

Schnauzer: Scalable Profiling for Likely Security Bug Sites

William Arthur, Biruk Mammo, Ricardo Rodriguez, Todd Austin and Valeria Bertacco

Advanced Computer Architecture Laboratory, University of Michigan, Ann Arbor

{warthur, birukw, ricardoj, austin, valeria}@umich.edu

Abstract

 Software bugs comprise the greatest threat to computer

security today. Though enormous effort has been expended

on eliminating security exploits, contemporary testing

techniques are insufficient to deliver software free of

security vulnerabilities. In this paper we propose a novel

approach to security vulnerability analysis: dynamic control

frontier profiling. Security exploits are often buried in

rarely executed code paths hidden just beyond the path

space explored by end-users. Therefore, we develop

Schnauzer, a distributed sampling technology to discover

the dynamic control frontier, which forms the line of

demarcation between dynamically executed and unseen

paths. This frontier may then be used to direct tools (such as

white-box fuzz testers) to attain a level of testing coverage

currently unachievable. We further demonstrate that the

dynamic control frontier paths are a rich source of security

bugs, sensitizing many known security exploits.

1. Introduction
 The vast majority of security attacks are enabled by

software bugs. Defects which escape detection of software

quality assurance can have global impact, such as the Code

Red and Sapphire/Slammer worms which utilized buffer

overflows for system exploitation. Fueled by these and other

high-profile exploits, buffer overflows remain a top security

concern [35]. Programs written in popular languages such

as C and C++ are a rich source of buffer overflow bugs, as

these languages cannot, without high overhead,

systematically eliminate buffer overflow vulnerabilities

[31]. This then places the burden on test to find potential

buffer overflow vulnerabilities before they are exploited.

 Commercial software is heavily tested before

deployment. Indeed, coding consumes only a small

percentage of development effort [27], while studies have

shown that testing comprises greater than fifty percent of the

cost of software development [4][18]. Regardless, software

defects continue to escape detection.

 Understanding the way in which latent defects are

exploited can reveal critical insight into their prevention.

The majority of security-related faults reside in the least

likely to be executed code sequences, and by extension, the

least tested portions of code [16]. In an effort to heighten

initial customer satisfaction, developers tend to focus their

limited test resources on the code paths they anticipate users

will execute most often, creating significant overlap in

developer test and user execution. This in turn shapes a

common discovery model used by attackers to locate

defects. A malicious user will provide permutations of

typical application inputs in an effort to cause slight (but

expected) deviations from the well-travelled, and thus well-

tested, path of normal execution. Given the combined nature

of testing and exploitation discovery models, the location of

defects most likely to be exploited can be identified. This

exploit-rich code exists just beyond the well-trodden

execution paths of testers and users, yet is readily reachable

by attackers. We identify these locations as the dynamic

control frontier (DCF).

 The dynamic control frontier is a collection of paths

rooted in dynamically executed paths. However, these paths

are special in that, had the final control decision in these

paths executed a different basic block, it would create a

new, never-before-seen path. This defines the frontier of the

path space executed by an application with respect to a set

of inputs. Collectively, the DCF represents the most readily

accessible paths of execution which are unlikely to be

executed by end-users; consequently, these paths have a

high degree of reachability for an attacker. Accordingly, any

latent defects in the unexecuted portions of the dynamic

control frontier paths are unlikely to be found by users and

developers, but these bugs can be quickly uncovered by

attackers
1
.

 It is interesting to look at the dynamic control frontier of

an application arising from the test inputs of developers.

Indeed we show that this is valuable as we find real

vulnerabilities at these locations. However, it is more

intriguing to examine the dynamic control frontier for a non-

trivial sized population of end users. An attacker is most

interested in this frontier as it represents code paths which

have not been tested nor executed with any frequency by

any user of a particular program. In contrast, any paths

frequently executed by users which are not represented in

the test suites will probably be devoid of showstopper bugs,

as users would otherwise complain. As such, in the

construction of a system to profile the DCF, we must be

mindful that such a system should analyze the DCF of a

large population of users without imposing an unacceptable

impact on individual user performance.

1 Though attempts have been made to quantify software exploitation

vulnerability, no known accurate database exists for the quantification of

effort required to exploit vulnerabilities [26].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

CGO’13, 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 © 2013 IEEE...$15.00

1.1. Contributions of this Work
 The goal of this work is not to fix software bugs which

drive security exploits; existing tools will be utilized for this

purpose. Our goal is to instead show such tools, which often

suffer from exponential path explosion, where they can best

focus their efforts to find real-world, mission-critical

security exploits. This goal merits the work’s namesake:

schnauzer. Utilized by law enforcement, emergency

responders, and medical professionals the schnauzer is a

working dog that is exceptionally capable of locating

critically important items (illegal drugs, missing persons,

etc.). The schnauzer does not actually find the desired item,

it instead zeroes in on the locations where its human partner

should search -- the perfect metaphor for our work.

 The value of the DCF is not to identify code paths with

the highest density of bugs. The value of the DCF is to

identify the code paths which are least tested by developers

and users, while also most readily accessible to attackers.

We will demonstrate that there is mounting evidence that

bugs hidden within the DCF are more likely to be exploited,

and therefore are of the greatest merit to discover.

In this work, we develop a low-overhead and efficient

software mechanism that effectively identifies the dynamic

control frontier over a large population of users of an

application. The approach utilizes a distributed sampling

method in which individual user machines locate dynamic

control frontier paths and occasionally communicate them

back to the developers. Developers utilize white-box testing

and dynamic program analysis to fully test these paths for

security vulnerabilities. Over time, the system raises the bar

on what constitutes the DCF, and thus raises the bar on the

difficulty of finding security vulnerabilities. In this work, we

make the following novel contributions:

 We present an effective, scalable, and decentralized

approach to identifying the dynamic control frontier for a

program running across a large population of users.

 We present a software implementation for harvesting

dynamic control frontier information from individual user

machines. The approach utilizes dynamic code

instrumentation to limit the impact to application

execution while providing appropriate coverage of the

dynamic control frontier in the aggregation of users.

 We demonstrate the value of the dynamic control frontier

by showing that many known security vulnerabilities may

be found there. We show that dynamic control frontier

paths sensitize known exploits identified by the NIST

National Vulnerabilities Database.

 We evaluate the effectiveness of the approach by

exploring the performance—cost tradeoffs while

harvesting DCF paths. We also developed a novel whole-

path analysis technique that allows us to gauge the

coverage of the approach (i.e., the total percent of dynamic

control frontier paths found as a function of total

population run time). We present results for a wide range

of non-trivial software packages that show our approach

achieves good coverage while keeping performance

impacts low.

The remainder of this paper is organized as follows.

