
2015 IEEE/ACM International Symposium on Code Generation and Optimization

978-1-4799-8161-8/15/$31.00 ©2015 IEEE

* Portions of this work were completed while the author was with
the University of Michigan.

Getting in Control of Your Control Flow

with Control-Data Isolation

William Arthur

University of Michigan

warthur@umich.edu

Ben Mehne*

University of California – Berkeley

bmehne@eecs.berkeley.edu

Reetuparna Das Todd Austin

University of Michigan

{reetudas, austin}@umich.edu

Abstract
Computer security has become a central focus in the

information age. Though enormous effort has been

expended on ensuring secure computation, software

exploitation remains a serious threat. The software attack

surface provides many avenues for hijacking; however, most

exploits ultimately rely on the successful execution of a

control-flow attack. This pervasive diversion of control flow

is made possible by the pollution of control flow structure

with attacker-injected runtime data.

Many control-flow attacks persist because the root of the

problem remains: runtime data is allowed to enter the

program counter. In this paper, we propose a novel approach:

Control-Data Isolation. Our approach provides protection

by going to the root of the problem and removing all of the

operations that inject runtime data into program control.

While previous work relies on CFG edge checking and

labeling, these techniques remain vulnerable to attacks such

as heap spray, read, or GOT attacks and in some cases suffer

high overheads. Rather than addressing control-flow attacks

by layering additional complexity, our work takes a

subtractive approach; subtracting the primary cause of

contemporary control-flow attacks. We demonstrate that

control-data isolation can assure the integrity of the

programmer's CFG at runtime, while incurring average

performance overheads of less than 7% for a wide range of

benchmarks.

1. Introduction
The software attack surface constitutes a substantial threat

to computer security. Software vulnerabilities facilitate a

wide array of security exploits: buffer overflows, heap spray

attacks, return-to-libc, integer underflow, code gadgets, and

a host of others. Today, the risk of software exploitation has

escalated beyond DDOS attacks and amateur attacks such as

the Melissa virus [11]. In the commercialization of the

malware industry, new and more serious threats have

emerged such as Crimeware, which perpetrate identity theft

for the purpose of monetary gain [15]. As most attacks are

conducted within the application layer [12]. Control-flow

attacks, which permit arbitrary code execution, have

emerged as a primary means to exploit software.

Our work drives to the heart of pervasive control-flow

attacks by directly attacking the root of the problem: user-

data derived control-flow. Contemporary research to protect

control-flow has been focused on verifying the user data to

be injected into the program counter (PC)

[1,6,13,17,26,30,33,34] in an effort to establish trusted user

data for control-flow targets. These previous works

approach control-flow security by layering additional

complexity on top of user data in an effort to shield the

vulnerability from attack. In this work we adopt a

subtractive approach by removing the actual vulnerability.

We simply do not trust any user data, and instead remove all

avenues for such data to be injected into the program

counter.

1.1. Control-Flow Attacks
Control-flow attacks implement the redirection of program

execution to attacker-selected code, either injected as user

data or existing code in the form of code gadgets. These

attacks violate, at runtime, the control flow graph (CFG) of

an application by corrupting the PC with user-injected data,

thereby allowing a program to execute a control edge not

defined by the programmer.

Control-flow attacks exploit an inherent weakness

ubiquitous in software development: determination of

control-flow target addresses at runtime. It is the enmeshed

relationship between the Program Counter and runtime data

which creates the fundamental weakness of software to

control-flow attacks. The classic example of such an attack

is the stack buffer overflow. When input to a buffer exceeds

the pre-allocated size on the program stack, the return

address in the stack frame may be overwritten. In this case,

the user data is used as the target of a return instruction,

which can then jump to malicious code including the input

buffer on the stack.

As a critical element of software exploitation, considerable

effort has been expended to address control-flow attacks.

Countermeasures such as stack protection, Address Space

Layout Randomization (ASLR), and Non-Executable Data

(NXD) have been widely adopted. Though many counter-

measures have been devised [1,6,7,26,27,30,34], control-

flow attacks remain a pervasive threat to computer security

[35] due to the persistence of mixing runtime data with

program control. Recently, mitigating techniques such as

Control Flow Integrity (CFI) [1] and its descendents [33,34],

Program Shepherding [17], and taint analysis [13] have been

proposed. These techniques, which propose increased

security through verification of runtime data, retain several

vulnerabilities. Some are susceptible to CFG forgery attacks

or allow the PC to target the middle of a basic block (or

even the middle of an instruction). They also place

constraints on their threat models that weaken their

791-4799-8161-8/15/$31.00 ©2015 IEEE

protections, such as the requirement of non-executable data

or the assumption that an attacker cannot read or infer the

contents of data memory. Additionally, most works do not

address call-graph based control flow (i.e., dynamic library

calls and returns). In this work, we relax the constraints of

previous work, by assuming that the attacker has free reign

over all of data memory (read, write, and execute), while

also addressing the important issues of call-graph protection

and dynamically introduced code such as shared libraries.

The limitations of previous works are discussed further in

Section 7 and Table 2.

1.2. Control-Data Isolation
Previous works attempt to mitigate control-flow attacks

through verification of the runtime data which enters the

program counter. Though this additional layer infers

increased security, it nevertheless leaves the original,

fundamental vulnerability: user data is injected directly into

the PC. By contrast, this work eliminates arbitrary control

flow by eliminating the connection that exists between the

PC and user data, a technique which we call Control-Data

Isolation (CDI). By disallowing the use of runtime data as

control-flow targets, the programmer can ensure that all

executions adhere to their specified control-flow graph

(CFG).

In this paper, we implement CDI by generating code

without the use of return and indirect jump/call instructions,

the two types of instructions in modern architectures that

connect user data and the PC. This creates some challenges

in creating arbitrary code, in particular for calls/returns,

indirect function calls, and shared libraries, but we show in

Sections 2 and 3 how to implement (and subsequently

optimize) these code sequences without the use of indirect

control-flow instructions. The programs we create

completely sever the link between the PC and user data, and

if the entire system adheres to the principles of control-data

isolation, all control changes are limited to valid CFG

edges, eliminating the way attackers execute control-flow

attacks today.

1.3. Contributions of this Work
The goal of this work is to identify the common thread of

software exploitation and directly address the root cause:

control targets derived from user data. In this work, we

make the following contributions:

 We present an effective, efficient, and scalable approach

to enforcing the CFG of an application at runtime. We

implement control-data isolation (CDI) as a compilation-

based transformation to existing software applications and

library code. We advance the state-of-the-art in control-

flow attack protection by targeting and eliminating the

root cause: the injection of user data into the program

counter.

 We present an LLVM-based compiler implementation that

generates control-data isolated code for non-trivial

programs and shared libraries, eliminating the use of

indirect control flow in compiled programs.

 We analyze a diverse set of programs and design and

evaluate targeted, profile-guided optimizations to improve

the performance of control-data isolated code.

 We evaluate the efficiency of CDI, showing through

detailed experiments that the performance and storage

costs are minimal, less than many of the previously

proposed control-flow attack mitigation techniques.

The remainder of this paper is organized as follows.

