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Abstract 

 Software bugs comprise the greatest threat to computer 

security today. Though enormous effort has been expended 

on eliminating security exploits, contemporary testing 

techniques are insufficient to deliver software free of 

security vulnerabilities. In this paper we propose a novel 

approach to security vulnerability analysis: dynamic control 

frontier profiling. Security exploits are often buried in 

rarely executed code paths hidden just beyond the path 

space explored by end-users. Therefore, we develop 

Schnauzer, a distributed sampling technology to discover 

the dynamic control frontier, which forms the line of 

demarcation between dynamically executed and unseen 

paths. This frontier may then be used to direct tools (such as 

white-box fuzz testers) to attain a level of testing coverage 

currently unachievable. We further demonstrate that the 

dynamic control frontier paths are a rich source of security 

bugs, sensitizing many known security exploits.   

1. Introduction 
 The vast majority of security attacks are enabled by 

software bugs. Defects which escape detection of software 

quality assurance can have global impact, such as the Code 

Red and Sapphire/Slammer worms which utilized buffer 

overflows for system exploitation. Fueled by these and other 

high-profile exploits, buffer overflows remain a top security 

concern [35]. Programs written in  popular languages such 

as C and C++ are a rich source of buffer overflow bugs, as 

these languages cannot, without high overhead, 

systematically eliminate buffer overflow vulnerabilities 

[31]. This then places the burden on test to find potential 

buffer overflow vulnerabilities before they are exploited. 

 Commercial software is heavily tested before 

deployment. Indeed, coding consumes only a small 

percentage of development effort [27], while studies have 

shown that testing comprises greater than fifty percent of the 

cost of software development [4][18]. Regardless, software 

defects continue to escape detection. 

 Understanding the way in which latent defects are 

exploited can reveal critical insight into their prevention. 

The majority of security-related faults reside in the least 

likely to be executed code sequences, and by extension, the 

least tested portions of code [16]. In an effort to heighten 

initial customer satisfaction, developers tend to focus their 

limited test resources on the code paths they anticipate users 

will execute most often, creating significant overlap in 

developer test and user execution. This in turn shapes a 

common discovery model used by attackers to locate 

defects. A malicious user will provide permutations of 

typical application inputs in an effort to cause slight (but 

expected) deviations from the well-travelled, and thus well-

tested, path of normal execution. Given the combined nature 

of testing and exploitation discovery models, the location of 

defects most likely to be exploited can be identified. This 

exploit-rich code exists just beyond the well-trodden 

execution paths of testers and users, yet is readily reachable 

by attackers. We identify these locations as the dynamic 

control frontier (DCF).  

 The dynamic control frontier is a collection of paths 

rooted in dynamically executed paths. However, these paths 

are special in that, had the final control decision in these 

paths executed a different basic block, it would create a 

new, never-before-seen path. This defines the frontier of the 

path space executed by an application with respect to a set 

of inputs. Collectively, the DCF represents the most readily 

accessible paths of execution which are unlikely to be 

executed by end-users; consequently, these paths have a 

high degree of reachability for an attacker. Accordingly, any 

latent defects in the unexecuted portions of the dynamic 

control frontier paths are unlikely to be found by users and 

developers, but these bugs can be quickly uncovered by 

attackers
1
.  

 It is interesting to look at the dynamic control frontier of 

an application arising from the test inputs of developers. 

Indeed we show that this is valuable as we find real 

vulnerabilities at these locations. However, it is more 

intriguing to examine the dynamic control frontier for a non-

trivial sized population of end users. An attacker is most 

interested in this frontier as it represents code paths which 

have not been tested nor executed with any frequency by 

any user of a particular program. In contrast, any paths 

frequently executed by users which are not represented in 

the test suites will probably be devoid of showstopper bugs, 

as users would otherwise complain. As such, in the 

construction of a system to profile the DCF, we must be 

mindful that such a system should analyze the DCF of a 

large population of users without imposing an unacceptable 

impact on individual user performance.  

                                                         
1 Though attempts have been  made to quantify software exploitation 

vulnerability, no known accurate database exists for the quantification of 

effort required to exploit vulnerabilities [26].  
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1.1. Contributions of this Work 
 The goal of this work is not to fix software bugs which 

drive security exploits; existing tools will be utilized for this 

purpose. Our goal is to instead show such tools, which often 

suffer from exponential path explosion, where they can best 

focus their efforts to find real-world, mission-critical 

security exploits. This goal merits the work’s namesake: 

schnauzer. Utilized by law enforcement, emergency 

responders, and medical professionals the schnauzer is a 

working dog that is exceptionally capable of locating 

critically important items (illegal drugs, missing persons, 

etc.). The schnauzer does not actually find the desired item, 

it instead zeroes in on the locations where its human partner 

should search -- the perfect metaphor for our work. 

 The value of the DCF is not to identify code paths with 

the highest density of bugs. The value of the DCF is to 

identify the code paths which are least tested by developers 

and users, while also most readily accessible to attackers. 

We will demonstrate that there is mounting evidence that 

bugs hidden within the DCF are more likely to be exploited, 

and therefore are of the greatest merit to discover. 

In this work, we develop a low-overhead and efficient 

software mechanism that effectively identifies the dynamic 

control frontier over a large population of users of an 

application. The approach utilizes a distributed sampling 

method in which individual user machines locate dynamic 

control frontier paths and occasionally communicate them 

back to the developers.  Developers utilize white-box testing 

and dynamic program analysis to fully test these paths for 

security vulnerabilities.  Over time, the system raises the bar 

on what constitutes the DCF, and thus raises the bar on the 

difficulty of finding security vulnerabilities. In this work, we 

make the following novel contributions: 

 We present an effective, scalable, and decentralized 

approach to identifying the dynamic control frontier for a 

program running across a large population of users. 

 We present a software implementation for harvesting 

dynamic control frontier information from individual user 

machines.  The approach utilizes dynamic code 

instrumentation to limit the impact to application 

execution while providing appropriate coverage of the 

dynamic control frontier in the aggregation of users. 

 We demonstrate the value of the dynamic control frontier 

by showing that many known security vulnerabilities may 

be found there. We show that dynamic control frontier 

paths sensitize known exploits identified by the NIST 

National Vulnerabilities Database.  

 We evaluate the effectiveness of the approach by 

exploring the performance—cost tradeoffs while 

harvesting DCF paths.  We also developed a novel whole-

path analysis technique that allows us to gauge the 

coverage of the approach (i.e., the total percent of dynamic 

control frontier paths found as a function of total 

population run time).  We present results for a wide range 

of non-trivial software packages that show our approach 

achieves good coverage while keeping performance 

impacts low. 

The remainder of this paper is organized as follows. 

