-
than logic to the values in registers 16 to 31. The result would be
placed in register 0.

4.3 Tile Memory Architecture
Many vision algorithms have been shown to have 2D spatial locality,
in particular the feature extraction algorithms [40]. This character-
istic is due primarily to the input of computer vision algorithms
being images that are systematically scanned using small 2D win-
dows. However, most image data is stored in raster scan order which
causes vertically adjacent pixels to be stored at addresses that are
far apart. Software solutions have been proposed to reorder the
memory layout by Yang et al. [40]. Unfortunately, these solutions
place a burden on the developer and can be done more energy ef-
ficiently in hardware [14]. The extra hardware costs of a entirely
new memory controller may not be acceptable in mobile designs.
Thus, we adopt a novel 2D prefetcher that warms up the cache when

Original Code (410 Cycles):

monopolyCompare(A,V){

 unsigned short result=0;

 for(int i =0; i < 16; i++){

 result |= ((A<V[i]) << i);}}

New Code (64 Cycles):

monopolyCompare(A,V){

 unsigned short result=0;

 LOAD(A);

 LOAD(V);

 result = MONOCMP(A,V);}

a. b.

<

16 bits result

< <

V0 V1 V15...

<

A

Figure 8: Monopoly Compare Accelerator Overview The figure
shows the operation of the monopoly compare accelerator. (a) shows
the pseudocode for the operation. (b) shows the operation itself. The
accelerator compares a single value to the entries in a vector. The
results are combined into a single 16-bit result.

Patch Width

Patch
 Height

Image
Row
Step

Tile Cache
Accesss Prefetch

Queue

Prefetch
Limit

Figure 9: Tile Cache Overview The figure shows how the tile cache
handles image data. In this example the patch size is 2 x 3 cache
blocks. Each different colored segment is a cache block. When the
upper left (red) cache block is accessed using a tile cache load the
other cache blocks are added to the prefetch queue. The prefetch
queue has a limit of 4 outstanding request thus the last cache block
(blue) must wait until before the prefetch can be issued.

the application indicates it is touching 2D data. When the cache
is operating with this prefetcher, we refer to this as the tile cache.
Unlike other prefetchers, such as a stride prefetcher, that predict the
access pattern, the tile cache receives the correct step amount from
the application.

The tile cache generates prefetches of cache blocks in both the
x direction and y direction in the image whenever a special load
instruction is encountered. The amount of blocks to fetch in each
direction, patch width and patch height, are passed to the tile cache
through a single register along with the step or stride between image
rows in a second register as seen in Table 1. This allows the tile
cache to prefetch the entire patch that will be worked on. In the
example in Table 1, R[1] would contain an address to load. R[2]
would contain the patch step in the upper 16 bits. The lower 16 bits
would contain patch width in bits 8 to 15 and the patch height in
bits 0 to 7. The width is number of 64 bytes chunks in the tile. The
height is the number of steps in the tile. This information is provided
directly to the prefetcher. The result would be placed in R[0].

The prefetcher attempts to prefetch all the cache blocks in a patch.
However, the hardware has a limit on the number of outstanding
prefetch requests to avoid overburdening the memory system. We
empirically found a maximum prefetch count of four outstanding 64-
byte cache lines to be sufficient. Once a slot opens up for prefetching,
the line that has been requested the most will be issued first.

Figure 9 shows an example with the tile cache. The pixel values
are stored one after the other, and pixels in a tile can span on multiple
cache lines (shown in different colors in the figure). The cache will
fetch the required data while the tile cache will generate requests
for the rest of the tile. The cost of this mechanism is minimal, it
requires minor changes to state machine of the prefetcher and the
register operands can be general purpose registers. This gives the
benefits of 2D locality without modifying the rest of the memory
system.

4.4 Heterogenous Chip Architecture
As indicated in Section 3.2, diverse parallelism is a characteristic
of many vision workloads. In particular, there are points in many
vision algorithms where threads coordinate their efforts and share
their results with other threads [15]. Furthermore, some components
of vision algorithms do not benefit from thread-level parallelism.
For example, when the amount of data being processed is small
the coordination cost may hinder the overall performance. While
utilizing more cores can ensure support for thread-level parallelism,
the constraints of mobile systems require low energy usage to
preserve battery life. Thus, a balance must be struck. EVA provides
heterogenous cores to deal with this situation. In particular, the EVA
architecture is separated into two sets of cores. Each EVA system has
at least one high performance core called a coordinating core (CC)
and one or more lower performance cores called supporting cores
(SC). All the cores contain the EVA accelerators to improve their
energy efficiency and performance on mobile vision workloads. The
EVA architecture can support any processor interconnect; however,
for the remainder of this work we assume a bus interconnect. All
the cores share an L2 cache while they each have a private L1 cache
and tile cache support.