Section 2 provides an in-depth analysis of CDI. Section 3

details our implementation approach of eliminating all

indirect control flow, while Section 4 addresses dynamic

code from shared libraries. Section 5 provides detailed

analysis of our LLVM compiler-based implementation,

PitBull. Experiments testing our method and a full analysis

of results are delivered in Section 6. Finally, Section 7

evaluates related works, and Section 8 highlights

conclusions and future work.

2. Protecting Control Flow with Control-

Data Isolation
Control-flow attacks work by injecting malicious runtime

data into the program counter of a susceptible target process.

They are a divergence from the programmer-defined CFG of

an application, occurring when an attacker creates new

control-flow edges from user data at runtime. This can take

many forms such as return-oriented programming, heap

spray attacks, stack smashing, and even hijacking calls to

library functions.

2.1. Threat and Trust Model
The goal of a control-flow attack is to subvert the control

flow of a vulnerable process and execute code of the

attacker's choosing. In this work, we consider the attacker to

play a powerful role. An adversary is assumed to possess

arbitrary read, write, and execute privilege to data memory,

including the stack and heap. That is, we start from the

position that an attacker controls all of data memory. In

traditional compilation techniques, many control-flow target

addresses are derived from or stored in data memory; hence,

once an attacker gains some level of read/write/execute

control over data memory, there are typically many avenues

to direct program flow to code of their choosing. This is

precisely how control flow attacks are currently

accomplished.

We do make the assumption that the attacker cannot

arbitrarily overwrite executing code segments at runtime.

We see this assumption of non-writable code (NWC) as a

fundamental element of security. Without this one

protection, the attacker could simply substitute their own

code for that of the application, obviating the need for

control-flow attacks. Similarly, the program loader is trusted,

as a compromised loader could simply replace system code

with malicious code at load time. It is important to note,

however, that the loader can be protected against attacks

with CDI, in the same way as other applications.

An important aspect of our relaxed threat model is the

assumption that data segments, specifically the heap, may

contain executable code. As long as the non-writable code

requirement is met, an application may execute code in the

heap with full CDI protections. Previous works including all

works based on CFI [1], expressly forbid the execution of

code on the heap. This requirement is due to their

80

susceptibility of forgery attacks. As they rely on labels

placed at target locations, a heap spray attack could create

forged labels which fraudulently identify malicious code as

acceptable targets for an indirect call or jump. Our work is

not susceptible to this attack, as all targets are embedded

into the existing programmer-specified and loader-blessed

instructions, eliminating the need to trust destination labels.

The key element of both our threat model and CDI

principle is that user data expressly cannot be trusted. An

important distinction between CDI and previous works such

as CFI [1], and its descendents [7,33], is their use of a

shadow stack [24] to secure all return instructions. As the

shadow stack is resident in data memory, it is inherently

susceptible to attack and requires additional protection

measures, increasing the potential attack surface. CDI

provides the same protection against control-flow attack for

all indirect instructions, obviating the need to trust or shield

user data.

2.2. CDI Threat Protection

The implementation of CDI eliminates the possibility of

any runtime data being used as a control-flow target address.

In this work we accomplish this goal by disallowing the

execution of indirect control-flow instructions. Simply put,

an indirect jump, call, or return will never be executed. This

eliminates the critical element pervasive to control-flow

attacks. Without these instructions, stack smashing, heap

spray, buffer-overflows, return-to-GOT, and return-to-libc

attacks are crippled, as they all rely on the ability to derail

the control-flow of a process, currently achieved by

polluting the data value of indirect control-flow targets.

Further, the availability of useful code gadgets and any

remaining control-flow attacks are diminished to legal

traversals of the program's CFG, since it is not possible to

jump to the middle of a basic block (or instruction). By

addressing, and removing, the root of the problem we can

significantly reduce the software attack surface by limiting

control to the programmer-specified CFG. The extent of the

protection is determined by the degree to which the code

running on the machine adheres to CDI principles. If all

code running utilizes CDI, then user-injected data cannot

find its way into the PC, and the system is hardened against

control-flow attacks. To facilitate this ultimate goal, we

focus on CDI-based compilation for applications, libraries,

and dynamically introduced code objects, such as shared

libraries.

In our relaxed threat model, we enable code to be executed

in data space. This supports the use of a prevalent

technology previous works have not: just-in-time

compilation (JIT). JITted code presents challenges to CDI

implementation, such as jump tables for loop unrolling.

However, problems analogous to this have already been

addressed by our work for similar structures such as the

global offset table (GOT). Though we do not inhibit just-in-

time compilation, it is beyond the scope of this work and

remains a prime target for future work.

2.3. Achieving Higher Levels of Protection by

Isolating Control and Data
The threat model defined above creates many

opportunities for ambitious attackers to achieve arbitrary

code execution. Some instructions, namely indirect control

flow instructions, derive control flow, in whole or part, on

runtime data. When an attacker gains some level of control

over data memory, this runtime data can be manipulated in a

malicious manner, permitting an attacker to use (and abuse)

the programmer's indirect jumps at will. This can be

observed in attacks such as code gadgets, heap sprays, and

buffer overflows. These attacks must, at some point, rely on

a control-flow target derived from user data which may be

injected by an attacker.

Figure 1 - CDI Control Flow Protection. Indirect branches are converted
to direct conditional branches, severing the link between potentially
malicious runtime data and the program counter.

To assure that the program's execution adheres to the CFG

defined by the programmer, we isolate control-flow from

runtime data. To achieve this end, we focus on all control

flow decisions at runtime including those which are

encapsulated in the executable code objects and control

transfers in between. Thus with CDI, all valid edges in the

CFG of an application are encoded in the programmer-

specified and loader-blessed instructions of an application.

This CFG functions as the golden model which completely

defines the valid control flow of an application. That is to

say, any dynamic paths which adhere to the CFG are

potentially secure, but any paths which violate the CFG are

explicitly insecure. By embedding all control-flow targets

within programmer-written instructions, rather than derived

from user data, we eliminate the weakness in software

which enables all control-flow attacks.

Figure 1 depicts a simple code sequence vulnerable to

control-flow attacks, and an equivalent code sequence

constructed with CDI that is protected from control-flow

attacks (the full details of this process are discussed in

Section 3). To prevent exploitation of indirect control flow

instructions, we simply remove them from software. The

indirect branches are replaced by direct branches, which

only allow predetermined know-valid edges. The

permissible targets of these instructions, i.e., Ret_1,

Ret_2, bar, and baz, are identified via CFG discovery.

81

The control-data isolated code has no avenue for

potentially malicious runtime data to be injected into the PC.

As such, all target addresses of control-flow come from the

programmer-specified text segment of an application. By

eliminating the use of indirect instructions, attacks such as

Stack Smashing become impossible to implement directly

on the programmer's CDI-protected code. Similarly, attacks

such as Heap Spray attacks rely on the execution of a

control-flow instruction which derives its target from data

memory. Even rootkits, where 96% of Linux rootkits

integrate control-flow attacks [22], rely on subverting data

which is injected into the program counter. Additionally,

return-oriented programming (ROP) attacks, including those

without any function calls, are defeated as these attacks rely

on an initial derailment of the control-flow from the CFG by

user data injected into the PC.