Section 2 provides an in-depth overview of the dynamic 

control frontier. Section 3 details our DCF profiler, 

Schnauzer. Experiments conducted to evaluate the benefits 

and costs of DCF profiling, and a full analysis of the results 

are delivered in Section 4. Finally, Section 5 lists related 

works while Section 6 gives conclusions and future work. 

2. Dynamic Control Frontier Discovery 
Security exploits arise from bugs which escape detection 

by the developer. Often, hidden bugs only appear when 

sensitized by the proper path [4]. For example, attempting to 

free a pointer after already doing so previously (double 

free). The predominance of path-sensitized bugs follows 

from the observation that commercial software generally 

achieves both branch and code coverage but remains 

deficient with respect to path coverage. Unfortunately, 

achieving path coverage is currently an intractable problem 

for applications of any appreciable size. This is due to the 

explosion in the number of paths, ultimately limiting path 

testing to a tiny subset [25].  
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Figure 1 - Path Sensitization. Represented is the high-level 

overview of a security bug from the National Vulnerability 
Database (CVE-2012-2110 and CVE-2012-2131) for the 
OpenSSL application. In experimentation, this vulnerability 

was found to be sensitized by the dynamic control frontier. 
Here, a buffer overflow attack results from crafted data of an 
RSA public key. Note that the vulnerability is only sensitized 
by a single path (N, Y), indicated in red.  

Given the combination of path explosion and the need for 

path sensitization to activate bugs, it is inherent that 

exhaustive testing to locate bugs is an infeasible approach 

[34]. Thus, software testers are forced to constrain the path 

space to some feasible subset [4]. The quandary of test 

allocation, or the optimal test resource allocation problem 

(OTRAP) [25], is generally approached from the perspective 

of software reliability and cost [15][32], rather than security. 

Identifying the subset of paths which are likely to contain 

bugs, which are in turn likely to be exploited, would yield 

the highest productivity in test relevant to potential exploit 

detection.  

This subset of paths, deemed highly likely to result in 

exploits, is encompassed by the dynamic control frontier. 

The dynamic control frontier represents the border of 

dynamic execution between dynamically seen paths and 

those which are unseen. The first unexecuted basic block of 

these dynamic control frontier paths represents a location 

that is likely to hide a security exploit. 



 
 

Consider the known security bug modeled in Figure 1, a 

high-level representation of an exploit discovered in 

OpenSSL. The bug, documented in the National 

Vulnerability Database [24] and which enables a buffer 

overflow attack, is only sensitized by a specific path of 

execution. When handling DER encoded data, maliciously 

crafted data can activate the vulnerability. Note that the (N, 

N) (Y, N) and (Y, Y) paths were seen with some frequency 

while running OpenSSL ssltest and do not sensitize the bug, 

but the path (N, Y) was not seen, and hence represents the 

DCF where the bug was sensitized by the untested path.  

Paths which remain unexecuted, that are not 

comprehensively tested, will continue to harbor latent bugs. 

This space, all un-executed paths, is still far too large for 

comprehensive testing. However, the code paths which are 

immediately outside the dynamic execution are the ones 

which are the most readily reachable by attackers. Because 

the dynamic control frontier is unlikely to ever be executed, 

the security bugs in this code will typically only be fixed 

when an active exploit is exposed.  Debugging the DCF will 

force any attacker to probe deeper into the code. This will 

raise the bar in terms of the amount of effort required to 

attack programs, and make it much more difficult for an 

attacker to find good security bugs. In Section 4 we show 

that the number of dynamic control frontier paths is 

relatively few and quite rich in security exploits.  

                     

                            
                    

                         
                               

Figure 2 – Dynamic Control Frontier. The dynamic control 
frontier of an application P, DCF(P), is the set of paths p, 
comprised of a series of n basic blocks. These paths consist 
of basic blocks, where the first n-1 basic blocks were in fact 
executed in EX(P), but the whole series of n was not. 

 As defined in Figure 2, the dynamic control frontier of an 

application are the sets of length-n paths, comprised of basic 

blocks, where the first n-1 blocks have been seen to be 

executed, but the full series of n basic blocks has not been 

seen to execute. Thus, the dynamic control frontier is a path 

in which the last control decision to basic block bbn creates 

a never-before-seen path of execution. Basic block bbn is the 

likely site of a security exploit, sensitized by the path 

leading to it (bb1,..., bbn-1). More formally, the dynamic 

control frontier is defined as follows. The dynamic control 

frontier DCF(P), of an application P, is the set of paths p 

comprised of  a series of n basic blocks. These paths 

consisting of n basic blocks, where the first n-1 basic blocks 

form a path (of length n-1) in the set of executed paths, 

EX(P), but the full length-n path of basic blocks is not 

contained in the set of executed paths EX(P). 

2.1. Computing the Dynamic Control Frontier   
 Determining the exact dynamic control frontier, which we 

call the ground truth DCF, for a given application 

execution can be accomplished by analyzing its execution 

trace.  

 The ground truth DCF computation method is given in 

Figure 3. First, a trace of basic blocks is collected for an 

application in execution with respect to a set of inputs. This 

trace is then scanned for all length-n paths of basic blocks. 

These paths are sorted into sets by their length-n-1 path 

prefixes. For each path within the set of paths with common 

path prefixes, if there exists any control exit from the n-1 

block (the last block of the path prefix) which is not 

represented in the set, then this path prefix, along with the 

unseen control exit block, is a member of the set of ground 

truth DCF paths.  

                              
                                              

                         
                      

                                 

                           

                                        

                    

Figure 3 - Ground Truth Dynamic Control Frontier.  The 

ground truth DCF of an execution instance EX(P) of 
application P, GTDCF(EX(P)), is a set of paths p, comprised 
of  a series of n basic blocks. These ground truth paths are 
those where their length-(n-1) path prefix was executed, 
EX(P), but their entire length-n paths were not. 

2.2. Profiling the Dynamic Control Frontier 
 Establishing the ground-truth set of dynamic control 

frontier paths, needed to provide good coverage of the 

dynamic control frontier paths for an application, is 

prohibitively expensive to do widely. Analyzing an 

execution trace assumes a finite application run. Also, such 

a trace grows to unmanageable size after long execution 

periods. For example, collecting a trace consisting of purely 

conditional branch information, limited to instruction 

address and branch direction, while executing the SQLite 

test suite quick test accrues over 300 GB of data during 

ground truth analysis of a 154 billion instruction length 

execution. Further, keeping track of all potential DCF paths 

during a program’s execution is a significant performance 

overhead; for example, the ground truth DCF analysis of 

SQLite using Pin-based instrumentation [21] resulted in an 

average application slowdown of 26X.  