Section 2 provides an in-depth overview of the dynamic

control frontier. Section 3 details our DCF profiler,

Schnauzer. Experiments conducted to evaluate the benefits

and costs of DCF profiling, and a full analysis of the results

are delivered in Section 4. Finally, Section 5 lists related

works while Section 6 gives conclusions and future work.

2. Dynamic Control Frontier Discovery
Security exploits arise from bugs which escape detection

by the developer. Often, hidden bugs only appear when

sensitized by the proper path [4]. For example, attempting to

free a pointer after already doing so previously (double

free). The predominance of path-sensitized bugs follows

from the observation that commercial software generally

achieves both branch and code coverage but remains

deficient with respect to path coverage. Unfortunately,

achieving path coverage is currently an intractable problem

for applications of any appreciable size. This is due to the

explosion in the number of paths, ultimately limiting path

testing to a tiny subset [25].

BUF_MEM

_grow()

Data Already

Loaded?

Data Body

Present?

Load Data

Injection
N

Y

N

Y

Activation

Figure 1 - Path Sensitization. Represented is the high-level

overview of a security bug from the National Vulnerability
Database (CVE-2012-2110 and CVE-2012-2131) for the
OpenSSL application. In experimentation, this vulnerability

was found to be sensitized by the dynamic control frontier.
Here, a buffer overflow attack results from crafted data of an
RSA public key. Note that the vulnerability is only sensitized
by a single path (N, Y), indicated in red.

Given the combination of path explosion and the need for

path sensitization to activate bugs, it is inherent that

exhaustive testing to locate bugs is an infeasible approach

[34]. Thus, software testers are forced to constrain the path

space to some feasible subset [4]. The quandary of test

allocation, or the optimal test resource allocation problem

(OTRAP) [25], is generally approached from the perspective

of software reliability and cost [15][32], rather than security.

Identifying the subset of paths which are likely to contain

bugs, which are in turn likely to be exploited, would yield

the highest productivity in test relevant to potential exploit

detection.

This subset of paths, deemed highly likely to result in

exploits, is encompassed by the dynamic control frontier.

The dynamic control frontier represents the border of

dynamic execution between dynamically seen paths and

those which are unseen. The first unexecuted basic block of

these dynamic control frontier paths represents a location

that is likely to hide a security exploit.

Consider the known security bug modeled in Figure 1, a

high-level representation of an exploit discovered in

OpenSSL. The bug, documented in the National

Vulnerability Database [24] and which enables a buffer

overflow attack, is only sensitized by a specific path of

execution. When handling DER encoded data, maliciously

crafted data can activate the vulnerability. Note that the (N,

N) (Y, N) and (Y, Y) paths were seen with some frequency

while running OpenSSL ssltest and do not sensitize the bug,

but the path (N, Y) was not seen, and hence represents the

DCF where the bug was sensitized by the untested path.

Paths which remain unexecuted, that are not

comprehensively tested, will continue to harbor latent bugs.

This space, all un-executed paths, is still far too large for

comprehensive testing. However, the code paths which are

immediately outside the dynamic execution are the ones

which are the most readily reachable by attackers. Because

the dynamic control frontier is unlikely to ever be executed,

the security bugs in this code will typically only be fixed

when an active exploit is exposed. Debugging the DCF will

force any attacker to probe deeper into the code. This will

raise the bar in terms of the amount of effort required to

attack programs, and make it much more difficult for an

attacker to find good security bugs. In Section 4 we show

that the number of dynamic control frontier paths is

relatively few and quite rich in security exploits.

Figure 2 – Dynamic Control Frontier. The dynamic control
frontier of an application P, DCF(P), is the set of paths p,
comprised of a series of n basic blocks. These paths consist
of basic blocks, where the first n-1 basic blocks were in fact
executed in EX(P), but the whole series of n was not.

 As defined in Figure 2, the dynamic control frontier of an

application are the sets of length-n paths, comprised of basic

blocks, where the first n-1 blocks have been seen to be

executed, but the full series of n basic blocks has not been

seen to execute. Thus, the dynamic control frontier is a path

in which the last control decision to basic block bbn creates

a never-before-seen path of execution. Basic block bbn is the

likely site of a security exploit, sensitized by the path

leading to it (bb1,..., bbn-1). More formally, the dynamic

control frontier is defined as follows. The dynamic control

frontier DCF(P), of an application P, is the set of paths p

comprised of a series of n basic blocks. These paths

consisting of n basic blocks, where the first n-1 basic blocks

form a path (of length n-1) in the set of executed paths,

EX(P), but the full length-n path of basic blocks is not

contained in the set of executed paths EX(P).

2.1. Computing the Dynamic Control Frontier
 Determining the exact dynamic control frontier, which we

call the ground truth DCF, for a given application

execution can be accomplished by analyzing its execution

trace.

 The ground truth DCF computation method is given in

Figure 3. First, a trace of basic blocks is collected for an

application in execution with respect to a set of inputs. This

trace is then scanned for all length-n paths of basic blocks.

These paths are sorted into sets by their length-n-1 path

prefixes. For each path within the set of paths with common

path prefixes, if there exists any control exit from the n-1

block (the last block of the path prefix) which is not

represented in the set, then this path prefix, along with the

unseen control exit block, is a member of the set of ground

truth DCF paths.

Figure 3 - Ground Truth Dynamic Control Frontier. The

ground truth DCF of an execution instance EX(P) of
application P, GTDCF(EX(P)), is a set of paths p, comprised
of a series of n basic blocks. These ground truth paths are
those where their length-(n-1) path prefix was executed,
EX(P), but their entire length-n paths were not.

2.2. Profiling the Dynamic Control Frontier
 Establishing the ground-truth set of dynamic control

frontier paths, needed to provide good coverage of the

dynamic control frontier paths for an application, is

prohibitively expensive to do widely. Analyzing an

execution trace assumes a finite application run. Also, such

a trace grows to unmanageable size after long execution

periods. For example, collecting a trace consisting of purely

conditional branch information, limited to instruction

address and branch direction, while executing the SQLite

test suite quick test accrues over 300 GB of data during

ground truth analysis of a 154 billion instruction length

execution. Further, keeping track of all potential DCF paths

during a program’s execution is a significant performance

overhead; for example, the ground truth DCF analysis of

SQLite using Pin-based instrumentation [21] resulted in an

average application slowdown of 26X.