Implementing CDI requires validation of all control

targets, which in turn requires complete knowledge of the

CFG. Indirect control flow instructions such as function

pointers make control flow graph discovery a challenge. In

spite of this, previous works have demonstrated that the task

of CFG discovery is achievable [1,7,28,31,34,33]. Our CFG

discovery approach is addressed in-depth in Section 3.1.

Another key challenge, often overlooked by previous works,

is control flow transfer between dynamically-linked objects

such as shared libraries. Our work solves this issue, as

detailed in Section 4.

Analyze Whole-Program CFG

Convert Indirect Branches to Direct MBRs

Convert MBRs to Native Instr. Conditional Branch Sleds

Execute Program, Profiling Sled Usage

Indirection-Free Binary

Source Code

Optimized Indirection-Free Binary

Generate Profile-Optimized Sleds

Figure 2 - CDI Compilation Flow. CDI-protected, indirection-free code is
generated from application source code. This process converts indirect
control-flow to direct branching, which is then profiled to optimize runtime
performance of CDI-hardened code.

Indirect control flow is an intrinsic part of modern

software, so its removal has the potential to adversely

impact the performance of programs. We address this

concern by leveraging profile-guided code generation to

efficiently select validated targets, which is detailed in

Section 3.3. We develop an efficient, effective CDI software

implementation which assures the runtime integrity of a

program's CFG, demonstrated in Section 5. At first glance,

it may appear that eliminating indirect control flow will

inherently result in program slowdowns. However, previous

research into devirtualization demonstrates that such a

process is utilized to facilitate program speedups [3,14,16].

Devirtualization is the process by which dynamic virtual

function calls are replaced with object test and direct calls,

similar to the process depicted for fptr in Figure 1. By

leveraging superior branch prediction, devirtualization has

been proven to improve execution speed in the object-

oriented languages to which it has been applied.

3. CDI via Elimination of Indirect Control

Flow

The work of creating software free of indirect control flow

can be accomplished at varying stages in software

development. In this work we propose a combination of a

compile-time and load-time solutions that eliminate the use

of indirect instructions in binaries. To achieve this, we must

discover the CFG of an application and from it identify the

indirect branching instructions and their control-flow targets.

This information is used in eliminating indirection by

substituting hard-coded, direct control flow into the target

application. We also implement and identify several

optimizations to apply when creating applications free of

indirect control-flow.

An overview of this approach is shown in Figure 2. The

CDI process begins by discovering the CFG of an

application, and subsequently identifying all indirect control

flow instructions, i.e., returns and indirect jumps and calls.

These are then converted to multi-way branches (MBRs)

and a complete target set for each MBR is then identified. A

sled of conditional branch/direct jump pairs, one for each

target, is substituted for each MBR. The sled does the work

of converting indirect jumps to direct ones, by comparing

the proposed target one-by-one with all of the validated

potential targets of the indirect jump. An example of a sled

is depicted in Figure 1 by the instructions

 if(*fptr==bar) call bar;

else if(*fptr==baz) call baz;

which are substituted for the vulnerable indirect call. When

a matching target is found, a direct jump is made to the

validated target; otherwise, an invalid control-flow decision

is declared. The resulting code is dynamically profiled and

optimized for performance. This process is studied in further

detail in Section 3.3.

3.1. CFG Discovery

To enforce the golden-model CFG at runtime, a complete

CFG which encapsulates all possible paths through a

program for non-trivial software applications must be

determined. Lifting binary code to determine the CFG of an

application is both an active and well researched topic

[2,4,5,28]. However, such a task is made difficult

specifically due to indirect control flow. Previous works

such as CFI have been able to determine the precise CFG

from binary analysis, while in this work we obtain such

information from our LLVM-based compilation flow.

We shall only consider indirect control flow instructions

for CFG analysis, as direct control flow instructions are both

trivial for building a CFG and they are not subject to code

injection attacks (given the non-writable code assumption of

our threat model). The key issue, then, to constructing a

runtime invariant CFG is to determine the set of all possible

targets for each and every indirect control flow instruction,

as shown in Figure 3.

82

for each instruction inst in application

 if type(inst) == return

 target_set(inst)=all instruction after

 call_sites

 elseif type(inst) == indirect_call

 target_set(inst) = all function where

 function_type(function)== call_type(inst)

 elseif type(inst) ==indirect_jump

 target_set(inst) = all instruction where

 instruction == target(inst)

 elseif type(inst) == virtual_call

 target_set(inst) = all function where

 vptr(inst) vtable(function)

 elseif type(inst) == optimized_switch

 target_set(inst) = all instruction where

 instruction == case(inst)

 elseif type(inst) == function_pointer_call

 target_set(inst) = all function_ptr where

 function_type(function_ptr) ==

 function_type(inst)

 replace inst with multi-way_branch mbr where

 target_set(mbr) == target_set(inst)

Figure 3 - Indirect Instruction Target Set for CFG Construction. For
each individual indirect jump, call, or return, all allowable control flow
edges must be determined prior to executing the code.

Considering software at a low level, indirect control flow

may be categorized into three groups: jumps, calls, and

returns. Indirect jumps, such as those arising from switch

statements, are implemented for performance when the

case set for a switch statement is large. At compile time,

the target set of basic blocks for the case statements is

known, making resolution of control flow edges simple.

Other indirect jumps often have but a single target, e.g.,

process linkage table (PLT) entries. These must be resolved

at load time for shared library linking. In any case, the exact

address will be known at least by load time, thus, the

potential targets of indirect jumps is knowable before

execution begins.

Direct function calls and returns may be resolved from the

call graph for an application. Indirect calls and their returns,

however, are a special challenge which arises from

programming constructs like function pointers. Pointer

analysis in general is difficult for compilers, limiting

optimization possibilities. However, in terms of CFG

construction, function pointer analysis has distinct

advantages over conventional pointer analysis. Most

compilers, including gcc and g++, enforce function pointer

assignment by argument and return types. We leverage this

knowledge for greater precision in call-graph CFG analysis.

There are special conditions which can work to defeat

efficient function pointer analysis, such as function pointer

casting and return type casting, using data types such as

void *. However, a complete and correct (but perhaps

conservatively constructed) CFG remains determinable. In

the worst-case analysis, a function pointer may be assumed

to reach any function. Performing function pointer analysis

provides a more concise CFG, which further reduces

potential code gadgets. Concurrently, this also improves

runtime performance by reducing the size of conditional

branch sleds for indirect function calls.

Virtual functions are implemented as indirect calls via the

vptr attribute. Previous work has shown that these may be

converted to direct calls by source code rewriting [18].

During compilation however, the same essential information

for vtable implementation, i.e. class inheritance and

overriding, is leveraged to derive a valid target set for a

vptr directed call.

Returns are the most prevalent of all indirect instructions.

In theory, the potential set of targets for any return can be

determined by identifying all call sites for a function. In

practice this does not always hold true, as programming

constructs such as tail calls must be detected to reveal the

true target. By reverse CFG walking, all reachable paths are

found to determine possible return targets.