Figure 5 shows the relationship between the coordinating and
supporting cores performance capabilities. In particular, the coor-
dinating core has a wider pipeline than the supporting core. The
coordinating core also has more integer computation units, an L1
data cache with double the associativity and a wider writeback stage
when compared to a supporting core. They both have the same float-
ing point/SIMD engine design and EVA units. Furthermore, the
supporting cores focus more on conserving energy than improving
performance.

In our research we found that supporting threads take approxi-
mately 20% to 40% less time to complete. Based on this information,
the supporting cores in EVA can be as much as forty percent less
powerful as the coordinating cores on vision workloads with mini-
mal impact on the overall execution time.

Given these two types of cores, a key design question is what is
the proper number of each type. The answer to this design decision
lies in the demands of the target applications, combined with the
area and cost constraints of the target market. We shall examine this
key design decision in the experiments section. We investigate a set
of similar-sized configurations and evaluate their performance and
energy demands. These configurations can be seen in Figure 10.

5. Experimental Setup
5.1 EVA Model
We simulated our system using the gem5 simulator [9] in full
system mode. The simulated system ran Ubuntu for ARM Linux
with kernel version 3.3. We utilized Linux because it is a common

CC

CC CC

CC CC

CC

SC SC

CC

SC SC

CC CCCC SC SC

SC SC SC SC

CC CC CC

SC SC SC

1. 2. 3.

4. 5. 6.

Figure 10: EVA Coordinating (CC) and Supporting (SC) Cores
Configurations With Area Constraint The figure shows the possi-
ble EVA configurations given the maximum area of a four coordinat-
ing core without the EVA accelerators. Configurations (2),(4) and (5)
have roughly the same area as a 4 coordinating cores without EVA
features. Configuration (6) is slightly larger due to EVA features.

mobile operating system used in Android and Ubuntu for ARM.
We utilized the Ubuntu image for compatibility with MEVBench.
The Ubuntu for ARM was stripped down to give minimal services.
We modified the gem5 ARM model ISA to support the EVA
accelerator instructions. We modified the memory system to support
the tile cache functionality through a special load instruction. The
performance parameters of the gem5 model for both the coordinating
and supporting cores are listed in Table 2. The mobile baseline is a
coordinating core without EVA accelerators and mobile GPU is a
SGX 54x series.

Table 2: EVA Configuration

Feature Configuration

Core Clocks: 1 GHz
Coordinating Core: 32 bit RISC out-of-order,

4-way superscalar
Coordinating Core Pipeline: 8-Stage
Coordinating FUs: 4 integer units,

1 floating point units, 1 SIMD unit,
1 set of EVA accelerators

Vector Registers: 64 32bit Single Precision Registers
Coordinating Core L1 Caches: 32k 4-way assoc. instr. and data

(2ns)
Supporting Core: 32 bit RISC out-of-order
Supporting Core Pipeline: 8-Stage,

2-way superscalar
Supporting Core FUs: 2 integer units,

1 floating point units, 1 SIMD unit,
1 set of EVA accelerators

Vector Registers: 64 32bit Single Precision Registers
Supporting Core L1 Cache: 32k 2-way assoc. instr. and data

(1ns)
L2 Cache: 1MB unified non-inclusive (12ns)
Cache Coherency: MOESI
Processor Interconnect: 128-bit Bus@ 1GHz

with fast snoop unit
System Memory: 2GB LPDDR2
Instruction Set: ARM-v7
Technology Node: 45nm

The EVA dot product accelerator is based on the efficient floating
point unit designed by Galal and Horowitz [18]. The unit is pipelined
and provides its result after 7 cycles. The EVA monopoly compare,
tree compare and max compare are based on the work of Kim and
Yoo [25]. The compare based units are pipelined and provide their
results after a 5 cycle delay. The area for each functional unit can be
seen in Table 3 along with core area estimates. The base estimates for
the area of the cores are based on information from [8, 26] and [6].
We estimated the energy of the base cores using McPAT [27] along
with energy models based on the accelerator designs.