Thus, a practical method must be developed to profile an

application for the ground truth DCF. This can be achieved

by sampling a small subset of the paths executed by an

individual user and combining these samples over a large

user population. While observing the execution of an

application, at occasional intervals, a path is selected for

profiling. A hypothesis is made from the length-(n-1) prefix

seen in execution and the length-n path derived from this

prefix which is not seen (i.e., the hypothesis is constructed

by taking the opposite branch direction out of the last

control decision seen to execute). We then hold this

hypothesis for an extended period of time, waiting to see if

the path is executed, and thus the hypothesis refuted. If the

hypothesis path is not seen to be executed for this holding

period, it is considered a good candidate for a DCF path. If,

however, the hypothesis is seen to be executed, the

hypothesis is refuted and not considered further.

The dynamic control frontier can be established for any

single execution of an application. However, this frontier

will vary depending on the inputs to an application for a

given instance. Consequently, the DCF discovered for a

single user is of limited value. A user may run the

application with inputs which ultimately refute a hypothesis

considered a good candidate by another user. Potential DCF

candidates are therefore collected into a single global path

filter database which is shared with all users over time.

Initially, dynamic control frontier path hypotheses will be

sampled by multiple users. If a path is refuted, it will be

removed from the global path filter. Otherwise, as

hypotheses in the global path filter age they come to

represent true dynamic control frontier paths. These

venerable DCFs can then be used to filter hypothesis

creation on individual hosts as profiling these high-

confidence DCF paths would provide no benefit. Figure 4

depicts an overview of DCF sampling.

Users

Developer

Analysis

New DCF Paths

Developer

Test

Global Path
 Filters

Test

Coverage

High-Confidence
 DCF Paths

Refuted Global Path
 Filter DCFs

Figure 4 - Dynamic Control Frontier Sampling System.

Users profile application execution while sampling to
discover dynamic control frontier paths. These DCFs drive
developer analysis, which directs testing methods. Global
path filters coordinate work between users.

2.3. Leveraging the Dynamic Control Frontier
Once dynamic control frontier paths begin to materialize,

they must be harnessed to find security vulnerabilities. We

can use white-box testing to deeply analyze DCF paths for

security vulnerabilities. White-box testing has emerged as

an effective testing approach to overcome this limitation

[12].White-box testing is designed to fully explore the

dynamic control flow within a code module. The approach

essentially is the reverse of fuzz testing. Rather than

buffeting the code with random inputs in the hope of

exposing new code paths, the approach instead selects a

specific code path for testing and then uses SAT-based tools

to deduce the inputs to the program or function that would

cause the path to execute.

White-box testing has offered the ability to improve fuzz

testing by a considerable margin [11], however, the

approach still has limitations. For any non-trivial program,

the number of paths that must be explored by white-box

testing quickly overwhelms the computational capability of

existing tools. For example, if the code in Figure 1 is

embedded within a loop, the number of paths will be

exponential with the number of loop iterations, e.g., at 1000

iterations the number of unique paths is 2
1000

.

DCFs have the potential to become a divining rod for

white-box testing tools, showing them where to spend their

efforts to search for vulnerabilities. The DCF instructs

which path to follow to reach the likely bug site; the SAT

engine typically found in white-box testing tools can

determine the inputs necessary to execute the DCF path (or

determine that it is an infeasible path of execution). It is

interesting to note that a key insight from white-box testing

is that bugs are not far from the path of execution, they are

just out of reach. Dynamic control frontier profiling

leverages this same insight by identifying code just beyond

the demarcation of executed code. To effectively expose

bugs, attackers must explore code that is not executed by

any user. As such, there is much promise to improve

security vulnerability analysis via white-box testing by

identifying dynamic control frontier code paths over a

large population of users’ machines.

3. Schnauzer: A Distributed DCF Profiler
To validate our distributed approach to profiling the

dynamic control frontier, Schnauzer was built. Our profiler

was implemented as a client tool utilizing the DynamoRIO

dynamic instrumentation tool platform [3]. The goal in

developing Schnauzer was to push DCF analysis into the

user space by using sampling to demonstrate the potential to

minimize runtime overheads associated with DCF profiling,

all the while achieving coverage of the ground truth DCF.

Efficiency is critical when profiling in the user space.

Thus, profiling at the abstract level of the basic block is

undesirable. As such, the conditional branches of an

application are preferred to model paths for the dynamic

control frontier. Conditional branches are chosen as they

may be observed directly from the execution stream, unlike

basic blocks. Furthermore, they provide an elegant

representation of the control flow of an application,

reducing the amount of information necessary when

compared to basic block analysis. A dynamic control

frontier path is simply then a path derived from a length-n

executed path of conditional branches in which the

trailing conditional branch only goes one direction – in

this case the length-n DCF path is the same path that exits in

the opposite (and yet unseen) direction.

The DynamoRIO implementation of Schnauzer, shown in

Figure 5, works as follows. An application begins

unmodified execution through DynamoRIO. At random,

bounded sampling intervals, the next n conditional branch

edges are instrumented. At each branch edge seen during

execution, a few assembly-level path tracking instructions

are added, as shown in Figure 6, to record the occurrence of

the path to a memory location when the edge is re-executed.

Upon reaching the last branch in the length-n path, the

unseen edge of this last branch becomes a potential node on

the dynamic control frontier. A function call, referred to as

the refuting instrumentation, is inserted at this edge which,

when called, invokes a routine in our DynamoRIO client to

evaluate the path leading to the edge. This path/node

combination constitutes a DCF hypothesis, as it has not yet

been seen during execution and the path formulation

information for this hypothesis is recorded.

Load
Hypoth-

eses

Store
Hypoth-

eses

Store
Hypoth-

eses

Normal
Execution

Refute
Hypothesis

Insert
Path

Tracking
Instr.

Insert
Refuting

Instr.

Update
Path

Check
Path

Sampling
Event

Cond.
Branch

nth Cond.
Branch

Path
Match

No
Match

App.
Exit

Execute
Refuting

Instr.

Exec.
Track
Instr.

Path
Instrumen-

tation

Path
Execution

Figure 5 - DynamoRIO DCF Profiling Client. The

application executes unmodified until a path is selected for
profiling, at which time lightweight instrumentation is added
only to the selected path. This instrumentation updates the
path history when executed. In the event the last edge of a
hypothesis is executed (the refutation instrumentation), the
path history is checked for a match. Hypotheses may persist
across application executions.

The application then continues to execute uninterrupted.

If at any time the refutation instrumentation call is invoked

(i.e., the previously unseen branch edge from the last branch

in the hypothesis is taken), the function will compare the

recorded incoming path to the hypothesis' path prefix to

determine if the path leading up to the edge matches that of

the current hypothesis. If the dynamic path matches the

hypothesis, then that hypothesis is refuted, and the

DynamoRIO code cache is flushed to remove the potential

DCF hypothesis. By only instrumenting paths which are

hypothesized to be DCF paths, overheads remain low.