Position independent code (PIC) are code objects where

the resolved address of any instruction is not known until

the library is loaded. This presents a special challenge to

discovering the CFG when considering objects compiled

with PIC. However, the CFG for this code is fully

discoverable at compile-time, as the underlying information

about target sets for multi-way branches is available without

dependence on addressing information.

3.2. Indirection Elimination
Elimination of indirect control-flow is the heart of this

work. This severs the link between potentially insecure data

and the program counter. Once a complete CFG has been

constructed for an application, indirect control flow is no

longer necessary for correct execution.

Indirection elimination is the process by which indirect

control flow is replaced by direct control flow. The most

straightforward approach is to replace an indirect branch

with an equivalent set of conditional branches. This

construct, called a sled, tests a potential target address

against the known set of valid targets identified by CFG

discovery. For example, a return statement would be

replaced by a series of if...then statements, where each

if statement tested a potential known-valid return address,

which if matched would lead to a direct jump to the valid

target. This process is depicted in returning from functions

bar() and baz() in Figure 1. After complete indirection

conversion has been achieved, all targets are reached by

direct jumps or calls. Consider the event where an attacker

is able to corrupt the data for a return, i.e., stack smash. All

potential valid targets will be tested against the tainted value,

which will fail to redirect control flow. At the end of any

sled, a direct call to an abort function is inserted. This

allows for the graceful exit of the program under attack,

which can also be used to collect information on the attack.

Though elegant, CDI may introduce inefficiencies to

runtime performance. Some instructions, particularly returns,

may have a large set of valid control transfer targets.

Performance implications are explored in detail in Section 6.

83

3.3. CDI Performance Optimizations

Assessing potential runtime implications of CDI, there are

two major elements which may contribute to a degradation

in performance. The first is the number of targets for each

multi-way branch. A large set of valid targets will generate a

correspondingly large sled of conditional branches. This

creates both a larger binary and the potential to execute a

greater number of instructions before taking the intended

edge. There are several ways to address this concern.
Multi-Way Branch Target Ordering. A significant

optimization is the profile-guided ordering of conditional

branches in multi-way branch sleds, the process of which is

shown in Figure 4. Dynamic profiling of edge counts can

dictate insertion order of conditional branches. Complex

orderings could be envisioned, such as tuning for branch

prediction accuracy. However, the simple method of

ordering edges by descending execution frequency provides

a highly effective way to minimize the average number of

not-taken branches which must be executed before arriving

at the correct edge.

Single Target Set Reduction. The simplest optimization is

the reduction of single-target indirect instructions to

unconditional, direct jumps.

Frequent Function Cloning. Another simple optimization

is function duplication for frequently called functions, which

can proportionately reduce the set of valid return targets for

each individual function clone. This optimization works

well for small functions with many call sites.

Large Target Set Resolution. This optimization replaces a

series of conditional branches with another mechanism

which has either constant or logarithmic time complexity,

e.g., a binary search tree. Any search method would incur

some overheads, creating a minimum threshold to seek an

alternate for a series of conditional branches. For example, a

long series of conditional branches where the first is almost

exclusively taken will execute faster than a search over the

same targets in the average case.

START Compile to I R

Profile?

Indirection
Elimination

Compile
Profiling

Executable

END

N Y
Compile

Optimized
Executable

Execute

Profile
Data

Figure 4 - Dynamic Profiling for CDI Optimization. The runtime
performance of multi-way branches implemented with direct conditional
branches is greatly impacted by target ordering. By profiling target
execution counts, we leverage inherent branch bias and order conditional
branches by execution frequency.

The second major performance factor in indirection

elimination is branch prediction performance for the

inserted conditional branches. Branch mispredictions have

non-trivial impact on runtime performance of applications.

As such, addressing the predictability of the extra branches

inserted to eliminate indirection is a concern. The only

controllable dimension to conditional branch insertion is

their ordering. Choosing an ordering by execution frequency,

ascending or descending, provides the average-case

performance benefit of executing the most predictable

branches first. Both the overwhelmingly taken and never

taken branches will be nearly perfectly predictable.

However, ordering with the most oft-taken branches first

provides the added benefit of executing less untaken

branches in the best and average case.

3.4. Detecting Attacks in CDI Protected

Programs

When a control flow attack occurs on a CDI protected

program, the realized effect is to exhaust the list of

allowable targets in a conditional branch sled without taking

any edge. This will also happen in the event of a non-

malicious data corruption bug affecting a potential control-

flow target. When this happens, the application will instead

directly call a handler routine which gracefully exits the

program. This handler can aid in debug/diagnosis by

obtaining information about the crash, in the form of a

unique ID for the call and the offending target address. This

data can then be analyzed to determine the nature of the

unexpected control edge.

To prevent control-flow attacks, it is essential to disallow

any control flow which violates the predetermined CFG. All

control flow is classified as either authorized or illegal, to

facilitate our relaxed attack model (only a single illegal edge

is needed to perform a heap spray attack). By disallowing all

illegal CFG edges, we remove the essential element of

control-flow attacks, thereby hardening software against

them.

4. CDI Implementation for Shared Libraries
Not all control flow edges originate and terminate within a

target binary. Many applications make calls to functions in

dynamically-linked libraries at runtime. In order to provide

protection for any application, the library code it calls

should also adhere to the principle of CDI. To achieve this,

we extend the use of indirection elimination to shared

libraries.

4.1. Dynamic Nature of Shared Libraries

Shared libraries are referred to as such because a single

copy of the library can be loaded once into physical memory

and shared at multiple start addresses by multiple processes

running concurrently. Further, they are dynamically linked

when an application is loaded into memory. The dynamic

nature of shared libraries make them a natural match for

indirect control-flow. However, this also creates a natural

vulnerability to control-flow attacks as well. An example of

this is the return-to-libc attack [8], which circumvents non-

executable stack protection to call attacker-desired functions

in libc.

The dynamic nature of shared libraries, and their pervasive

use of indirect control flow, presents new challenges for

implementing CDI. These challenges include position

independent code (PIC), the use of indirect jumps in the

PLT in conjunction with the global offset table (GOT), and

returns to potentially many different applications from a

shared function in a library. Here we demonstrate the

process of CDI in the context of shared libraries on Linux

84

systems, though similar methods would be applicable to

other approaches such as Dynamically Linked Libraries

(DLL's) for Windows.

The current implementation of dynamically-linked shared

libraries on Linux operating systems works as follows.

Shared library code is compiled separately from application

code and linked together when the application is executed.

This linking is accomplished by the resolution of shared

symbols in the symbol table of all linked objects. Each

function call to a shared library is facilitated by the PLT and

the GOT. When a function is called, the application

executes a direct call to the PLT entry in the application

code associated with the shared library function. The PLT

entry then executes an indirect jump to the function, the

target of which is stored in the GOT. When the library

function completes execution, control returns to the original

call site.