Thus, a practical method must be developed to profile an 

application for the ground truth DCF. This can be achieved 

by sampling a small subset of the paths executed by an 

individual user and combining these samples over a large 

user population. While observing the execution of an 

application, at occasional intervals, a path is selected for 

profiling. A hypothesis is made from the length-(n-1) prefix 

seen in execution and the length-n path derived from this 

prefix which is not seen (i.e., the hypothesis is constructed 

by taking the opposite branch direction out of the last 

control decision seen to execute). We then hold this 



 
 

hypothesis for an extended period of time, waiting to see if 

the path is executed, and thus the hypothesis refuted. If the 

hypothesis path is not seen to be executed for this holding 

period, it is considered a good candidate for a DCF path. If, 

however, the hypothesis is seen to be executed, the 

hypothesis is refuted and not considered further. 

The dynamic control frontier can be established for any 

single execution of an application. However, this frontier 

will vary depending on the inputs to an application for a 

given instance. Consequently, the DCF discovered for a 

single user is of limited value. A user may run the 

application with inputs which ultimately refute a hypothesis 

considered a good candidate by another user. Potential DCF 

candidates are therefore collected into a single global path 

filter database which is shared with all users over time.  

Initially, dynamic control frontier path hypotheses will be 

sampled by multiple users. If a path is refuted, it will be 

removed from the global path filter. Otherwise, as 

hypotheses in the global path filter age they come to 

represent true dynamic control frontier paths. These 

venerable DCFs can then be used to filter hypothesis 

creation on individual hosts as profiling these high-

confidence DCF paths would provide no benefit. Figure 4 

depicts an overview of DCF sampling. 

Users

Developer

Analysis

New DCF Paths

Developer

Test

Global Path
         Filters

Test

Coverage

High-Confidence
 DCF Paths

Refuted Global Path
              Filter DCFs

 
Figure 4 - Dynamic Control Frontier Sampling System. 

Users profile application execution while sampling to 
discover dynamic control frontier paths. These DCFs drive 
developer analysis, which directs testing methods. Global 
path filters coordinate work between users. 

2.3. Leveraging the Dynamic Control Frontier  
Once dynamic control frontier paths begin to materialize, 

they must be harnessed to find security vulnerabilities. We 

can use white-box testing to deeply analyze DCF paths for 

security vulnerabilities. White-box testing has emerged as 

an effective testing approach to overcome this limitation 

[12].White-box testing is designed to fully explore the 

dynamic control flow within a code module. The approach 

essentially is the reverse of fuzz testing. Rather than 

buffeting the code with random inputs in the hope of 

exposing new code paths, the approach instead selects a 

specific code path for testing and then uses SAT-based tools 

to deduce the inputs to the program or function that would 

cause the path to execute.  

White-box testing has offered the ability to improve fuzz 

testing by a considerable margin [11], however, the 

approach still has limitations.  For any non-trivial program, 

the number of paths that must be explored by white-box 

testing quickly overwhelms the computational capability of 

existing tools.  For example, if the code in Figure 1 is 

embedded within a loop, the number of paths will be 

exponential with the number of loop iterations, e.g., at 1000 

iterations the number of unique paths is 2
1000

. 

DCFs have the potential to become a divining rod for 

white-box testing tools, showing them where to spend their 

efforts to search for vulnerabilities. The DCF instructs 

which path to follow to reach the likely bug site; the SAT 

engine typically found in white-box testing tools can 

determine the inputs necessary to execute the DCF path (or 

determine that it is an infeasible path of execution). It is 

interesting to note that a key insight from white-box testing 

is that bugs are not far from the path of execution, they are 

just out of reach. Dynamic control frontier profiling 

leverages this same insight by identifying code just beyond 

the demarcation of executed code. To effectively expose 

bugs, attackers must explore code that is not executed by 

any user. As such, there is much promise to improve 

security vulnerability analysis via white-box testing by 

identifying dynamic control frontier code paths over a 

large population of users’ machines.    

3. Schnauzer: A Distributed DCF Profiler 
To validate our distributed approach to profiling the 

dynamic control frontier, Schnauzer was built. Our profiler 

was implemented as a client tool utilizing the DynamoRIO 

dynamic instrumentation tool platform [3]. The goal in 

developing Schnauzer was to push DCF analysis into the 

user space by using sampling to demonstrate the potential to 

minimize runtime overheads associated with DCF profiling, 

all the while achieving coverage of the ground truth DCF.   

Efficiency is critical when profiling in the user space. 

Thus, profiling at the abstract level of the basic block is 

undesirable. As such, the conditional branches of an 

application are preferred to model paths for the dynamic 

control frontier. Conditional branches are chosen as they 

may be observed directly from the execution stream, unlike 

basic blocks. Furthermore, they provide an elegant 

representation of the control flow of an application, 

reducing the amount of information necessary when 

compared to basic block analysis. A dynamic control 

frontier path is simply then a path derived from a length-n 

executed path of conditional branches in which the 

trailing conditional branch only goes one direction – in 

this case the length-n DCF path is the same path that exits in 

the opposite (and yet unseen) direction. 

The DynamoRIO implementation of Schnauzer, shown in 

Figure 5, works as follows. An application begins 

unmodified execution through DynamoRIO. At random, 

bounded sampling intervals, the next n conditional branch 

edges are instrumented. At each branch edge seen during 

execution, a few assembly-level path tracking instructions 

are added, as shown in Figure 6, to record the occurrence of 

the path to  a memory location when the edge is re-executed. 

Upon reaching the last branch in the length-n path, the 



 
 

unseen edge of this last branch becomes a potential node on 

the dynamic control frontier. A function call, referred to as 

the refuting instrumentation, is inserted at this edge which, 

when called, invokes a routine in our DynamoRIO client to 

evaluate the path leading to the edge. This path/node 

combination constitutes a DCF hypothesis, as it has not yet 

been seen during execution and the path formulation 

information for this hypothesis is recorded.  
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Figure 5 - DynamoRIO DCF Profiling Client. The 

application executes unmodified until a path is selected for 
profiling, at which time lightweight instrumentation is added 
only to the selected path. This instrumentation updates the 
path history when executed. In the event the last edge of a 
hypothesis is executed (the refutation instrumentation), the 
path history is checked for a match. Hypotheses may persist 
across application executions.  

The application then continues to execute uninterrupted. 

If at any time the refutation instrumentation call is invoked 

(i.e., the previously unseen branch edge from the last branch 

in the hypothesis is taken), the function will compare the 

recorded incoming path to the hypothesis' path prefix to 

determine if the path leading up to the edge matches that of 

the current hypothesis. If the dynamic path matches the 

hypothesis, then that hypothesis is refuted, and the 

DynamoRIO code cache is flushed to remove the potential 

DCF hypothesis. By only instrumenting paths which are 

hypothesized to be DCF paths, overheads remain low. 