If after some long period of aging time a hypothesis has

not been seen in the execution trace, this hypothesis is

considered confirmed. At that time it is added to the set of

dynamic control frontier hypotheses, which will be reported

en masse to the developers at a later time. Before any new

hypothesis is formed, it is checked against the global path

filter plus the internal list of recently recorded DCFs to

avoid duplication of effort. Our client also loads and stores

hypothesis and global path filter state whenever profiling is

invoked. Accordingly, profiling persists across an arbitrary

number of application executions. The work of confirming

hypotheses, as well as initiation of random sampling, is

performed by a separate thread of execution created within

DynamoRIO. This allows such work to be completed

without slowing the target application.

DynamoRIO

Basic Block

DynamoRIO

Basic Block

CBR to branch target edge
Tracking (or Refuting)

instrumentation
Jump to fall-through edge

Tracking (or Refuting)

instrumentation
Jump to branch target

Branch

Target Edge

Fall-Through

Edge

(a) (b)

Figure 6 - DynamoRIO DCF Profiling Dynamic
Instrumentation. DynamoRIO basic blocks (a) are

instrumented with assembly-level instructions inserted only
on branch edges for paths being actively sampled. (b)

Shows the layout of new basic blocks with instrumentation.
Note that for a single active hypothesis, only the relevant
subset (tracking or refuting) would occur, and only on a

single edge for each conditional branch in the hypothesis.

4. Experimental Evaluation and Results
To fully understand the benefit of the DCF, both the cost

and accuracy of DCF profiling were evaluated.

4.1. Benchmark Applications
Benchmarks were carefully selected to represent

commonly used programs. These programs are popular,

network facing applications which increases their profile to

attack. Additionally, we sought out programs that had access

to high-quality test suites, especially fuzz testers, such that

DCF path profiling could run for extended periods of time to

locate the code that developers (knowingly or not) chose not

to test. The OpenSSL (1.0.1c) toolkit, Python interpreter

(2.7.1), Tor (The Onion Router 0.2.2.37), InspIRCd Internet

Relay Chat server (1.1 and 2.0), and Pidgin(2.10.4)

executed the regression test suites with their respective

distributions. The SQLite (3.7.7) benchmark was executed

with the fuzz testing components of the standard tcl test

library. The tshark network analysis tool (1.6.0) was tested

with the fuzz test generation tool included with the tshark

distribution.

4.2. Experimental Framework
The testing platform consists of 64-bit x86 servers

running Ubuntu 11.04 Natty Narwhal with Linux kernel

2.6.38-10-generic. All path information was gathered using

either the DynamoRIO [3] or the Pin [21] binary

instrumentation tools to instrument benchmark applications.

There are four major variables relevant to DCF profiling;

path length-n, sampling interval, hypothesis age threshold,

and the number of concurrent hypotheses for a given

analysis. Of these, path length has a direct relationship with

the DCF, while the other three are sampling parameters.

Since bugs are often sensitized by a particular path, the

DCF has an important relationship with path length. The

bug represented in Figure 1 would not be sensitized by a

path length of 1 (branch coverage), as all branches involved

see both edges in normal execution. This yields no ground

truth DCF paths, as described by Figure 3, and the bug

would therefore escape detection by DCF profiling. This

observation motivates the desire for longer DCF paths.

However, as path length grows, the odds of the same path

executing again reduces, potentially resulting in the DCF

becoming the set of all paths. To determine the optimal path

length for DCF profiling, the relationship between path

length and known security defects was explored. This

analysis, shown in Section 4.6, determined that a path length

of 4 was most effective. For this reason, the subsequent

experiments were conducted with a path length of 4

conditional branches.

To further reduce the runtime overhead due to

instrumentation, long intervals of time can elapse between

hypothesis formulation and the aging threshold. In all

overhead and coverage experimental results shown, the

sampled hypothesis formulation period is randomly

distributed between 1 and 100 milliseconds of instrumented

program run time while the hypothesis aging period is 10

seconds. These values were found to facilitate an effective

coverage rate while maintaining accuracy of profiled

dynamic control frontier paths with respect to the ground

truth DCF.

The number of concurrent path hypotheses is limited to a

single hypothesis. While imposing the lowest overhead, a

single hypothesis also limits sampling capacity. Later in

Section 4.5, we show that a single hypothesis is virtually as

effective as multiple concurrent hypotheses in establishing

coverage of the DCF ground truth.

4.3. Ground Truth Dynamic Control Frontier
A custom pintool was created to perform whole-path

analysis of a program to discover all of the dynamic control

frontier paths. The whole-path analyzer generates the entire

conditional branch trace for all of the program’s test inputs.

We then scan this trace for all unique length-n paths, and

then rescan the trace to determine which of the discovered

paths exit in only one direction. The opposite exit of the

paths' prefix constitutes the complete set of DCF paths that

our sampling system could discover, and these paths form

the ground truth necessary to gauge coverage of the

proposed sampling mechanism. Table 1 shows the

application trace and ground truth DCF set size for all

benchmarks. The number of ground truth DCF paths is seen

to be very few when compared to the potential path space

arising from the large execution traces.

To assess the reduction in path space, we statically

analyzed the potential number of length-n paths which could

be executed for an application. A conservative estimate was

made based on extending the cyclomatic complexity

measure (CCM) [22] to include inter-procedure paths.

Developed by McCabe, CCM is a simple metric to assess

path complexity for a function. Leveraging CCM, we

estimated the number of length-n paths within a given

function. We then extended this to inter-procedure paths by

identifying the length-n paths which may extend beyond the

function, both leading into and exiting from the function, for

all call sites within the code base. This measure, though an

estimate, is considered quite conservative as it does not

consider the path space expansion arising from loops. This

inter-procedure complexity measure adapted from CCM is

shown in the third column of Table 2 for all benchmarks.

Application

Instructions

Profiled

Potential

Length-n

Paths

Ground

Truth DCF

Paths

SQLite 16,948,864,926 13,642,304 17,351

OpenSSL 5,014,034,838 23,221,696 10,086

tshark 684,000,546 38,467,136 178

Python 656,068,272 12,175,712 35,206

Tor 118,310,256 1,191,280 10,639

InspIRCd 46,246,206 11,165,696 3,950

Pidgin 4,762,914 6,833,360 3,641

Table 1 - Benchmark Applications. Profiled instruction

trace size for ground truth analysis is shown in the second
column. The third column represents the potential number of
length-4 paths, measured from an inter-procedure cyclomatic
complexity measure. The final column shows the number of
length-4 DCF paths within the profile trace.

4.4. Analysis of DCF Sampling

We evaluated the runtime overhead from profiling with

Schnauzer as well as the accuracy of the coverage with

respect to the ground truth DCF. Figure 7 details the runtime

overhead experienced when profiling applications with our

DynamoRIO client.