To facilitate the sharing of libraries, the address of a

shared library function in the virtual address space must be

resolved, as this is typically a randomized location in the

memory space due to ASLR. When a function is called for

the first time, the target address of the PLT jump in the GOT

will not target the desired library function, but instead the

next instruction in the PLT entry. This is a direct jump to a

helper function which will determine the actual address of

the desired function, via the program loader using the

symbol tables of the code objects. Once the target address is

established, the corresponding entry in the GOT is

overwritten with the actual address of the desired function.

This process is called binding, typically seen as lazy binding

where the binding between objects is done at runtime upon

the first invocation of a library function. This introduces an

inherent weakness to control-flow attack, as the GOT table

of function addresses could be overwritten with data at

runtime which is then directly injected into the PC at the

next shared library function invocation. Attacks on the GOT

due to this weakness have been demonstrated [9,25].

4.2. Enforcing CDI for Shared Libraries

Elimination of indirect control-flow removes the need to

establish trust in user data. Target set resolution for MBRs

remains the same process regardless of whether code is

static, relocatable or position-independent. However, PIC

code cannot contain absolute address references. To remedy

this, all conditional branch/direct jump sleds are comprised

of PC-relative address references. This allows all jumps and

calls within PIC code to be implemented as direct jumps

and calls.

In order to enforce CDI for shared library calls, our work

eliminates the use of all indirect jumps implemented in the

current structure using the PLT and GOT. An overview of

our shared library implementation is depicted in Figure 5.

Shared libraries remain separately compiled and linked by

the program loader when an application is executed. As

before, the PLT is used to invoke the library function.

However, with CDI the program loader will overwrite the

indirect jump instruction in the PLT entry with a direct call

to the address of the library function, which was previously

being written into the GOT as an indirect target. This is

depicted in the application in Figure 5. We enforce dynamic

linking at load time (i.e., non-lazy binding) before any

runtime data is encountered. Thus, all control transfer

targets are derived from programmer-specified instructions

and the program loader, side-stepping any need to trust

runtime data.

Figure 5 - CDI for Shared Library Control Flow Transfer. All indirect
control flow is replaced by direct calls and jumps, resolved at load time
and written to the PLT, obviating the need for the GOT in function calls. In
the case where more than one object may invoke a library function within
the same process, an RLT entry is created, which executes a sled to
return execution to the calling code object PLT entry. This then selects the
correct return point in the application. Each process has a unique copy of
the PLT and RLT while continuing to share the library code.

The task of returning from a shared library call is the last

challenge in eliminating indirect control flow, and it

requires eliminating the use of the return instruction.

Here we leverage the same mechanism used to call the

library function: the PLT. The return instruction is replaced

with a direct, PC-relative jump to a new PLT entry whose

purpose is to return control-flow back to the calling code

object. This PLT entry then contains a direct jump to one of

two locations. In the case where only one dynamically-

linked code object in a process address space may call a

given function, the PLT of the called function contains a

direct jump back to the PLT of the calling function. If there

is more than one code object in a process address space

which may call the library function (e.g., malloc() is called

by both the application and library other than libc) then the

single direct jump from the PLT will prove insufficient. In

this case, a new code object is defined, referred to as the

return linkage table (RLT). An RLT entry holds a

conditional branch/direct jump sled which contains the

return target addresses for all of the possible calling code

objects within the address space of the process calling the

library function. The PLT entry in the called function will

then directly jump to its respective RLT entry. When the

prospective return address is compared to the list of

allowable targets and a match is found, the RLT then

executes a direct jump to the target. The RLT is depicted in

the shared library object in Figure 5.
The inclusion of direct jumps in the PLT and RLT require

that they not be shared in memory (as they will differ for

85

each application). Thus, they are aligned on page boundaries

immediately following the shared PIC code of the library.

This facilitates the ability to reach the PLT for each

application by the same instruction in the library function.

Consequently, all the benefits of shared libraries are retained

such as dynamic linking and a single copy of large libraries

like glibc. Additionally, the elimination of indirection in the

implementation of shared libraries effectively removes the

ability to perpetrate GOT-based attacks and any attack

which exploits a return instruction, as not a single

return instruction will remain in any code executed by a

process.

It should be noted that the elimination of indirection in

PIC is greatly aided by PC-relative instructions in the x86-

64 and ARM ISAs. In other ISAs such as 32-bit x86, PIC

implementation is more complicated by lack of PC-relative

jump instructions. In such a case, CDI can still be readily

achieved. To accomplish this, sharing would be disallowed,

and libraries would be implemented as relocatable code,

which is identical in implementing CDI as application code.

5. PitBull: Compiler-Based CDI

To validate our control-data isolation enforcement via

indirection conversion, PitBull (Positive Indirection

elimination By LLVM) was built. PitBull is a compiler

optimization utilizing the LLVM compiler infrastructure

[19]. The set goal was to establish feasibility for indirection-

free executables. Of equal importance, this also facilitates

the analysis of runtime performance implications of CDI.

Compile Application to LLVM-IR with clang

opt LLVM general optimization pass

opt LLVM target set identification and indirect call/jump
elimination pass

opt LLVM return instruction
 preparation pass

Assembly code rewriting eliminating
return instructions

Final assembly and compilation

Application binary free from indirect
control flow instructions

Figure 6 - PitBull Compilation Flow. Applications are compiled to be
free of indirect control flow instructions. Leveraging the LLVM compiler
infrastructure, optimization passes identify all valid targets of indirect
control flow and insert conditional branches in replacement.

The LLVM optimization-based implementation of PitBull,

shown in Figure 6, works as follows. The target applications

are first compiled to LLVM-IR with the clang compiler. All

IR files are then linked by the llvm-link tool. A standard

optimization pass is then performed by the LLVM tool opt.

At this point the target executable has been compiled into

LLVM-IR and is ready for our indirection conversion

optimization passes, invoked again with the LLVM tool

opt. The primary pass first identifies the nodes and edges

of the CFG relevant to indirect calls, jumps, and returns.

Function pointer analysis is performed to identify control

flow edges not readily available from the standard -dot-

callgraph LLVM opt pass. Once the targets of indirect

control flow instructions have been identified, indirect call

and jump instructions are replaced with a series of

if..then (icmp..br)statements. For each allowable

target, a compare is made to the candidate target, followed

by a direct jump to the allowable target. A second pass then

aggregates call and return data in preparation for the ensuing

assembly-level rewriting passes. The transformed LLVM-IR

is then compiled to assembly via the LLVM llc tool.

At this point, indirect calls and jumps have been

eliminated from the target application. Returns are then

handled by assembly code rewriting. First, a label is placed

after each call of the program. Next, all return statements are

replaced with a series of compares and direct jumps. The set

of valid return targets, provided by the first opt pass, have

their corresponding newly inserted labels compared to the

stack pointer. Each compare is followed by a conditional

direct jump to the compared label. After all compares and

conditional jumps are inserted, a terminating call to the

attack handling routine is inserted. Since we substitute direct

jumps for returns, the stack pointer is incremented before

any compares, which then compares to the stack pointer

minus one word.

All indirect instructions have now been replaced by

compares and direct jumps. The code is then assembled and

an executable is produced. We note that the process for

relocatable code is exactly the same as that for static

application code. When the code is relocated at load time,

the relocation table will update all absolute address

references with their new location, for both the compares

and direct jump instructions.