Table 3: Area estimates for the EVA Cores These estimates
assume a 45 nm silicon process.

Module depth latency Area (mm2)

Monopoly Compare 6 5 cycles 0.0489
Tree Compare 6 5 cycles 0.0215
Max Compare 6 5 cycles 0.0244
Dot Product 8 7 cycles 0.3290
Total for accelerators per core 0.4240
Coordinating Core 7.1200
Supporting Core 1.5839
Baseline Mobile Core w/SIMD + Embedded GPU 15.400

6. Experiments
6.1 Benchmarks
We utilized the MEVBench mobile vision benchmark suite [15] for
our evaluation of the EVA system. We modified the benchmarks to

insert the EVA operations where appropriate by finding loops with
acceleration opportunities and inserting the new instructions into
the code with inline assembly. We used the Code Sourcery ARM
cross compiler suite version 4.6.1 [29] to generate static executables.
We limited the compiler optimizations to -O1 for program correct-
ness; however, we did enable ARM Neon instructions and their
usage by the compiler with auto vectorization. In our simulations,
the coordinator core was running the coordinating thread of the
benchmark.

6.2 Single Core Results
Figure 11 shows the speedup gained through utilization of the EVA
features while running benchmarks compared to a coordinating core
without the EVA features. The tile cache benefits are primarily seen
in the feature extraction benchmarks (e.g., HoG, SIFT, and SURF).
These benchmarks all access image data and benefit from the 2D
data locality provided by our design. The tile cache had little impact
on benchmarks without 2D locality such as, SVM and BOOST.
There is a small amount of improvement with FACEDETECT
as well. Overall, the tile cache provides moderate performance
improvements (2% to 40%) for programs that exhibit 2D localities.
Since use of the tile cache is software controlled, its use can be
avoided for programs with out 2D locality, thereby preventing tile
cache prefetcher from negatively impacting program performance
by saturating the memory system.

Our accelerators provide a speedup in all the benchmarks except
FACEDETECT and AUGREAL. The benefits of the EVA accelera-
tors was not seen fully due to limited use of the accelerators in these
benchmarks. Overall the complete EVA design provides an average
speedup of 1.8x. It peaks near 4x for SVM due to its very heavy use
of the dot product operation.

Figure 12 shows the normalized energy usage of EVA while
running the benchmarks. The energy is calculated using the simu-
lation statistics to generate an input model for McPAT [27]. Mcpat
models the common microarchitectural components such as caches
and ALUs at our given technology node (45nm) based on runtime
activity. A framework similar to CACTI [39] is used to model mem-
ory components in this framework. We combine these results with
models for the energy consumption for each custom accelerator to
compute the total energy. The graph in Figure 12 plots the energy of
three EVA designs, normalized to the energy of a coordinating core
without EVA enhancements. It is interesting to note that, in some
cases, the tile cache provides a small amount of energy savings.
This is due to not having the wait for the data to be returned before
resuming execution, thus reducing idleness of the accelerators. The
tile cache is designed to allow for memory accesses in both a 1D
and 2D fashion. It is primarily beneficial in the feature extraction

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p

ee
d

u
p

Tile Cache

Func. Units

EVA

Figure 11: EVA Single Coordinating Core Speedup The figure
shows the speedup of the an EVA single coordinating core versus a
single coordinating core speedup that does not have EVA. The plot
shows how both the tile cache and EVA accelerators both contribute
to the performance increase.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 e
n

er
g

y

Tile Cache
Func. Unit
EVA

Figure 12: EVA Single Coordinating Core Normalized Energy
The figure shows the energy per image frame for a single EVA
enhanced coordinating core normalized to a coordinating core
without the EVA enhancements. The energy savings using EVA
in general are quite good. In general the savings come from the use
of the EVA accelerators that are specifically designed for the given
operation, and the decrease in the committed instructions which
decreases the work of the pipeline as a whole.

benchmarks as a result. The accelerators show a decrease in energy
in all the benchmarks except FACEDETECT. This is due to the same
effects that caused the slight slowdown. In the case of SVM, the use
of the efficient vector reduction dot product accelerator provides a
large amount of energy savings. In terms of energy, EVA provides
savings of close to 30% and peaks at 3x decrease in energy while
also providing an average speedup. While the majority of energy
savings are due to the more efficient hardware utilization, modest
savings are also thanks to the tile cache.