Figure 7 - Sampling Overhead. Runtime overheads for

applications are minimally above the slowdown experienced
from the DynamoRIO core with a NULL client.

In all cases the majority of execution slowdown (2.82X

average application runtime overhead) is attributed to the

DynamoRIO core, which averages 2.45X runtime

performance penalty compared to native execution. This

small Schnauzer instrumentation overhead is due to a

lightweight approach of only instrumenting code paths

which are being actively profiled, which results in a 15%

overall increase in execution time relative to DynamoRIO

with a NULL client. The slight improvement in overhead

experienced by SQLite from our client is attributed to the

alteration of fundamental DynamoRIO operating

mechanisms (e.g., code cache) which affects performance,

in this case positively.

Given the general-purpose nature and powerful flexibility

of DynamoRIO, a lighter-weight DCF path-specific dynamic

2.45

2.34

1.11

2.26 2.79

6.85

2.97

1.41

2.82

0

1

2

3

4

5

6

7

O
v
e
rh

e
a
d

(X
)

 t
o

 N
a
ti

v
e

DynamoRIO w/Null Client DynamoRIO w/DCF Profiler

instrumentation tool could potentially significantly improve

DCF profiling performance. Indeed custom tools have been

shown to be highly effective when compared to binary

instrumentation platforms like DynamoRIO and Pin. Zhao et

al. demonstrate a low-overhead tool for shadow memory

translation with Umbra [33], while Bosman et al. develop a

dynamic taint analysis tool, Minemu [2], which is

significantly faster than any competing general-purpose

solution. Minemu demonstrated that, for such dynamic

analyses, slowdown was not a fundamental property but

instead arose from non-specialized implementations.

DynamoRIO was chosen as an initial development

platform for power and flexibility combined with rapid

accurate prototyping of DCF profiling. Although runtime

overheads demonstrated generally remain higher than

desired, we believe initial deployment is certainly possible

(and planned) with the current framework for a range of

applications.

Because we locate DCFs with sampling, there is

legitimate concern as to whether or not the technique will

observe all of the possible (ground truth) DCFs, and

moreover, will all of the DCFs be identified in a reasonable

amount of run time. As shown in Figure 8, our profiler

locates the vast majority of DCFs in a short period of time.

Larger applications, with billions of instructions, necessitate

trillions of instructions of execution to receive good

profiling coverage of all possible DCFs. This translates to at

most ten thousand users profiling the application a single

time each, certainly within reach of a modest user

population.

Figure 8 - Path Coverage via Sampling. All benchmarks

attain 100% dynamic control frontier path coverage. Even
application traces of billions of instructions achieve coverage
within trillions of instructions. Thus, a user population of less
than ten thousand can profile a trace in a single run. Profiling
is done while utilizing only a single active hypothesis at any
time, and with a path length of 4 conditional branches.

Additionally, because sampling may deem a path a DCF,

which in fact both directions were executed (but only one

was observed), the accuracy of sampling must also be

measured. Figure 9 shows the accuracy with which DCF

paths are selected while profiling. Accuracy is given as the

percentage of likely DCF paths, discovered by sampling,

which are in the set of ground truth DCF paths for the

application trace. Some applications achieve perfect

accuracy while sampling, and overall Schnauzer is almost

99% accurate in profiled DCF paths with respect to the

ground truth DCF.

Figure 9 - Sampling Accuracy. The percentage of likely

DCF paths discovered by sampling which appear in the set
of ground truth DCF paths.

4.5. Schnauzer Profiling Scalability
The dynamic control frontier is most valuable when it is

derived from a sizeable population of end-users. Further, it

is expected to profile an application for its entire life cycle.

Schnauzer must therefore scale with application size,

duration of execution, and population of users.

As shown in Table 1, the number of DCF paths for an

application is quite small when compared to the potential

path space of such a long execution trace, greatly narrowing

the domain for test. It must be considered, however, to what

extent the dynamic control frontier path space will grow as

an application execution continues unbounded. Figure 10

demonstrates that as trace length grows ever larger, the

ground truth DCF path space grows linearly. This gives

confidence that the path space for test, the number of ground

truth paths which must be discovered while sampling, and

the incidental work such as updating the global path filter,

will all remain within a bounded, manageable range.

Figure 10 - DCF Path Growth. As the number of executed
instructions grows, ground truth DCF path space remains
small. The application shown is SQLite, executing increasing

durations of the fuzz testing component of the test suite.

Schnauzer scales very well with increasing path length.

As shown in Figure 11, to facilitate the highest degree of

path sensitivity, path length has no appreciable effect on

sampling overhead for paths ranging from 1 to 64

conditional branches. This is due to the lightweight

approach for path instrumentation, as only a few assembly-

level instructions are added to the path. As well, the number

of DCF paths will increase linearly with path length. Given

this, paths of up to a length of 64 conditional branches may

be analyzed with little impact to performance, should the

need for greater path sensitivity arise.

0

20

40

60

80

100

0.0045 0.045 0.45 4.5 45 450

%
 D

C
F

 P
a
th

s
 D

is
c
o

v
e
re

d

Instructions (Trillions, log10 Scale)

SQLite
OpenSSL
tshark
Python
Tor
InspIRCd
Pidgin

95.7

99.0
97.3 98.3

100 100 100 98.6 %

90
92

94
96
98

100

%
 S

a
m

p
le

d
 D

C
F

in

G
ro

u
n

d
 T

ru
th

 D
C

F

Sampled Likley DCF to Ground Truth DCF

10000
12000
14000
16000
18000

0 10 20 30 40

#
 o

f
P

a
th

s

Instructions Executed (Billions)
Ground Truth DCF Paths

Figure 11 - Path Length Scaling. As the profiled path

length increases in Schnauzer, the performance overhead
rises slowly. For paths up to 64 conditional branches, little
difference is seen. The benchmark shown is Tor.

Figure 12 - Concurrent Hypotheses. The number of active

hypotheses has minimal impact on sampling coverage. This
is due to the inclusion of the global path filter and local
sampled path list to eliminate redundant sampling.
Benchmark shown is tshark.

 Profiling overheads are kept low by limiting sampling

frequency and the number of paths concurrently being

sampled. Figure 12 reveals only a single path need be

actively profiled at any time. The utilization of a global path

filter and local list of recently sampled DCF paths

eliminates redundant work and allows all DCF paths to be

discovered in an acceptably similar amount of time,

regardless of the number of concurrent hypotheses.