To facilitate shared libraries, we also eliminate indirect

control flow instructions in PIC code. This requires a more

nuanced approach than static or relocatable code. The target

sets for indirect branching instructions are identified exactly

as before. However, the inserted sleds must be PIC-

compliant and may not contain absolute address references.

To implement this, our system instead utilizes PC-relative

instructions. For each allowable target, a comparison is

made to the candidate target, followed by a PC-relative

direct jump.

In our framework, we do not implement load-time

functionality. This means that our current LLVM compiler-

based implementation does not provide our proposed CDI

protection against GOT-based attacks. However, we do

model overheads associated with dynamic library

implementation, including non-lazy binding. Further, the

additional sled added to the calling application PLT,

depicted in Figure 5, is simulated by adding the sled as

padding to the return location of the called library function.

The execution of library calls would be nearly identical in

performance, save the last step would be a direct call from

the PLT. As stated for devirtualization in Section 2.3, this is

expected to improve execution time for calls. Returns from

libraries would potentially suffer from additional RLT entry

traversal. However, this impact would be minimal, as in our

benchmarks only 2% of control transfer from library calls

86

require an RLT entry, while the remainder would jump

directly from the PLT of the shared library to the PLT of the

application.

6. Experimental Evaluation

To fully understand the runtime implications of CDI, the

performance of our compiler implementation was evaluated.

The testing platform consists of 64-bit x86 workstations

running Ubuntu 12.04 LTS Precise Pangolin with Linux

kernel 3.5.0-39-generic. Compilation and optimization is

accomplished with clang and LLVM, both release version

3.3. All optimization passes are registered LLVM passes,

while the assembly code rewriting is performed using Perl.

6.1. Benchmark Applications

Several security-sensitive and network-facing applications

were chosen to evaluate runtime performance. These include

sha1sum, sha256sum, sha512sum, and md5sum from the

GNU Coreutils suite, as well as tcpdump, a popular network

packet analyzer and bftpd, an ftp server. The SPECINT2000

benchmarks were also included to allow a direct comparison

between our work and earlier works such as CFI [1]. We

further implemented CDI for the musl libc library [20], due

to a known lack of compatibility between clang and glibc.

6.2. Performance Evaluation

SPEC benchmarks were executed with the standard

runspec interface. Other benchmarks were executed while

processing as input large, 45GB network capture files.

Results are timed and averaged over 5 runs, shown in Table

1. The runtime overheads shown reflect the increase in

runtime for benchmarks relative to the original, unmodified

applications. Default compilation parameters are held

constant for both original and modified binaries. The naïve

runtime overheads represent the performance overhead

without any subsequent optimizations. Ranging from

almost zero to nearly 2X slowdown, the naïve

implementation averages about 45% for all benchmarks.

When optimizations are applied (as detailed in Section 3.3),

we see a dramatic decline in the execution overheads for all

benchmarks, where over half have no perceivable overhead

at all. There is also a noticeable difference in runtime

overheads between SPEC benchmarks and the network-

facing applications. SPEC benchmarks, by design, are

generally compute-intensive workloads. However, the

remaining applications, such as tcpdump, typically have

performance which is I/O bound. For these workloads,

which are a prime candidate for CDI protection, the cost for

such protection is hidden by I/O overhead.

6.3. Impact of Optimization

As observed in Table 1, optimization has a considerable

impact on performance. There are two main factors which

influence this; the heavily biased nature of dynamic branch

execution, and the execution frequency of indirect control

flow instructions. In our experiments, we implemented an

optimization based on execution frequency of indirect

branch targets. Benchmark applications were profiled to

collect edge counts for the MBR edges. This information is

then fed back into a second compilation. Edge counts are

utilized to order conditional branch insertion for indirection

conversion, by descending order of execution frequency.

This yields the optimized performance shown in Table 1.

When considering the dynamic behavior of branches, it

has long been known that branches are heavily biased to one

particular branch direction during execution [32]. This

Table 1 - Control/Data Isolation Performance. The optimized runtime overhead from CDI appears in the first column. The last 8 columns detail indirect
control flow edges metrics for benchmarks. The static details the properties of the CFG related to indirect control flow instructions. Dynamic data reflects
the runtime control edges seen during execution. Together, these contrast dynamic and static properties of control flow. Runtime overhead can be seen to

positively correlate with control flow edges.

Benchmark

Optimized
Runtime

Overhead

Naïve
Runtime

Overhead

Binary Size
Increase

Valid Control Flow Edges per Indirect Instruction

Static Dynamic
Max Mean Median Mode Max Mean Median Mode

gzip 0.7% 4.3% 14% 45 5.7 2 2 15 3.0 2 1

vpr 1.0% 2.5% 33% 116 5.1 3 2 20 2.7 2 1

gcc 34.4% 59.2% 112% 1946 30.3 8 2 648 5.5 2 0

mcf 0% 0% 10% 2 1.0 1 1 2 1.0 1 1

crafty 4.0% 10.0% 29% 33 5.8 3 2 16 2.4 2 2

parser 5.3% 39.3% 46% 216 8.3 3 2 151 6.1 2 2

eon 22.8% 51.2% 73% 114 7.2 2 0 33 0.5 0 0

perlbmk 20.9% 189.1% 148% 537 31.4 18 18 134 3.8 1 0

vortex 20.1% 143.0% 42% 192 11.7 4 3 158 8.7 2 1

bzip2 0.9% 1.5% 9% 3 2.1 2 2 3 1.4 1 1

twolf 0.7% 1.1% 24% 18 3.8 2 2 8 1.5 1 1

md5sum 0% 0% 25% 8 2.6 2 2 3 1.0 1 0

sha1sum 0% 0% 22% 8 2.6 2 2 3 1.0 1 0

sha256sum 0% 0% 20% 8 2.6 2 2 3 1.0 1 0

sha512sum 0% 0% 16% 8 2.6 2 2 3 1.0 1 0

bftpd 0% 0% 81% 109 6.8 2 2 41 1.5 0 0

tcpdump 0% 1.2% 174% 400 75.5 65 65 14 0.1 0 0

SPEC Avg. 10% 45.6% 49% 134 10.2 4.4 2 108 3.7 1.5 1

Average 6.5% 29.6% 52% 293 10.2 4.4 2 74 2.5 1.2 0

87

biased property strongly facilitates the high accuracy of

modern branch prediction.

Though indirect branches are more difficult to predict [16],

they remain highly biased as well [30]. To assess this bias,

we profiled execution of benchmarks to determine the

distribution of dynamically executed targets, shown in

Figure 7. When indirect control flow instructions are broken

down into binary branch decisions, the resulting control

flow points, taken individually, become more easily

predicted than the original indirect branch. As shown in

Table 1, the dynamic target set is considerably smaller than

the static set. This highlights the crucial factor for runtime

overheads; dynamic branching properties, not static, are the

driving force behind runtime performance.