If after some long period of aging time a hypothesis has 

not been seen in the execution trace, this hypothesis is 

considered confirmed. At that time it is added to the set of 

dynamic control frontier hypotheses, which will be reported 

en masse to the developers at a later time. Before any new 

hypothesis is formed, it is checked against the global path 

filter plus the internal list of recently recorded DCFs to 

avoid duplication of effort. Our client also loads and stores 

hypothesis and global path filter state whenever profiling is 

invoked. Accordingly, profiling persists across an arbitrary 

number of application executions. The work of confirming 

hypotheses, as well as initiation of random sampling, is 

performed by a separate thread of execution created within 

DynamoRIO. This allows such work to be completed 

without slowing the target application.  

DynamoRIO 

Basic Block
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Basic Block
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Figure 6 - DynamoRIO DCF Profiling Dynamic 
Instrumentation. DynamoRIO basic blocks (a) are 

instrumented with assembly-level instructions inserted only 
on branch edges for paths being actively sampled.  (b) 

Shows the layout of new basic blocks with instrumentation. 
Note that for a single active hypothesis, only the relevant 
subset (tracking or refuting) would occur, and only on a 

single edge for each conditional branch in the hypothesis.    

4. Experimental Evaluation and Results 
To fully understand the benefit of the DCF, both the cost 

and accuracy of DCF profiling were evaluated.  

4.1. Benchmark Applications 
Benchmarks were carefully selected to represent 

commonly used programs. These programs are popular, 

network facing applications which increases their profile to 

attack. Additionally, we sought out programs that had access 

to high-quality test suites, especially fuzz testers, such that 

DCF path profiling could run for extended periods of time to 

locate the code that developers (knowingly or not) chose not 

to test. The OpenSSL (1.0.1c) toolkit, Python interpreter 

(2.7.1), Tor (The Onion Router 0.2.2.37), InspIRCd Internet 

Relay Chat server (1.1 and 2.0), and Pidgin(2.10.4) 

executed the regression test suites with their respective 

distributions. The SQLite (3.7.7) benchmark was executed 

with the fuzz testing components of the standard tcl test 

library.  The tshark network analysis tool (1.6.0) was tested 

with the fuzz test generation tool included with the tshark 

distribution. 

4.2. Experimental Framework 
The testing platform consists of 64-bit x86 servers 

running Ubuntu 11.04 Natty Narwhal with Linux kernel 

2.6.38-10-generic. All path information was gathered using 

either the DynamoRIO [3] or the Pin [21] binary 

instrumentation tools to instrument benchmark applications. 

There are four major variables relevant to DCF profiling; 

path length-n, sampling interval, hypothesis age threshold, 

and the number of concurrent hypotheses for a given 

analysis. Of these, path length has a direct relationship with 

the DCF, while the other three are sampling parameters. 

Since bugs are often sensitized by a particular path, the 

DCF has an important relationship with path length. The 

bug represented in Figure 1 would not be sensitized by a 

path length of 1 (branch coverage), as all branches involved 

see both edges in normal execution. This yields no ground 

truth DCF paths, as described by Figure 3, and the bug 



 
 

would therefore escape detection by DCF profiling. This 

observation motivates the desire for longer DCF paths. 

However, as path length grows, the odds of the same path 

executing again reduces, potentially resulting in the DCF 

becoming the set of all paths. To determine the optimal path 

length for DCF profiling, the relationship between path 

length and known security defects was explored. This 

analysis, shown in Section 4.6, determined that a path length 

of 4 was most effective. For this reason, the subsequent 

experiments were conducted with a path length of 4 

conditional branches. 

To further reduce the runtime overhead due to 

instrumentation, long intervals of time can elapse between 

hypothesis formulation and the aging threshold. In all 

overhead and coverage experimental results shown, the 

sampled hypothesis formulation period is randomly 

distributed between 1 and 100 milliseconds of instrumented 

program run time while the hypothesis aging period is 10 

seconds. These values were found to facilitate an effective 

coverage rate while maintaining accuracy of profiled 

dynamic control frontier paths with respect to the ground 

truth DCF.  

The number of concurrent path hypotheses is limited to a 

single hypothesis. While imposing the lowest overhead, a 

single hypothesis also limits sampling capacity. Later in 

Section 4.5, we show that a single hypothesis is virtually as 

effective as multiple concurrent hypotheses in establishing 

coverage of the DCF ground truth. 

4.3. Ground Truth Dynamic Control Frontier 
A custom pintool was created to perform whole-path 

analysis of a program to discover all of the dynamic control 

frontier paths.  The whole-path analyzer generates the entire 

conditional branch trace for all of the program’s test inputs.  

We then scan this trace for all unique length-n paths, and 

then rescan the trace to determine which of the discovered 

paths exit in only one direction.  The opposite exit of the 

paths' prefix constitutes the complete set of DCF paths that 

our sampling system could discover, and these paths form 

the ground truth necessary to gauge coverage of the 

proposed sampling mechanism. Table 1 shows the 

application trace and ground truth DCF set size for all 

benchmarks. The number of ground truth DCF paths is seen 

to be very few when compared to the potential path space 

arising from the large execution traces.  

To assess the reduction in path space, we statically 

analyzed the potential number of length-n paths which could 

be executed for an application. A conservative estimate was 

made based on extending the cyclomatic complexity 

measure (CCM) [22] to include inter-procedure paths. 

Developed by McCabe, CCM is a simple metric to assess 

path complexity for a function. Leveraging CCM, we 

estimated the number of length-n paths within a given 

function.  We then extended this to inter-procedure paths by 

identifying the length-n paths which may extend beyond the 

function, both leading into and exiting from the function, for 

all call sites within the code base. This measure, though an 

estimate, is considered quite conservative as it does not 

consider the path space expansion arising from loops. This 

inter-procedure complexity measure adapted from CCM is 

shown in the third column of Table 2 for all benchmarks. 

Application 

# Instructions 

Profiled 

# Potential 

Length-n 

Paths 

# Ground 

Truth DCF 

Paths 

SQLite 16,948,864,926 13,642,304 17,351 

OpenSSL 5,014,034,838 23,221,696 10,086 

tshark 684,000,546 38,467,136 178 

Python 656,068,272 12,175,712 35,206 

Tor 118,310,256 1,191,280 10,639 

InspIRCd 46,246,206 11,165,696 3,950 

Pidgin 4,762,914 6,833,360 3,641 

Table 1 - Benchmark Applications. Profiled instruction 

trace size for ground truth analysis is shown in the second 
column. The third column represents the potential number of 
length-4 paths, measured from an inter-procedure cyclomatic 
complexity measure. The final column shows the number of 
length-4 DCF paths within the profile trace.   

4.4. Analysis of DCF Sampling 

We evaluated the runtime overhead from profiling with 

Schnauzer as well as the accuracy of the coverage with 

respect to the ground truth DCF. Figure 7 details the runtime 

overhead experienced when profiling applications with our 

DynamoRIO client.  

 
Figure 7 - Sampling Overhead. Runtime overheads for 

applications are minimally above the slowdown experienced 
from the DynamoRIO core with a NULL client. 