Scalability at the system level is achieved as well. Given

the rate of dynamic control frontier path discovery while

profiling SQLite, the overall bandwidth requirement from a

population of users to the aggregation point at the developer

is under 5 bytes/second per user. Such a result suggests that

a single central server shard could likely serve 10,000’s of

individual user machines performing DCF path profiling. As

the path space of an application is explored, the influx of

new path information will decrease. To enhance profiling

over the entire life cycle of an application, the aging time for

a DCF hypothesis can be increased. Increasing this age

threshold brings profiled DCF paths closer to the ground-

truth set of DCF paths for the entire lifecycle of an

application.

4.6. DCF Correlation with Real Vulnerabilities
It has been shown that a large execution trace can contain

a tractable number of dynamic control frontier paths for

comprehensive test. However, it is necessary to demonstrate

that this information delineating the frontier of dynamic

execution is also a fertile source of real security exploits. To

establish the relationship between the dynamic control

frontier and security exploits, we sought to find if profiled

DCF paths indeed sensitized important security bugs. The

DCF paths gleaned from ground-truth analysis were

compared to bug reports from fixed security bugs. Fixed

bugs were chosen so as to know the precise location of an

exploited bug within the source code. These bug locations

could then be compared to the profiled DCF paths. If the

location of a known bug is found to be sensitized by and

located directly at the end of a DCF path, then the bug can

be said to have been effectively hidden behind the dynamic

control frontier.

Application Vulnerability Security Advisory

OpenSSL

Buffer Overflow CVE-2012-2110

Buffer Overflow CVE-2012-2131

Integer Underflow CVE-2012-2333

SQLite Buffer Overflow CVE-2007-1888

Tor
DoS CVE-2011-0492

Buffer Overflow CVE-2011-1924

Pidgin DoS CVE-2011-4939

tshark

Format String CVE-2009-0601

DoS CVE-2011-0538

DoS CVE-2012-2394

Python
DoS CVE-2010-2089

DoS CVE-2012-2135

InspIRCd
Buffer Overflow CVE-2008-1925

Heap Overflow CVE-2012-1836

Table 2 - Software Vulnerabilities Sensitized by Dynamic
Control Frontier Paths. Known software vulnerabilities

identified in the NIST National Vulnerabilities Database
(NVD) were shown to be sensitized by DCF paths.

As seen in Table 2, known security bugs are sensitized by

the dynamic control frontier. A total of 14 security exploits

were found at the dynamic control frontier for the profiled

benchmark applications. The security exploits are drawn

from the National Vulnerability Database (NVD) [24],

which is maintained by the National Institute of Standards

and Technology (NIST). The database was searched for

Common Vulnerability Exposures (CVE’s) [23] existing in

benchmark applications. Not all vulnerabilities listed in the

NVD for our benchmark applications were sensitized by

DCF paths. Some, such as configuration errors, are beyond

the scope of DCF path analysis. Others were simply not

sensitized by the set of DCF paths profiled from our test

inputs. However, these results are a strong affirmation that

the control frontier indeed harbors bugs which are likely to

be exploited.

It is interesting to note that profiling the dynamic control

frontier is not only fruitful for finding security bugs. We

also have early evidence that it is a prime target to search for

software bugs in general. To this end, a separate analysis of

the SQLite application was performed. In this analysis the

ground-truth DCF was compared to the most recently fixed

bugs in the SQLite code base. We found that 12 of the most

recent 20 bugs fixed in SQLite lay on code paths sensitized

by the dynamic control frontier. Of those 12 bugs, 5 were

clearly enabling security vulnerabilities.

0

1

2

3

4

5

2 4 8 16 32 64 128 256 512 1024 2048

S
lo

w
d

o
w

n
(X

)

Path Length

vs. DynamoRIO w/Null Client vs. Native

0

20

40

60

80

100

0 100 200 300 400 500 600 700

%
 D

C
F

 F
o

u
n

d

Instructions (Billions)

Single Hypothesis

8 Hypotheses

32 Hypotheses

To determine an optimal path length for our experiments,

the benchmarks were profiled for DCF paths of varying

length, as shown in Figure 13. These sets of DCF paths were

then analyzed to determine which vulnerabilities, listed in

Table 2, would be sensitized by the set of DCF paths for a

given path length. Within the scope of our experiments, the

number of DCF paths increases roughly linearly with path

length. More vulnerabilities are identified by the growing

set of DCF paths. All vulnerabilities shown in Table 2 were

discovered with a path length of 4 branches, with no other

CVE entries indicated by longer paths. Therefore, this path

length was selected our experiments. This coincides with the

observation that bugs may be more likely to be found with

shallow control flow activation rather than being correlative

with path coverage [12]. It is important to note that even in

the event that this path length is not optimal for another

application, Schnauzer is amenable to longer paths as well.

Figure 13 - Impact of DCF Path Length on Vulnerability
Discovery. Shown is the relationship between path length

and vulnerabilities discovered, for the sum of all benchmarks
listed in Table 1 and vulnerabilities identified in Table 2.
Benchmarks were profiled for paths of varying lengths. As
path length increases, the number of DCF paths increases,
with more bugs sensitized. All vulnerabilities in Table 2 are
discovered by the set of DCF paths profiled for a path length
of 4.

5. Related Work
Much work has been done in the pursuit to identify and

fix security vulnerabilities. Even more effort has been

expended to deliver comprehensive testing of applications.

Some related works are entirely complementary to

Schnauzer. Other efforts assist in building a foundation for

finding vulnerabilities but are not entirely sufficient

themselves to accomplish the central goal of identifying

code paths likely to be exploited, and thus DCF paths could

be a powerful mechanism to focus analysis effort.

5.1. Hot Path Analysis
The preponderance of path analysis has historically been

performed to identify “hot,” or heavily executed, paths. This

is common in compiler optimizations but is also used for

testing purposes. The work of Vaswani et al. [30] defines a

hardware-based programmable path profiling mechanism.

This work focuses primarily on solutions for hot path

analysis, limiting its adaptability to dynamic control frontier

profiling. Buse and Weimer [5] utilize static analysis to

identify hot paths which are determined to be over 50% of

total runtime of an application and generated by only 5% of

feasible paths. This work highlights the difficulty of path

profiling before application deployment.

5.2. Path Analysis and Distributed Sampling
 The concept of distributed sampling and end-users

performing testing tasks has become a more prevalent topic.

Greathouse et al. have demonstrated the feasibility of

distributed sampling for otherwise heavyweight security

vulnerability analyses. The applications are, however,

dataflow analyses [13][14]. Ko et al. extensively investigate

the concept of End User Software Engineering, which

highlights the changing mindset of end-users playing a more

involved role in the software life cycle [17].