Figure 13 shows the usage of the accelerators. The figure demon-
strates how the various benchmarks utilize different accelerators.
Overall, the most exercised accelerators are the dot product accelera-
tor followed by the monopoly compare accelerator. The tree compare
accelerator is heavily utilized in the tree-based benchmarks.

Figure 14 shows the accuracy of the tile prefetcher, and
shows its improved performance compared to a traditional stride
prefetcher [12]. The tile cache performs at least as well as the stride
prefetcher in all benchmarks. The tile cache outperforms the stride
prefetcher in the feature extraction algorithms due to the accessing
of patches to build feature descriptors for feature points. The loca-
tions of the feature points are random and thus the stride prefetcher
is unable to detect a consistent stride. This condition is also present
when performing filtering operations with small 2D kernels.

Overall the single-core EVA provides an average speedup of
approximately 1.8x while reducing the energy usage of a core by
over 30%.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

N
u

m
b

e
r

O
f

U
se

s
O

f
EV

A

A
cc

e
le

ra
to

rs

Tree Compare

Vector Max

Monopoly Compare

Dot Product

Figure 13: EVA Single Coordinating Core Accelerator Usage
The figure shows the usage of the EVA single coordinating core
accelerators. The plot shows how often the a given accelerator
contributes to the performance increase.

0

0.1

0.2

0.3

0.4

0.5

 C
ac

h
e

 M
is

s
R

at
e

Stride Prefetcher

Tile Prefetcher

Figure 14: Comparison of Tile to Stride Prefetcher The figure
shows the cache miss rates for accessing image data using the
tile cache versus a cache with a stride prefetcher. The tile cache
performs at least as well as the stride prefetcher in all benchmarks.
It outperforms the stride prefetcher in cases where there are small
image patches or random patch access patterns. Random patch
access patterns typically occur during feature descriptor building
phase of feature extraction.

6.3 Multicore Results
We ran the configurations shown in Figure 10. We show the average
speed up for the benchmark suite for each configuration in Figure 15.
We constrained our configurations to approximately the area of an
embedded quad-core processor utilizing four coordinating cores
without EVA features. This represents a modern class of embedded
machines and considers its area constraints. The EVA accelerators
were used on all the benchmarks in the figure. The tile cache, which
can be configured in software, was only active on benchmarks that
showed a performance benefit during single-threaded execution.
Overall, the use of more cores is beneficial although the performance
is limited by the last thread to complete it’s workload. In some
cases, the workload of a supporting core causes slowdown for the
entire system. The overall performance shows that having a single
coordinator and six supporting core seems to be the best performing
configuration.

Figure 15 shows the average energy usage to process a 352x288
frame for each configuration for the benchmark suite. The energy is
normalized to a single coordinating core without the EVA enhance-
ments. The energy usage drops as the number of cores increases
due to the reduced runtime as thread-level parallelism is exploited.
Once a core has completed their portion of work, they sit idle. The
supporting cores use less energy making the idle time less costly.

Figure 16 shows the scalability of the EVA coordinating cores
given a fixed power budget of 5 Watts as the voltage is scaled

EVA 1CC,
6SC

EVA 2CC,
4SC

EVA 3CC,
3SC

Eva 4CC

EVA 2CC

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5

Sl
o

w
d

o
w

n

Normalized Energy

Figure 15: Multicore Configuration performance of EVA This
figure shows the multicore performance of EVA. The x axis is
energy is normalized to a single coordinating core without EVA
enhancements. The y axis is 1/speedup such that closer to the origin
is better. It shows that utilizing 1 coordinator core and 6 supporting
cores is pareto optimal given the quad core area constraint. In other
configurations, the coordinating cores waste energy waiting. If the
supporting cores wait, they use less energy than a coordinating core.

down. The plot shows that for a 5W budget, the number of cores
with highest performance is 12 cores with a peak speedup of 3.2x
on the MEVBench benchmarking suite with each core running at
approximately 800MHz clock. The 24 core configuration is above
the power budget but with a slight increase in the power budget
would also be a good platform for vision applications. Thus with a
fixed power budget, the performance versus energy tradeoff can be
managed to provide a balanced solution. For example, if energy is
more important than speed then 14 cores would be a better solution,
given this power budget.