In all cases the majority of execution slowdown (2.82X 

average application runtime overhead) is attributed to the 

DynamoRIO core, which averages 2.45X runtime 

performance penalty compared to native execution. This 

small Schnauzer instrumentation overhead is due to a 

lightweight approach of only instrumenting code paths 

which are being actively profiled, which results in a 15% 

overall increase in execution time relative to DynamoRIO 

with a NULL client. The slight improvement in overhead 

experienced by SQLite from our client is attributed to the 

alteration of fundamental DynamoRIO operating 

mechanisms (e.g., code cache) which affects performance, 

in this case positively.  

Given the general-purpose nature and powerful flexibility 

of DynamoRIO, a lighter-weight DCF path-specific dynamic 
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instrumentation tool could potentially significantly improve 

DCF profiling performance. Indeed custom tools have been 

shown to be highly effective when compared to binary 

instrumentation platforms like DynamoRIO and Pin. Zhao et 

al. demonstrate a low-overhead tool for shadow memory 

translation with Umbra [33], while Bosman et al. develop a 

dynamic taint analysis tool, Minemu [2], which is 

significantly faster than any competing general-purpose 

solution. Minemu demonstrated that, for such dynamic 

analyses, slowdown was not a fundamental property but 

instead arose from non-specialized implementations. 

DynamoRIO was chosen as an initial development 

platform for power and flexibility combined with rapid 

accurate prototyping of DCF profiling. Although runtime 

overheads demonstrated generally remain higher than 

desired, we believe initial deployment is certainly possible 

(and planned) with the current framework for a range of 

applications.   

Because we locate DCFs with sampling, there is 

legitimate concern as to whether or not the technique will 

observe all of the possible (ground truth) DCFs, and 

moreover, will all of the DCFs be identified in a reasonable 

amount of run time. As shown in Figure 8, our profiler 

locates the vast majority of DCFs in a short period of time. 

Larger applications, with billions of instructions, necessitate 

trillions of instructions of execution to receive good 

profiling coverage of all possible DCFs. This translates to at 

most ten thousand users profiling the application a single 

time each, certainly within reach of a modest user 

population. 

 

Figure 8 - Path Coverage via Sampling. All benchmarks 

attain 100% dynamic control frontier path coverage. Even 
application traces of billions of instructions achieve coverage 
within trillions of instructions. Thus, a user population of less 
than ten thousand can profile a trace in a single run. Profiling 
is done while utilizing only a single active hypothesis at any 
time, and with a path length of 4 conditional branches. 

Additionally, because sampling may deem a path a DCF, 

which in fact both directions were executed (but only one 

was observed), the accuracy of sampling must also be 

measured. Figure 9 shows the accuracy with which DCF 

paths are selected while profiling. Accuracy is given as the 

percentage of likely DCF paths, discovered by sampling, 

which are in the set of ground truth DCF paths for the 

application trace. Some applications achieve perfect 

accuracy while sampling, and overall Schnauzer is almost 

99% accurate in profiled DCF paths with respect to the 

ground truth DCF. 

 
Figure 9 - Sampling Accuracy. The percentage of likely 

DCF paths discovered by sampling which appear in the set 
of ground truth DCF paths. 

4.5. Schnauzer Profiling Scalability  
The dynamic control frontier is most valuable when it is 

derived from a sizeable population of end-users. Further, it 

is expected to profile an application for its entire life cycle. 

Schnauzer must therefore scale with application size, 

duration of execution, and population of users.  

As shown in Table 1, the number of DCF paths for an 

application is quite small when compared to the potential 

path space of such a long execution trace, greatly narrowing 

the domain for test. It must be considered, however, to what 

extent the dynamic control frontier path space will grow as 

an application execution continues unbounded. Figure 10 

demonstrates that as trace length grows ever larger, the 

ground truth DCF path space grows linearly. This gives 

confidence that the path space for test, the number of ground 

truth paths which must be discovered while sampling, and 

the incidental work such as updating the global path filter, 

will all remain within a bounded, manageable range.  

 
Figure 10 - DCF Path Growth. As the number of executed 
instructions grows, ground truth DCF path space remains 
small. The application shown is SQLite, executing increasing 

durations of the fuzz testing component of the test suite. 

Schnauzer scales very well with increasing path length. 

As shown in Figure 11, to facilitate the highest degree of 

path sensitivity, path length has no appreciable effect on 

sampling overhead for paths ranging from 1 to 64 

conditional branches. This is due to the lightweight 

approach for path instrumentation, as only a few assembly-

level instructions are added to the path. As well, the number 

of DCF paths will increase linearly with path length. Given 

this, paths of up to a length of 64 conditional branches may 

be analyzed with little impact to performance, should the 

need for greater path sensitivity arise. 

0 

20 

40 

60 

80 

100 

0.0045 0.045 0.45 4.5 45 450 

%
 D

C
F

 P
a
th

s
 D

is
c
o

v
e
re

d
 

Instructions (Trillions, log10 Scale) 

SQLite 
OpenSSL 
tshark 
Python 
Tor 
InspIRCd 
Pidgin 

95.7 

99.0 
97.3 98.3 

100 100 100 98.6 % 

90 
92 

94 
96 
98 

100 

%
 S

a
m

p
le

d
 D

C
F

  
in

 

G
ro

u
n

d
 T

ru
th

 D
C

F
 

Sampled Likley DCF to Ground Truth DCF 

10000 
12000 
14000 
16000 
18000 

0 10 20 30 40 

#
 o

f 
P

a
th

s
 

Instructions Executed (Billions) 
Ground Truth DCF Paths 



 
 

 
Figure 11 - Path Length Scaling. As the profiled path 

length increases in Schnauzer, the performance overhead 
rises slowly. For paths up to 64 conditional branches, little 
difference is seen. The benchmark shown is Tor. 

 
Figure 12 - Concurrent Hypotheses. The number of active 

hypotheses has minimal impact on sampling coverage. This 
is due to the inclusion of the global path filter and local 
sampled path list to eliminate redundant sampling. 
Benchmark shown is tshark.   

 Profiling overheads are kept low by limiting sampling 

frequency and the number of paths concurrently being 

sampled. Figure 12 reveals only a single path need be 

actively profiled at any time. The utilization of a global path 

filter and local list of recently sampled DCF paths 

eliminates redundant work and allows all DCF paths to be 

discovered in an acceptably similar amount of time, 

regardless of the number of concurrent hypotheses.  

Scalability at the system level is achieved as well. Given 

the rate of dynamic control frontier path discovery while 

profiling SQLite, the overall bandwidth requirement from a 

population of users to the aggregation point at the developer 

is under 5 bytes/second per user. Such a result suggests that 

a single central server shard could likely serve 10,000’s of 

individual user machines performing DCF path profiling. As 

the path space of an application is explored, the influx of 

new path information will decrease. To enhance profiling 

over the entire life cycle of an application, the aging time for 

a DCF hypothesis can be increased. Increasing this age 

threshold brings profiled DCF paths closer to the ground-

truth set of DCF paths for the entire lifecycle of an 

application. 