 Chilimbi et al. [7] have proposed a method to determine

which paths were dynamically executed by deployed

software that had never been tested, termed Efficient Path

Profiling. This may be quite useful, but it focuses on

finding latent bugs which are likely to directly impact users,

thus focusing on software reliability. This is in contrast to

DCF profiling, which seeks to enhance software security. A

key assertion in this work was that edge profiling is sorely

inadequate in comparison to path profiling. This built upon

the previous work of Chilimbi et al. for Residual Path

Profiling [8] which also focused solely on highly executed

paths. Path-based data has been proposed by Liblit et al. to

generate useful information on program crashes, specifically

paths defined by conditional branches [20]. While this lends

credibility to the usefulness of conditional branch-based

path information, the purpose is strictly limited to post-

mortem analysis of application failures. Ayers et al. [1]

employ a different methodology to achieve these same ends.

5.3. Complementary Works
 Testing technology has evolved along with software

engineering techniques. Many useful tools exist which

identify an ever-increasing ratio of bugs before deployment.

 Godefroid et al. have implemented DART [10], a tool to

automatically generate random tests to explore all possible

code. This is a highly useful tool that could likely be made

more effective with DCF profiling. Though it seeks to

explore all sections of code, it cannot test all potential paths.

A key challenge is that DART may never complete

execution, making the determination of when to cease

testing difficult.

The practice of fuzz testing supplies a software unit under

test with a random generation of inputs in an attempt to

“break” the unit, in the form of failed assertions and core

dumps. The technique is sometimes called “black-box”

testing because it creates inputs without regard to the

internal structure of the software under test. This approach is

very good in theory; however, in practice the probability of

generating the correct set of inputs to achieve all possible

paths within a given unit under test is effectively zero for

non-trivial codes. Despite limitations, the approach has been

effective at exposing security flaws. For example, Google’s

cross_fuzz tool generates random web pages for testing

browsers, and it has exposed hundreds of potential security

flaws in all major browsers [29]. When coupled with

0

5

10

15

0

20

40

60

80

100

120

0 1 2 3 4 5 6

N
V

D
 V

u
ln

e
ra

b
il
it

ie
s

D
C

F
 P

a
th

s
 (

T
h

o
u

s
a

n
d

s
)

Path Length
DCF Paths Vulnerabilities Discovered

dynamic program analysis tools that can identify security

vulnerabilities without active exploits, such as taint analysis

[28] or input bounds checking [19], fuzz testing becomes a

power tool in the war against attackers.

While effective, pure random fuzz testing has limited

penetration on complex program control sequences. Another

important work related to DCF profiling is Microsoft’s

white-box fuzz testing tool SAGE [12]. This tool developed

by Godefroid et al. strongly advances white-box fuzz testing

of enterprise-level software. SAGE has become a primary

tool for bug detection within Microsoft. The tool takes a test

suite, with hand-generated and fuzz-generated tests, and

then uses SAT-based techniques to derive new program

inputs to change the direction of one branch in an existing

dynamic code path. The newly derived code path is then

subjected to symbolic execution analysis that includes input

bounds checking, taint analysis and overflow checking.

Approximately one-third of all Windows 7 security bugs

found have been identified by SAGE. A highly

representative example is a bug identified by SAGE which

affected code that parsed ANI-format animated cursors [9].

The bug had escaped detection by extensive black-box

testing over many years and generations of the Windows

operating system. Using modest desktop hardware, SAGE

was able to detect the bug within a few hours.

Random fuzz testing comprised the basis for testing four

out of seven of our benchmark applications. Even so, we

find vulnerabilities sensitized by DCF paths for these fuzz

tested executions. The reality is that random fuzz testing

does not provide deep code penetration [4][6][12]. This

work is just another demonstration of the limitation of

random fuzzing.

Even in light of such strong performance, many bugs are

left undetected. A key challenge to any testing platform is

the path space associated with a software application.

Testing every path which may be executed remains

infeasible for the foreseeable future. The infeasibility of

complete path analysis is what makes DCF path analysis

useful. Our work is to distill path data which may direct

existing testing technologies. Applications such as DART

and SAGE suffer the inadequacy of limited path exploration.

The implementation of DCF path analysis can assist by

directing such tools to high-value paths that likely contain

security vulnerabilities.

Concolic execution tools allow deeper penetration of

application code. However, these tools (such as KLEE [6])

have no path preference, including DCF paths. Indeed in

achieving code coverage, KLEE will execute the basic block

where the defect lies, but not necessarily with the path

required to sensitize the bug. We fully expect this to be the

case, as industry has currently moved into an era of full code

coverage for test. This property of concolic execution,

however, does not preclude discovering DCF paths anyway.

Table 1 in Section 4.3 shows Schnauzer identified 17,351

length-4 DCF paths for SQLite, one of which sensitized the

buffer overflow vulnerability identified in Table 2. This

significantly narrows the field of discovery from the 13.6

million paths facing KLEE. As path lengths increase, the

path space increases dramatically. The same measure for

SQLite estimated almost 200 billion length-16 paths.

This further highlights how contemporary test can benefit

from DCF analysis. Even when code coverage is achieved,

vulnerability-enabling defects still remain. Current white-

box testing attempts to brute-force application code to

provide deeper penetration. DCFs provide a heuristic to

narrow the path space faced by code penetration testing.

6. Conclusions
Bugs in software remain the greatest security threat in

programs today. There is much compelling evidence in the

testing literature (e.g., analysis of Windows 7 security

bugs[12]) which suggest that the key to finding and fixing

security vulnerabilities is to analyze code paths at the

dynamic control frontier. In this work we presented a

comprehensive technique for profiling an application to

discover the dynamic control frontier. We have shown that

by using a distributed profiling approach, such profiling can

be achieved efficiently for a substantial population of users.

Furthermore, we have demonstrated the high value of DCF

paths by correlating our discovered paths to 14 known

security advisory vulnerabilities documented in the National

Vulnerabilities Database. We feel strongly that efficient

user-based dynamic control frontier path profiling,

combined with existing white-box testing techniques and

heavyweight dynamic security vulnerability analysis tools,

will be a powerful weapon in the future fight against

attackers.

6.1. Future Work
Opportunities exist to improve the profiling of the

dynamic control frontier. Planned optimization of the

current DynamoRIO and client implementation could yield

further reductions in runtime overheads. A hardware-

assisted profiling system is also planned to reduce to

negligible levels the performance impact on end-user

execution.

The next step in harnessing the dynamic control frontier

is integration of profiled paths to existing test technologies

such as SAGE or KLEE. This will be coupled with the

deployment of optimized profiling for a long-running

application interacting with a population of users. Together,

this should work toward the discovery of yet-unknown

security vulnerabilities.

Acknowledgements
 The authors would like to thank the reviewers, whose

insights improved this work. The authors acknowledge the

support of the Gigascale Systems Research Center.