6.4 Comparisons To Other Approaches
Figure 17 compares the performance of EVA against other solutions.
For each experiment, the platform is running the SIFT algorithm
optimized for that particular platform. The graph plots the perfor-
mance of Qualcomm Snapdragon S2 with Adreno [13, 24], Intel i7,
GTX 260, EFFEX [14], and EVA on a pareto chart, which indicates
the energy demands and performance capabilities of each design
solution. The EVA solution is closest to the origin making it a pareto
optimal solution, i.e., there are no other analyzed solutions with
better energy (at this performance), or better performance (at this
energy). EVA’s accelerators increase the computation performance
and decrease the energy usage. The use of heterogeneous multicore
takes advantage of thread-level parallelism in an efficient manner.
While GPUs are efficient cores for graphics, the comparison of
the mobile GPU with the desktop GPGPU shows the large gap in
performance in utilizing GPUs on mobile devices [13].

7. Related Work
Companies such as Qualcomm and Texas Instruments (TI) have
released closed-source computer vision libraries that are optimized
for better performance on their SoCs [34, 38]. These libraries typi-
cally use computational resources not available to end developers
such as small DSPs and image filtering accelerators. Thus, newer
vision algorithms may not be supported immediately or the API may
not match the developer’s needs. With EVA, the user software has
access to the accelerators, thus new or modified algorithms can be
readily ported to the EVA platform.

Yao et al. [41] propose the use of specific hardware for the SIFT
algorithm. Javaid et al. [23] proposed optimized architectures for
video encoding. Others have proposed similar hardware for specific
computer vision algorithms such as BOOST [21] or applications
such as robotics [42]. Such solutions are capable but inflexible. For
example, although ORB [37] was developed based on FAST [36]
the algorithms are different enough that any hardware system
built for the FAST algorithm would be need to be completely
redesigned. EVA’s programmability provides flexibility for the
developer to evolve the platform’s vision software capabilities, while
still maintaining an efficient solution.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

P
o
w
er
 [
m
W
]

E
n
er
g
y
[m
J]

V
o
lt
ag
e[
V
]

S
p
ee
d
u
p

Cores

Power Energy Speedup Voltage

5w

Figure 16: EVA Coordinator Cores Scaling The figure shows the
energy and speed up for a fixed power budget of 5W as voltage is
scaled and the number of cores is increased. This analysis assumes
an interconnect that can scale such as for a NoC. 12 cores seems to
give a good performance with a high speed up and low energy.

EFFEX

EVA (1CC,6SC)

Snapdragon
S2 with
Adreno

i7
260 GTX

EVA 2CC

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14

Ex
e

cu
ti

o
n

 T
im

e
(s

)

Energy (J)

Pareto Frontier

Figure 17: Comparison Of EVA with Other Solutions This figure
shows a comparison of EVA against other solutions based on [13,
24, 30]. It demonstrates that EVA provides a highly effective energy-
performance tradeoff for the SIFT algorithm.

Clemons et al. [14] developed EFFEX for the feature extraction
phase of mobile vision. EVA provides capabilities for the entire
mobile vision pipeline as opposed to the single phase focus of
EFFEX. EVA avoids using a special memory controller to exploit
2D locality and instead utilizes a lower cost tile cache prefetcher.
EVA utilizes less energy and has less latency than EFFEX.

Raghavan et al. has proposed powering up cores for fractions
of a second and then powering them down to cool to handle high
computational loads such as mobile vision [35]. This technique is
very effective for applications that have pauses between computa-
tions, however, many vision applications such as person tracking
and augmented reality require continuous computation. EVA is able
to maintain high performance in mobile vision for extended periods.

ARM has released the big.LITTLE platform for energy efficient
heterogeneous computing [6]. This is a general purpose system with
two sets of multi-core processors of varying performance capability
and energy usage. They are comparable in how they deal with
diversely parallel workloads, however the big.LITTLE cores have
no special accelerators for vision. EVA contains accelerators for
mobile vision and a tile cache to increase performance.