4.6. DCF Correlation with Real Vulnerabilities 
It has been shown that a large execution trace can contain 

a tractable number of dynamic control frontier paths for 

comprehensive test. However, it is necessary to demonstrate 

that this information delineating the frontier of dynamic 

execution is also a fertile source of real security exploits. To 

establish the relationship between the dynamic control 

frontier and security exploits, we sought to find if profiled 

DCF paths indeed sensitized important security bugs. The 

DCF paths gleaned from ground-truth analysis were 

compared to bug reports from fixed security bugs. Fixed 

bugs were chosen so as to know the precise location of an 

exploited bug within the source code. These bug locations 

could then be compared to the profiled DCF paths. If the 

location of a known bug is found to be sensitized by and 

located directly at the end of a DCF path, then the bug can 

be said to have been effectively hidden behind the dynamic 

control frontier.  

Application Vulnerability Security Advisory 

OpenSSL 

Buffer Overflow CVE-2012-2110 

Buffer Overflow CVE-2012-2131 

Integer Underflow CVE-2012-2333 

SQLite Buffer Overflow CVE-2007-1888 

Tor 
DoS CVE-2011-0492 

Buffer Overflow CVE-2011-1924 

Pidgin DoS CVE-2011-4939 

tshark 

Format String CVE-2009-0601 

DoS CVE-2011-0538 

DoS CVE-2012-2394 

Python 
DoS CVE-2010-2089 

DoS CVE-2012-2135 

InspIRCd 
Buffer Overflow CVE-2008-1925 

Heap Overflow CVE-2012-1836 

Table 2 - Software Vulnerabilities Sensitized by Dynamic 
Control Frontier Paths. Known software vulnerabilities 

identified in the NIST National Vulnerabilities Database 
(NVD) were shown to be sensitized by DCF paths. 

As seen in Table 2, known security bugs are sensitized by 

the dynamic control frontier. A total of 14 security exploits 

were found at the dynamic control frontier for the profiled 

benchmark applications. The security exploits are drawn 

from the National Vulnerability Database (NVD) [24], 

which is maintained by the National Institute of Standards 

and Technology (NIST). The database was searched for 

Common Vulnerability Exposures (CVE’s) [23] existing in 

benchmark applications. Not all vulnerabilities listed in the 

NVD for our benchmark applications were sensitized by 

DCF paths. Some, such as configuration errors, are beyond 

the scope of DCF path analysis. Others were simply not 

sensitized by the set of DCF paths profiled from our test 

inputs. However, these results are a strong affirmation that 

the control frontier indeed harbors bugs which are likely to 

be exploited. 

It is interesting to note that profiling the dynamic control 

frontier is not only fruitful for finding security bugs. We 

also have early evidence that it is a prime target to search for 

software bugs in general. To this end, a separate analysis of 

the SQLite application was performed. In this analysis the 

ground-truth DCF was compared to the most recently fixed 

bugs in the SQLite code base. We found that 12 of the most 

recent 20 bugs fixed in SQLite lay on code paths sensitized 

by the dynamic control frontier. Of those 12 bugs, 5 were 

clearly enabling security vulnerabilities.  
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To determine an optimal path length for our experiments, 

the benchmarks were profiled for DCF paths of varying 

length, as shown in Figure 13. These sets of DCF paths were 

then analyzed to determine which vulnerabilities, listed in 

Table 2, would be sensitized by the set of DCF paths for a 

given path length. Within the scope of our experiments, the 

number of DCF paths increases roughly linearly with path 

length. More vulnerabilities are identified by the growing 

set of DCF paths. All vulnerabilities shown in Table 2 were 

discovered with a path length of 4 branches, with no other 

CVE entries indicated by longer paths. Therefore, this path 

length was selected our experiments. This coincides with the 

observation that bugs may be more likely to be found with 

shallow control flow activation rather than being correlative 

with path coverage [12]. It is important to note that even in 

the event that this path length is not optimal for another 

application, Schnauzer is amenable to longer paths as well. 

 
Figure 13 - Impact of DCF Path Length on Vulnerability 
Discovery. Shown is the relationship between path length 

and vulnerabilities discovered, for the sum of all benchmarks 
listed in Table 1 and vulnerabilities identified in Table 2. 
Benchmarks were profiled for paths of varying lengths. As 
path length increases, the number of DCF paths increases, 
with more bugs sensitized. All vulnerabilities in Table 2 are 
discovered by the set of DCF paths profiled for a path length 
of 4.   

5. Related Work 
Much work has been done in the pursuit to identify and 

fix security vulnerabilities. Even more effort has been 

expended to deliver comprehensive testing of applications. 

Some related works are entirely complementary to 

Schnauzer. Other efforts assist in building a foundation for 

finding vulnerabilities but are not entirely sufficient 

themselves to accomplish the central goal of identifying 

code paths likely to be exploited, and thus DCF paths could 

be a powerful mechanism to focus analysis effort.  

5.1. Hot Path Analysis 
The preponderance of path analysis has historically been 

performed to identify “hot,” or heavily executed, paths. This 

is common in compiler optimizations but is also used for 

testing purposes. The work of Vaswani et al. [30] defines a 

hardware-based programmable path profiling mechanism. 

This work focuses primarily on solutions for hot path 

analysis, limiting its adaptability to dynamic control frontier 

profiling. Buse and Weimer [5] utilize static analysis to 

identify hot paths which are determined to be over 50% of 

total runtime of an application and generated by only 5% of 

feasible paths. This work highlights the difficulty of path 

profiling before application deployment.  

5.2. Path Analysis and Distributed Sampling 
 The concept of distributed sampling and end-users 

performing testing tasks has become a more prevalent topic. 

Greathouse et al. have demonstrated the feasibility of 

distributed sampling for otherwise heavyweight security 

vulnerability analyses. The applications are, however, 

dataflow analyses [13][14]. Ko et al. extensively investigate 

the concept of End User Software Engineering, which 

highlights the changing mindset of end-users playing a more 

involved role in the software life cycle [17]. 

 Chilimbi et al. [7] have proposed a method to determine 

which paths were dynamically executed by deployed 

software that had never been tested, termed Efficient Path 

Profiling.  This may be quite useful, but it focuses on 

finding latent bugs which are likely to directly impact users, 

thus focusing on software reliability. This is in contrast to 

DCF profiling, which seeks to enhance software security. A 

key assertion in this work was that edge profiling is sorely 

inadequate in comparison to path profiling. This built upon 

the previous work of Chilimbi et al. for Residual Path 

Profiling [8] which also focused solely on highly executed 

paths. Path-based data has been proposed by Liblit et al. to 

generate useful information on program crashes, specifically 

paths defined by conditional branches [20]. While this lends 

credibility to the usefulness of conditional branch-based 

path information, the purpose is strictly limited to post-

mortem analysis of application failures. Ayers et al. [1] 

employ a different methodology to achieve these same ends. 