Figure 7 - Indirect Branch Bias. Branching instructions are heavily
biased in execution. The percentage of instructions as a function of the
most common targets for each indirect branch/call/return are binned by
execution frequency. For all benchmarks combined, the most commonly
executed target of each MBR accounts for over 66% of all edges executed.

The second property of software which heavily dictates

the performance of indirection conversion is the relative

execution frequency of indirect control flow. For all

benchmark applications, indirect instructions accounted for

1% of the total instructions executed. Coupling this with

highly biased branches, it is no surprise that indirection-free

transformations incur minimal overheads.

As shown in Table 1, runtime overheads generally tend to

be positively correlated with the size of target sets for

indirect instructions. One indirect instruction in the gcc

benchmark had 648 different valid targets executed at

runtime (a return instruction). That implies that at least

once, a function was forced to execute 647 not-taken

conditional branches before finding the correct edge for a

return. This highlights the opportunity for a low time-

complexity alternatives to conditional branch insertion, as

discussed in Section 3.3., which is left for future work.

7. Related Work

This work is conducted in light of many techniques which

have been devised in an attempt to address control-flow

attacks. An abridged list is presented here, divided into

software and hardware approaches. Direct comparisons are

summarized in Table 2.

7.1. Software Mechanisms

An important work in this area is Control Flow Integrity

(CFI) by Abadi et al. [1], which spurred an avalanche of

interest in the dynamic enforcement of software CFGs at

runtime. The relatively low overhead, simple solution set a

high bar for all subsequent efforts. In their work, the authors

utilized a labeling system to verify the authenticity of a

target address. Return instructions are guarded by a shadow

stack, with the code segment register functioning as the

shadow stack pointer. Though CFI is an elegant solution, it

relies on a more restrictive attack model than our work

while incurring greater execution overheads. Further, with

reliance on a shadow stack located in data memory, and not

addressing shared library calls and returns, there are

continued concerns about control-flow attacks. In contrast,

CDI's threat model assumes that the attacker fully owns data

memory, with read, write, and execute privilege.

A recent work which expands upon CFI is Control Flow

Integrity for COTS Binaries [33] by Zhang and Sekar. This

work provides a solid implementation for CFI

instrumentation for stripped binaries. However, it was not

extended to protect control transfer between shared library

and application code (e.g., GOT attack [9]). It also retains

limitations from binary-rewriting such as not handling

dynamic code generation.

G-Free [21] is a compiler-based approach to eliminating

ROP attacks. This is a two-pronged approach of excising

unintended return or return-like instructions, along with

encryption-based verification of the context in which

indirect branches are executed (e.g., a ret instruction is

executed only after the first block of the function in which it

resides has been executed). Though this appears to constrain

code gadgets, the approach offers no protection from non-

code gadget attacks such as heap spray and return-to-GOT.

0%

20%

40%

60%

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Over
10th

%
 T

a
rg

e
ts

 E
x
e
c
u

te
d

Most Common Target

66%

4%

Work

Explicit Dependencies Susceptible to these Attacks Relies on Data

Memory Security
Eliminates Usage

of Indirect Control NWC ASLR W⊕X Shadow Stack Heap Spray GOT Read

This work Yes No No No No No No No Yes

Abadi et al. [1] Yes No Yes Yes No Yes No Yes No

Xia et al. [30] Yes No No No Yes Yes No Yes No

Budiu et al. [7] Yes No Yes Yes No Yes No Yes No

Zhang, Sekar [33] Yes No No Yes No No No Yes No

Kiriansky et al. [17] Yes No No No No No Yes Yes No

Cowan et al. [10] Yes No No No Yes Yes Yes Yes No

Table 2 - Related Works. The first set of columns details what system dependencies are explicitly required to maintain the purported security benefits of
a work. The next set details which vulnerabilities a work provides no hardening against. The final column states whether a work eliminates the root cause
of contemporary control flow attacks: indirect control-flow . Our work remains as the single one to harden against all control-flow attacks while maintaining
only the most fundamental dependency of NWC. NWC=non-writable code, Shadow Stack=separate stack in memory to verify return address targets,
GOT=Attacks on calls to libraries, Read=Technique is weakened if attacker can read or infer any data memory contents or locations.

88

Another foundational work is Secure Execution Via

Program Shepherding by Kiriansky et al. [17]. Utilizing

dynamic binary instrumentation, Program Shepherding

enforces a security policy by monitoring control flow

transfer at runtime. Though Program Shepherding could

enforce a policy similar to CDI, it still cannot determine all

valid indirect branching targets without nontrivial

compilation support (such as what we propose in this work).

The CFG as enforced by program shepherding is

emblematic of the actual CFG, and therefore cannot offer

the same level of protection as CDI. When an application's

CFG is discovered at runtime, the targets of indirect jumps

cannot be known before they execute, and therefore cannot

be verified dynamically. This allows a jump to the middle of

an x86-64 instruction, permitting unfettered code gadgets

within an application.

Recently, compiler-based solutions have also been

proposed. One such work is Enforcing Forward-Edge

Control-Flow Integrity in GCC & LLVM [29], which

instruments applications with CFI checks and labels at

compile time. Though Tice et. al. achieve low runtime

overheads, they do not address return instructions, which

constitute the majority of indirect control flow. Their

approach remains vulnerable to code gadgets, as the range

verification for jumping to compiled executables allows

jumping to the middle of instructions.

Another compiler-based approach to CFI is Control-Flow

Restrictor: Compiler-based CFI for iOS [23]. In their work,

Pewny and Holz share the most commonality with our work,

applying a similar MBR conversion approach. However,

focusing on iOS on an ARM platform, they do not explore

large, complex applications with many functions or topics

such as PIC or shared libraries.

7.2. Hardware Solutions

A variety of hardware-based solutions have been proposed

to address control flow security. One example is

Architectural Support for Software-Based Protection [7].

That work is an extension of the original CFI [1] work, with

a proposed ISA extension to move CFI label checking into

hardware. This work carries with it the same weaknesses as

CFI. Another hardware solution is offered in the work

CFIMon: Detecting Violation of Control Flow Integrity

using Performance Counters by Xia et al. [30]. This work

leverages existing hardware in the form of performance

counters. Though their solution has low overheads, it has to

contend with deficiencies such as false positives and

negatives, as well as allowing “suspicious” branch targets to

execute, making the technique readily susceptible to heap

spray attacks.

It should be noted that all previous works may be

classified as mitigation techniques. That is, they all seek to

guard, verify, or otherwise shield the root of the problem for

control-flow attacks: indirect branching. As such, they all

rely heavily on a host of security assumptions, which are in

turn susceptible to attack. Regardless of the proposed

solutions, of which there are many, control-flow attacks

persist. In contrast, our work directly addresses the root

issue and permanently removes it by isolating control from

user data.

8. Conclusions

Computer security has become a dominant topic in the

information age. The software attack surface has remained

as a chief area of security exploit for years. Though

vulnerabilities have been well studied, exploitations persist.

Given the continuing nature of these attacks, this work

directly addresses and eliminates the prevailing root of the

problem: indirect control flow.