7. References

[1] A. Ayers et al., TraceBack: First fault diagnosis by
reconstruction of distributed control flow, Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, 2005, pp. 201-212.

[2] E. Bosman, A. Slowinska, and H. Bos, Minemu: The World's
Fastest Taint Tracker, Proc. of the Int'l Symp. on Recent
Advances in Intrusion Detection (RAID), 2011.

[3] D. Bruning, Efficient, Transparent, and Comprehensive
Runtime Code Manipulation, Massachusetts Institute of
Technology, Ph.D. Thesis 2004.

[4] J. Burnim and K. Sen, Heuristics for Scalable Dynamic Test
Generation, Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software
Engineering}, Washington, D.C., 2008, pp. 443-446.

[5] R. P. L. Buse and W. R. Weimer, The road not taken:
Estimating path execution frequency statically, Proceedings
of the 31st International Conference on Software
Engineering, 2009, pp. 144-154.

[6] C. Cadar, D. Dunbar, and D. Engler, KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
System Programs, Proc. of the Eighth Symp. on Opr. Systems
Dsgn and Implementation (OSDI '08), 2008, pp. 209-224.

[7] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani,
HOLMES: Effective statistical debugging via efficient path
profiling, Proceedings of the 31st International Conference
on Software Engineering, 2009, pp. 34-44.

[8] T. Chilimbi, A. Nori, and K.l Vaswani, Quantifying the
effectiveness of testing via efficient residual path profiling,
The 6th Joint Meeting on European software eng. conf. and
the ACM SIGSOFT symp. on the foundations of sftwre eng.:
companion papers, 2007, pp. 545-548.

[9] P. Godefroid et al., Automating software testing using
program analysis, IEEE Software, vol. 25, pp. 30-37, 2008.

[10] P. Godefroid, N. Klarlund, and K. Sen, DART: directed
automated random testing, Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, 2005, pp. 213-233.

[11] P. Godefroid and D. Lauchaup, Automatic partial loop
summarization in dynamic test generation, Proceedings of the
2011 International Symposium on Software Testing and
Analysis (ISSTA '11), 2011, pp. 23-33.

[12] P. Godefroid, M.Y. Levin, and D. Molnar, Automated
Whitebox Fuzz Testing, Proc. 15th Ann. Network and
Distributed System Security Symp. (NDSS 08), Internet
Society (ISOC), 2008.

[13] J.L. Greathouse, C. LeBlanc, T. Austin, and V. Bertacco,
Highly scalable distributed dataflow analysis, 9th Annual
IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), May 2011, pp. 277-288.

[14] J.L. Greathouse et al., Testudo: Heavyweight security analysis
via statistical sampling, 41st IEEE/ACM International
Symposium on Microarchitecture, 2008, pp. 117-128.

[15] C. Huang and M.R. Lyu, Optimal testing resource allocation,
and sensitivity analysis in software development, IEEE Trans.
on Reliability, vol. 54, no. 4, pp. 592-603, Dec. 2005.

[16] B. Kitchenham and S. Linkman, Validation, Verification, and
Testing: Diversity Rules, IEEE Software, vol. 15, no. 4, pp.
46-49, July 1998.

[17] A. Ko et al., The state of the art in end-user software
engineering, ACM Comput. Surv., vol. 43, no. 3, pp. 21:1-
21:44, April 2011.

[18] D. S. Kushwaha and A. K. Misra, Software test effort
estimation, SIGSOFT Softw. Eng. Notes, vol. 33, no. 3, pp.
6:1-6:5, May 2008.

[19] E. Larson and T. Austin, High coverage detection of input-
related security faults, Proceedings of the 12th USENIX
Security Symposium (SECURITY'03), August 2003.

[20] B. Liblit and A. Aiken, Building a Better Backtrace:
Techniques for Postmortem Program Analysis, University of
California, Berkeley, TechReport CSD-02-1203, Oct. 2002.

[21] C. Luk et al., Pin: Building customized program analysis tools
with dynamic instrumentation, Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation (PLDI), 2005, pp. 190-200.

[22] T. McCabe, A Complexity Measure, IEEE Transactions on
Software Engineering, 1976, pp. 308-320.

[23] Mitre. (2012, September) Common Vulnerabilities and
Exposures. [Online]. http://cve.mitre.org/

[24] NIST, National Institute of Standards and Technology. (2012,
September) National Vulnerability Database. [Online].
http://nvd.nist.gov/home.cfm

[25] H, Ohtera and S. Yamada, Optimal allocation and control
problems for software-testing resources, IEEE Transactions
on Reliability, vol. 39, no. 2, pp. 171-176, June 1990.

[26] A. Ozment, Improving vulnerability discovery models,
Proceedings of the 2007 ACM workshop on Quality of
protection, New York, 2007, pp. 6-11.

[27] R. Pressman, Software Engineering: A Practitioner's
Approach, 7th ed.: McGraw-Hill, 2009.

[28] E. Schwartz, T. Avgerinos, and D. Brumley, All You Ever
Wanted to Know about Dynamic Taint Analysis and Forward
Symbolic Execution (but Might Have Been Afraid to Ask),
2010 IEEE Symp. on Sec. and Prvcy, May 2010, pp. 317-331.

[29] L. Seltzer, Microsoft, Google Clash Over IE 0-Day Leaked to
Chinese Hackers, PC Magazine Online, 2011.

[30] K. Vaswani, M. Thazhuthaveetil, and Y.N. Srikant, A
Programmable Hardware Path Profiler, Proceedings of the
international symposium on Code generation and
optimization, 2005, pp. 217-228.

[31] F. Wagle, Pu Calton, J. Walpole, and C. Cowan, Buffer
Overflows: Attacks and Defenses for the Vulnerability of the
Decade, DARPA Information Survivability Conference and
Exposition (DISCEX), 2000.

[32] Z. Wang, K. Tang, and X. Yao, Multi-Objective Approaches
to Optimal Testing Resource Allocation in Modular Software
Systems, IEEE Transactions on Reliability, vol. 59, no. 3, pp.
563-575, Sept. 2010.

[33] Q. Zhao, D. Bruening, and S. Amarasinghe, Umbra: Efficient
andn Scalable Memory Shadowing, Proceedings of the 8th
annual IEEE/ACM international symposium on Code
generation and optimization, Toronot, 2010, pp. 22-31.

[34] H. Zhu, P. Hall, and J. May, Software unit test coverage and
adequacy, ACM Comput. Surv., vol. 29, no. 4, pp. 366-427,
Dec. 1997.

[35] T. Zimmermann and S. Neuhaus, Security Trend Analysis sith
CVE Topic Models, International Symposium on Software
Reliability Engineering (ISSRE), 2010, pp. 111-120.