5.3. Complementary Works 
 Testing technology has evolved along with software 

engineering techniques. Many useful tools exist which 

identify an ever-increasing ratio of bugs before deployment.  

 Godefroid et al. have implemented DART [10], a tool to 

automatically generate random tests to explore all possible 

code. This is a highly useful tool that could likely be made 

more effective with DCF profiling. Though it seeks to 

explore all sections of code, it cannot test all potential paths. 

A key challenge is that DART may never complete 

execution, making the determination of when to cease 

testing difficult. 

The practice of fuzz testing supplies a software unit under 

test with a random generation of inputs in an attempt to 

“break” the unit, in the form of failed assertions and core 

dumps. The technique is sometimes called “black-box” 

testing because it creates inputs without regard to the 

internal structure of the software under test. This approach is 

very good in theory; however, in practice the probability of 

generating the correct set of inputs to achieve all possible 

paths within a given unit under test is effectively zero for 

non-trivial codes. Despite limitations, the approach has been 

effective at exposing security flaws.  For example, Google’s 

cross_fuzz tool generates random web pages for testing 

browsers, and it has exposed hundreds of potential security 

flaws in all major browsers [29]. When coupled with 
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dynamic program analysis tools that can identify security 

vulnerabilities without active exploits, such as taint analysis 

[28] or input bounds checking [19], fuzz testing becomes a 

power tool in the war against attackers. 

While effective, pure random fuzz testing has limited 

penetration on complex program control sequences. Another 

important work related to DCF profiling is Microsoft’s 

white-box fuzz testing tool SAGE [12]. This tool developed 

by Godefroid et al. strongly advances white-box fuzz testing 

of enterprise-level software. SAGE has become a primary 

tool for bug detection within Microsoft. The tool takes a test 

suite, with hand-generated and fuzz-generated tests, and 

then uses SAT-based techniques to derive new program 

inputs to change the direction of one branch in an existing 

dynamic code path. The newly derived code path is then 

subjected to symbolic execution analysis that includes input 

bounds checking, taint analysis and overflow checking. 

Approximately one-third of all Windows 7 security bugs 

found have been identified by SAGE. A highly 

representative example is a bug identified by SAGE which 

affected code that parsed ANI-format animated cursors [9]. 

The bug had escaped detection by extensive black-box 

testing over many years and generations of the Windows 

operating system. Using modest desktop hardware, SAGE 

was able to detect the bug within a few hours. 

Random fuzz testing comprised the basis for testing four 

out of seven of our benchmark applications. Even so, we 

find vulnerabilities sensitized by DCF paths for these fuzz 

tested executions. The reality is that random fuzz testing 

does not provide deep code penetration [4][6][12]. This 

work is just another demonstration of the limitation of 

random fuzzing. 

Even in light of such strong performance, many bugs are 

left undetected. A key challenge to any testing platform is 

the path space associated with a software application. 

Testing every path which may be executed remains 

infeasible for the foreseeable future. The infeasibility of 

complete path analysis is what makes DCF path analysis 

useful. Our work is to distill path data which may direct 

existing testing technologies. Applications such as DART 

and SAGE suffer the inadequacy of limited path exploration. 

The implementation of DCF path analysis can assist by 

directing such tools to high-value paths that likely contain 

security vulnerabilities.  

Concolic execution tools allow deeper penetration of 

application code. However, these tools (such as KLEE [6]) 

have no path preference, including DCF paths.  Indeed in 

achieving code coverage, KLEE will execute the basic block 

where the defect lies, but not necessarily with the path 

required to sensitize the bug. We fully expect this to be the 

case, as industry has currently moved into an era of full code 

coverage for test. This property of concolic execution, 

however, does not preclude discovering DCF paths anyway. 

Table 1 in Section 4.3 shows Schnauzer identified 17,351 

length-4 DCF paths for SQLite, one of which sensitized the 

buffer overflow vulnerability identified in Table 2. This 

significantly narrows the field of discovery from the 13.6 

million paths facing KLEE. As path lengths increase, the 

path space increases dramatically. The same measure for 

SQLite estimated almost 200 billion length-16 paths.   

This further highlights how contemporary test can benefit 

from DCF analysis. Even when code coverage is achieved, 

vulnerability-enabling defects still remain. Current white-

box testing attempts to brute-force application code to 

provide deeper penetration. DCFs provide a heuristic to 

narrow the path space faced by code penetration testing.   

6. Conclusions 
Bugs in software remain the greatest security threat in 

programs today. There is much compelling evidence in the 

testing literature (e.g., analysis of Windows 7 security 

bugs[12]) which suggest that the key to finding and fixing 

security vulnerabilities is to analyze code paths at the 

dynamic control frontier. In this work we presented a 

comprehensive technique for profiling an application to 

discover the dynamic control frontier. We have shown that 

by using a distributed profiling approach, such profiling can 

be achieved efficiently for a substantial population of users. 

Furthermore, we have demonstrated the high value of DCF 

paths by correlating our discovered paths to 14 known 

security advisory vulnerabilities documented in the National 

Vulnerabilities Database. We feel strongly that efficient 

user-based dynamic control frontier path profiling, 

combined with existing white-box testing techniques and 

heavyweight dynamic security vulnerability analysis tools, 

will be a powerful weapon in the future fight against 

attackers. 

6.1. Future Work 
Opportunities exist to improve the profiling of the 

dynamic control frontier. Planned optimization of the 

current DynamoRIO and client implementation could yield 

further reductions in runtime overheads. A hardware-

assisted profiling system is also planned to reduce to 

negligible levels the performance impact on end-user 

execution.  

The next step in harnessing the dynamic control frontier 

is integration of profiled paths to existing test technologies 

such as SAGE or KLEE. This will be coupled with the 

deployment of optimized profiling for a long-running 

application interacting with a population of users. Together, 

this should work toward the discovery of yet-unknown 

security vulnerabilities. 

Acknowledgements 
 The authors would like to thank the reviewers, whose 

insights improved this work. The authors acknowledge the 

support of the Gigascale Systems Research Center.  

7. References 

[1] A. Ayers et al., TraceBack: First fault diagnosis by 
reconstruction of distributed control flow, Proceedings of the 
2005 ACM SIGPLAN conference on Programming language 
design and implementation, 2005, pp. 201-212. 



 
 

[2] E. Bosman, A. Slowinska, and H. Bos, Minemu: The World's 
Fastest Taint Tracker, Proc. of the Int'l Symp. on Recent 
Advances in Intrusion Detection (RAID), 2011. 

[3] D. Bruning, Efficient, Transparent, and Comprehensive 
Runtime Code Manipulation, Massachusetts Institute of 
Technology, Ph.D. Thesis 2004. 