In this work we presented a novel approach to software

security, called control-data isolation, which eliminates the

link between potentially malicious runtime data and

program control by eliminating the use of indirect control in

generated software. We have shown that eliminating the

root cause giving rise to the predominant mode of control-

flow attacks is not only feasible, but has minimal impact on

runtime performance. Control-data isolation provides a

greater level of security than previous proposals while

experiencing overheads that are comparable or better. We

feel strongly that by directly addressing control-flow attacks,

rather than mitigating them, the overall software attack

surface can be greatly diminished.

8.1. Future Work

The implementation offered in this work demonstrates the

possibility of indirection-free execution. There are many

improvements which could be made to further enhance

performance. Optimizing indirection conversion where a

large number of target edges exist is a prime target for

improvement. Due to the dynamic nature of computing,

exploring hardware-based acceleration for CDI

implementation would also prove a promising extension to

enforcing CDI principles.

Acknowledgements
The authors would like to thank the reviewers, whose

insights improved this work. This work was supported in

part by C-FAR, one of the six SRC STARnet Centers,

sponsored by MARCO and DARPA.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, Control Flow
Integrity, ACM Trans. Inf. Syst. Secur., 2009, pp. 1-40.

[2] K. Anand et al., A compiler-level intermediate representation based

binary analysis and rewriting system, Proc. of the 8th ACM European
Conf. on Computer Systems, 2013, pp. 295-308.

[3] D. Bacon and P. Sweeny, Fast Static Analysis of C++ Virtual function

Calls, Proc. of theConf. on Object-Oriented Programming, Systems,
Languages, an Applications, 1996, pp. 324-341.

[4] A. R. Bernat and B. P. Miller, Anywhere, any-time binary

instrumentation, Proceedings of the 10th ACM SIGPLAN-SIGSOFT

workshop on Program analysis for software tools, 2011, pp. 9-16.

[5] A.R. Bernat and B.P. Miller, Structured Binary Editing with a CFG

Transformation Algebra, 19th Working Conference on Reverse

Engineering (WCRE), 2012, pp. 9-18.

[6] T. Bletsch, X. Jiang, and V. Freeh, Mitigating code-reuse attacks with

control-flow locking, Proc. of the 27th Annual Comp. Sec. App. Conf.,

2011, pp. 353-362.

89

[7] M., Erlingsson, U. Budiu and M. Abadi, Architectural support for
software-based protection, Proceedings of the 1st workshop on

Architectural and system support for improving software
dependability, 2006, pp. 42-51.

[8] c0ntext. (2012, April) Bypassing non-executable stack during

exploitation using return-to-libc. [Online].
http://css.csail.mit.edu/6.858/2012/readings/return-to-libc.pdf

[9] c0ntext. (2011) How to Hijack the Global Offset Table with pointers.

[Online]. http://www.exploit-db.com/papers/13203/

[10] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, Point-Guard:

Protecting pointers from buffer overflow vulnerabilities, 12th USENIX

Security Symposium, 2003.

[11] L. Garber, Melissa Virus Creates a New Type of Threat, Computer,

vol. 32, no. 6, pp. 16-19, 1999.

[12] Gartner. (2013) Gartner. [Online].
http://www.gartner.com/technology/home.jsp

[13] J.L. Greathouse et al., Testudo: Heavyweight security analysis via

statistical sampling, 41st IEEE/ACM International Symposium on
Microarchitecture, 2008, pp. 117-128.

[14] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, A

Study of Devirtualization TEchniques for a Java Just-In-Time
Compiler, Proc. of theConf. on Object-Oriented Programming,

Systems, Languages, an Applications, 2000, pp. 294-310.

[15] Kaspersky. (2013) Computer Threats. [Online].
http://www.kaspersky.com/threats

[16] H. Kim et al., VPC prediction: reducing the cost of indirect branches

via hardware-based dynamic devirtualization, Proceed. of the Interntl.
Symp. on Computer Architecture, 2007, pp. 424-435.

[17] V. Kiriansky, D. Bruening, and S. Amarasinghe, Secure execution via

program shepherding, Proc. of the USENIX Security Symp., 2002.

[18] B. Kuhn and D. Binkley, An enabling optimization for C++ virtual

functions, Proceedings of the 1996 ACM symposium on Applied

Computing, 1996, pp. 420-428.

[19] C. Lattner and V. Adve, LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation, Proc. of the Intl. Symp.

on Code Generation and Optimization (CGO), 2004.

[20] (2014, February) musl-libc. [Online]. http://www.musl-libc.org/

[21] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, G-Free:

Defeating Return-Oriented Programming through Gadget-less
Binaries, Proc. of the Annual Computer Security App. Conf., 2010, pp.

49-58.

[22] Jr., N. Petroni and M. Hicks, Automated detection of persistent kernel
control-flow attacks, Proceedings of the 14th ACM conference on

Computer and communications security, 2007, pp. 103-115.

[23] J. Pewny and T. Holz, Control-Flow Restrictor: Compiler-based CFI

for iOS, Proc. of the Annual Comp. Security App. Conf., 2013, pp.

309-318.

[24] M. Prasad and T. Chiueh, A binary rewriting defense against stack

based buffer overflow attacks, Proc. of Usenix Tech. Conf., 2003, pp.

211-224.

[25] M. Ramilli. (2011, November) Global Offset Table Injection

Procedure. [Online]. http://marcoramilli.blogspot.com/2011/11/global-

offset-table-injection-procedure.html

[26] Y. Shi, S. Dempsey, and G. Lee, Architectural Support for Run-Time

Validation of Control Flow Transfer, International Conference on

Computer Design (ICCD), 2006, pp. 506-513.

[27] Y. Shi and G. Lee, Augmenting Branch Predictor to Secure Program

Execution, 37th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, DSN, 2007, pp. 10-19.

[28] H. Theiling, Extracting safe and precise control flow from binaries,

Proceedings. Seventh International Conference on Real-Time

Computing Systems and Applications, 2000, pp. 23-30.

[29] C. Tice et al., Enforcing Forward-Edge Control-Flow Integrity in

GCC & LLVM, 23rd USENIX Security Symposium, 2014.

[30] Y. Xia, Y. Liu, H. Chen, and B. Zang, CFIMon: Detecting violation of
control flow integrity using performance counters, 42nd Annual

IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), 2012, pp. 1-12.

[31] L. Xu, F. Sun, and Z. Su, Constructing precise control flow graphs

from binaries, University of California, Davis, Tech. Rep. 2009.

[32] C. Young, N. Gloy, and M. Smith, A comparative analysis of schemes
for correlated branch prediction, Proceedings of the Iinternational

Symp. on Computer Architecture, 1995, pp. 276-286.

[33] M. Zhang and R. Sekar, Control Flow Integrity for COTS Binaries,
USENIX Security Symposium, 2013, pp. 337-352.

[34] C. Zhang et al., Practical Control Flow Integrity and Randomization

for Binary Executables, IEEE Symposium on Security and Privacy
(S&P), 2013, pp. 559-573.

[35] T. Zimmermann and S. Neuhaus, Security Trend Analysis sith CVE

Topic Models, International Symposium on Software Reliability
Engineering (ISSRE), 2010, pp. 111-120.

90