GPGPUs have been used to increase the performance of
computer vision on the desktop with impressive speedups by
Prisacariu [33], Fung [17] and OpenCV [32] among others. How-
ever, mobile GPUs have been shown to be inefficient at mobile
vision due to the energy and cost constraints of mobile systems [24].
Figure 17 shows that EVA is a pareto optimal solution when com-
pared to GPGPUs and mobile GPUs. There are other solutions
within the SoC space, such as the DSP. EVA can be utilized to im-
prove the performance of these solutions as well. EVA is orthogonal
to these solutions as it can share the processing with other devices
allowing even more heterogeneity in the design.

Chen and Baer proposed the stride prefetcher to accommodate
predictable data loads [12]. When accessing data within a small 2D
window, the stride prefetcher has issues stabilizing due to the access
pattern in the 2D window having a stride moving in the x direction
of one pixel and a stride moving in the y direction of the image step
or vice versa. Algorithms such as BRIEF can have random steps
within a patch causing further issue with stride prefetchers. The EVA
tile cache has no stabilization issues because it receives information
from the program and is designed for multiple strides.

8. Conclusion and Future Work
Mobile vision is a large and complex application space that has an
insatiable need for computational power. Some vision applications
can utilize large amounts of parallelism while others benefit from
serial performance. There are some vision algorithms that have
2D data locality while others only contain mostly 1D locality. Most
vision algorithms contain vector reduction operations. As such, there
is a need for a system that can take advantage of all these traits to
increase performance in the mobile space.

In this work we presented EVA, an efficient architecture for
mobile vision applications. EVA is a heterogeneous multicore with

custom accelerators and a 2D locality caching system to increase
the performance of mobile vision systems. We have shown that
EVA’s vector reduction accelerators and ability to exploit 2D locality
improves both the energy and performance when executing mobile
vision workloads.

We have explored performance-optimal configurations of EVA
given a mobile quadcore area constraint. The single coordinating
core with 6 supporting core is the best performing design under this
constraint due to having the lowest energy and execution time on
the benchmarks. Additionally, the energy-optimal number of cores
given a fixed power budget has also been shown. For a 5W power
constraint, we found that the most effective design was a 12-core
configuration based running at 680 MHz and 0.9 volts.

There are several ways in which we intend on extending EVA.
The first is increasing the number of custom accelerators to include
more functionality. We would also like to study the possible usage
of EVA in applications outside of computer vision such as server-
level recommendation systems. Finally, we want to investigate the
application of EVA optimizations to other mobile compute platforms,
such as mobile GPUs and DSPs, to increase their effectiveness.

9. Acknowledgment
This work is supported by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA.

References
[1] A. Adams, E.-V. Talvala, S. H. Park, D. E. Jacobs, B. Ajdin, N. Gelfand,

J. Dolson, D. Vaquero, J. Baek, M. Tico, H. P. A. Lensch, W. Matusik,
K. Pulli, M. Horowitz, and M. Levoy. The Frankencamera: an
experimental platform for computational photography. In SIGGRAPH,
2010.

[2] C. Albanesius. Google ’Project Glass’ Replaces the Smartphone
With Glasses. http://www.pcmag.com/article2/0,2817,2402613,00.asp,
2012.

[3] Apple. Apple. http://www.apple.com/, 2011.
[4] ARM. 2GHz Capable Cortex-A9 Dual Core Processor Implementation.

http://www.arm.com/files/downloads/Osprey Analyst Presentation
v2a.pdf, 2011.

[5] ARM. ARM NEON. http://www.arm.com/products/processors/ tech-
nologies/neon.php, 2011.

[6] ARM. ARM big.Little. http://www.arm.com/files/downloads/big
LITTLE Final Final.pdf, 2012.

[7] R. Baldwin. Ikea’s Augmented Reality Catalog Will Let You Peek
Inside Furniture. http://www.wired.com/gadgetlab/2012/07/, 2012.

[8] Berkeley Design Technology Inc. ARM Announces 2GHz Dual Core
Cortex A9. http://www.bdti.com/InsideDSP/2009/09/23/Arm, 2011.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[10] D. G. R. Bradski and A. Kaehler. Learning OpenCV. O’Reilly Media,
Inc., 2008.

[11] L. Breiman. Random forests. Mach. Learn., 45(1), Oct. 2001.
[12] T.-f. Chen and J.-l. Baer. Effective Hardware-based Data Prefetching

for High-performance Processors. IEEE Transactions on Computers,
1995.