[4] J. Burnim and K. Sen, Heuristics for Scalable Dynamic Test 
Generation, Proceedings of the 2008 23rd IEEE/ACM 
International Conference on Automated Software 
Engineering}, Washington, D.C., 2008, pp. 443-446. 

[5] R. P. L. Buse and W. R. Weimer, The road not taken: 
Estimating path execution frequency statically, Proceedings 
of the 31st International Conference on Software 
Engineering, 2009, pp. 144-154. 

[6] C. Cadar, D. Dunbar, and D. Engler, KLEE: Unassisted and 
Automatic Generation of High-Coverage Tests for Complex 
System Programs, Proc. of the Eighth Symp. on Opr. Systems 
Dsgn and Implementation (OSDI '08), 2008, pp. 209-224. 

[7] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani, 
HOLMES: Effective statistical debugging via efficient path 
profiling, Proceedings of the 31st International Conference 
on Software Engineering, 2009, pp. 34-44. 

[8] T. Chilimbi, A. Nori, and K.l Vaswani, Quantifying the 
effectiveness of testing via efficient residual path profiling, 
The 6th Joint Meeting on European software eng. conf. and 
the ACM SIGSOFT symp. on the foundations of sftwre eng.: 
companion papers, 2007, pp. 545-548. 

[9] P. Godefroid et al., Automating software testing using 
program analysis, IEEE Software, vol. 25, pp. 30-37, 2008. 

[10] P. Godefroid, N. Klarlund, and K. Sen, DART: directed 
automated random testing, Proceedings of the 2005 ACM 
SIGPLAN conference on Programming language design and 
implementation, 2005, pp. 213-233. 

[11] P. Godefroid and D. Lauchaup, Automatic partial loop 
summarization in dynamic test generation, Proceedings of the 
2011 International Symposium on Software Testing and 
Analysis (ISSTA '11), 2011, pp. 23-33. 

[12] P. Godefroid, M.Y. Levin, and D. Molnar, Automated 
Whitebox Fuzz Testing, Proc. 15th Ann. Network and 
Distributed System Security Symp. (NDSS 08), Internet 
Society (ISOC), 2008. 

[13] J.L. Greathouse, C. LeBlanc, T. Austin, and V. Bertacco, 
Highly scalable distributed dataflow analysis, 9th Annual 
IEEE/ACM International Symposium on Code Generation 
and Optimization (CGO), May 2011, pp. 277-288. 

[14] J.L. Greathouse et al., Testudo: Heavyweight security analysis 
via statistical sampling, 41st IEEE/ACM International 
Symposium on Microarchitecture, 2008, pp. 117-128. 

[15] C. Huang and M.R. Lyu, Optimal testing resource allocation, 
and sensitivity analysis in software development, IEEE Trans. 
on Reliability, vol. 54, no. 4, pp. 592-603, Dec. 2005. 

[16] B. Kitchenham and S. Linkman, Validation, Verification, and 
Testing: Diversity Rules, IEEE Software, vol. 15, no. 4, pp. 
46-49, July 1998. 

[17] A. Ko et al., The state of the art in end-user software 
engineering, ACM Comput. Surv., vol. 43, no. 3, pp. 21:1-
21:44, April 2011. 

 

 

 

[18] D. S. Kushwaha and A. K. Misra, Software test effort 
estimation, SIGSOFT Softw. Eng. Notes, vol. 33, no. 3, pp. 
6:1-6:5, May 2008. 

[19] E. Larson and T. Austin, High coverage detection of input-
related security faults, Proceedings of the 12th USENIX 
Security Symposium (SECURITY'03), August 2003. 

[20] B. Liblit and A. Aiken, Building a Better Backtrace: 
Techniques for Postmortem Program Analysis, University of 
California, Berkeley, TechReport CSD-02-1203, Oct. 2002. 

[21] C. Luk et al., Pin: Building customized program analysis tools 
with dynamic instrumentation, Proceedings of the 2005 ACM 
SIGPLAN conference on Programming language design and 
implementation (PLDI), 2005, pp. 190-200. 

[22] T. McCabe, A Complexity Measure, IEEE Transactions on 
Software Engineering, 1976, pp. 308-320. 

[23] Mitre. (2012, September) Common Vulnerabilities and 
Exposures. [Online]. http://cve.mitre.org/  

[24] NIST, National Institute of Standards and Technology. (2012, 
September) National Vulnerability Database. [Online].   
http://nvd.nist.gov/home.cfm  

[25] H, Ohtera and S. Yamada, Optimal allocation and control 
problems for software-testing resources, IEEE Transactions 
on Reliability, vol. 39, no. 2, pp. 171-176, June 1990. 

[26] A. Ozment, Improving vulnerability discovery models, 
Proceedings of the 2007 ACM workshop on Quality of 
protection, New York, 2007, pp. 6-11. 

[27] R. Pressman, Software Engineering: A Practitioner's 
Approach, 7th ed.: McGraw-Hill, 2009. 

[28] E. Schwartz, T. Avgerinos, and D. Brumley, All You Ever 
Wanted to Know about Dynamic Taint Analysis and Forward 
Symbolic Execution (but Might Have Been Afraid to Ask), 
2010 IEEE Symp. on Sec. and Prvcy, May 2010, pp. 317-331. 

[29] L. Seltzer, Microsoft, Google Clash Over IE 0-Day Leaked to 
Chinese Hackers, PC Magazine Online, 2011. 

[30] K. Vaswani, M. Thazhuthaveetil, and Y.N. Srikant, A 
Programmable Hardware Path Profiler, Proceedings of the 
international symposium on Code generation and 
optimization, 2005, pp. 217-228. 

[31] F. Wagle, Pu Calton, J. Walpole, and C. Cowan, Buffer 
Overflows: Attacks and Defenses for the Vulnerability of the 
Decade, DARPA Information Survivability Conference and 
Exposition (DISCEX), 2000. 

[32] Z. Wang, K. Tang, and X. Yao, Multi-Objective Approaches 
to Optimal Testing Resource Allocation in Modular Software 
Systems, IEEE Transactions on Reliability, vol. 59, no. 3, pp. 
563-575, Sept. 2010. 

[33] Q. Zhao, D. Bruening, and S. Amarasinghe, Umbra: Efficient 
andn Scalable Memory Shadowing, Proceedings of the 8th 
annual IEEE/ACM international symposium on Code 
generation and optimization, Toronot, 2010, pp. 22-31. 

[34] H. Zhu, P. Hall, and J. May, Software unit test coverage and 
adequacy, ACM Comput. Surv., vol. 29, no. 4, pp. 366-427, 
Dec. 1997. 

[35] T. Zimmermann and S. Neuhaus, Security Trend Analysis sith 
CVE Topic Models, International Symposium on Software 
Reliability Engineering (ISSRE), 2010, pp. 111-120. 

 