[13] K.-T. Cheng and Y.-C. Wang. Using mobile GPU for general-purpose
computing: A case study of face recognition on smartphones. In VLSI-
DAT, 2011.

[14] J. Clemons, A. Jones, R. Perricone, S. Savarese, and T. Austin. EFFEX:
An embedded processor for computer vision-based feature extraction.
In DAC, 2011.

[15] J. Clemons, H. Zhu, S. Savarese, and T. Austin. MEVBench: A mobile
computer vision benchmarking suite. In IISWC, 2011.

[16] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[17] J. Fung and S. Mann. OpenVIDIA: Parallel GPU computer vision.
In Proceedings of the 13th annual ACM international conference on
Multimedia, MULTIMEDIA ’05, New York, NY, USA, 2005. ACM.

[18] S. Galal and M. Horowitz. Energy-efficient floating-point unit design.
IEEE Trans. Comput., 60(7):913–922, July 2011.

[19] Google. Nexus Galaxy Tech Specs.
http://www.google.com/nexus/#/tech-specs, 2011.

[20] J. Hennessy and D. Patterson. Computer Architecture - A Quantitative
Approach. Morgan Kaufmann, 2003.

[21] M. Ibarra-Manzano and D. Almanza-Ojeda. Design and Optimization
of Real-Time Boosting for Image Interpretation Based on FPGA
Architecture. In CERMA, 2011.

[22] Intel. Intel Core i7-4770K Processor.
http://ark.intel.com/products/75123/, 2013.

[23] H. Javaid, M. Shafique, S. Parameswaran, and J. Henkel. Low-power
adaptive pipelined mpsocs for multimedia: an h.264 video encoder case
study. In DAC, 2011.

[24] G.-R. Kayombya. SIFT feature extraction on a Smartphone GPU using
OpenGL ES2.0. Master’s thesis, Massachusetts Institute of Technology,
2010.

[25] J.-Y. Kim and H.-J. Yoo. Bitwise competition logic for compact digital
comparator. In Proceedings of the IEEE Asian Solid States Circuits
Conference, 2007.

[26] J. Koppanalil, G. Yeung, D. O’Driscoll, S. Householder, and
C. Hawkins. A 1.6 GHz dual-core ARM Cortex A9 implementation on
a low power high-K metal gate 32nm process. In VLSI-DAT, 2011.

[27] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO, 2009.

[28] D. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 2004.

[29] Mentor Graphics. Sourcery CodeBench.
http://www.mentor.com/embedded-software/codesourcery, 2011.

[30] M. Murphy, K. Keutzer, and H. Wang. Image feature extraction for
mobile processors. In IISWC, oct. 2009.

[31] NVIDIA. Variable SMP A Multi Core CPU Architecture for Low
Power and High Performance. http://www.nvidia.com/object/white-
papers.html.

[32] OpenCV.org. OpenCV Platforms: CUDA, November 2012.
http://opencv.org/platforms/cuda.html.

[33] V. Prisacariu and I. Reid. fastHOG - A real-time GPU implementation
of HOG. Technical Report 2310/09, Department of Engineering
Science, Oxford University, 2009.

[34] Qualcomm. Fastcv. https://developer.qualcomm.com/mobile-
development/mobile-technologies/ computer-vision-fastcv.

[35] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. K. Martin. Computational sprinting. In
HCPA, 2012.

[36] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In ECCV, May 2006.

[37] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An Efficient
Alternative to SIFT or SURF. In ICCV, 2011.

[38] Texas Intruments. VLIB 2.0: Video Analytics And Vision Library,
December 2008. http://www.ti.com/lit/ml/sprt502a/sprt502a.pdf.

[39] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi. A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies. In ISCA, 2008.

[40] X. Yang and K. Cheng. Accelerating surf detector on mobile devices.
In ACM Multimedia Conference, 2012.

[41] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng. An architec-
ture of optimised sift feature detection for an fpga implementation of
an image matcher. In FPT, 2009.

[42] J. Yudi Mori, D. Muñoz Arboleda, J. Arias Garcia, C. Llanos Quintero,
and J. Motta. Fpga-based image processing for omnidirectional vision
on mobile robots. In SBCCI, 2011.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move right by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 795
 335
 Fixed
 Right
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryList_V1
 qi2base

