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Abstract 
Computer security has become a central focus in the 

information age. Though enormous effort has been 

expended on ensuring secure computation, software 

exploitation remains a serious threat. The software attack 

surface provides many avenues for hijacking; however, most 

exploits ultimately rely on the successful execution of a 

control-flow attack. This pervasive diversion of control flow 

is made possible by the pollution of control flow structure 

with attacker-injected runtime data. 

Many control-flow attacks persist because the root of the 

problem remains: runtime data is allowed to enter the 

program counter. In this paper, we propose a novel approach: 

Control-Data Isolation.  Our approach provides protection 

by going to the root of the problem and removing all of the 

operations that inject runtime data into program control. 

While previous work relies on CFG edge checking and 

labeling, these techniques remain vulnerable to attacks such 

as heap spray, read, or GOT attacks and in some cases suffer 

high overheads. Rather than addressing control-flow attacks 

by layering additional complexity, our work takes a 

subtractive approach; subtracting the primary cause of 

contemporary control-flow attacks. We demonstrate that 

control-data isolation can assure the integrity of the 

programmer's CFG at runtime, while incurring average 

performance overheads of less than 7% for a wide range of 

benchmarks. 

1. Introduction 
The software attack surface constitutes a substantial threat 

to computer security. Software vulnerabilities facilitate a 

wide array of security exploits: buffer overflows, heap spray 

attacks, return-to-libc, integer underflow, code gadgets, and 

a host of others. Today, the risk of software exploitation has 

escalated beyond DDOS attacks and amateur attacks such as 

the Melissa virus [11]. In the commercialization of the 

malware industry, new and more serious threats have 

emerged such as Crimeware, which perpetrate identity theft 

for the purpose of monetary gain [15]. As most attacks are 

conducted within the application layer [12]. Control-flow 

attacks, which permit arbitrary code execution, have 

emerged as a primary means to exploit software.  

Our work drives to the heart of pervasive control-flow 

attacks by directly attacking the root of the problem: user-

data derived control-flow. Contemporary research to protect 

control-flow  has been focused on verifying the user data to 

be injected into the program counter (PC) 

[1,6,13,17,26,30,33,34] in an effort to establish trusted user 

data for control-flow targets. These previous works 

approach control-flow security by layering additional 

complexity on top of user data in an effort to shield the 

vulnerability from attack. In this work we adopt a 

subtractive approach by removing the actual vulnerability. 

We simply do not trust any user data, and instead remove all 

avenues for such data to be injected into the program 

counter. 

1.1. Control-Flow Attacks 
Control-flow attacks implement the redirection of program 

execution to attacker-selected code, either injected as user 

data or existing code in the form of code gadgets. These 

attacks violate, at runtime, the control flow graph (CFG) of 

an application by corrupting the PC with user-injected data, 

thereby allowing a program to execute a control edge not 

defined by the programmer. 

Control-flow attacks exploit an inherent weakness 

ubiquitous in software development: determination of 

control-flow target addresses at runtime. It is the enmeshed 

relationship between the Program Counter and runtime data 

which creates the fundamental weakness of software to 

control-flow attacks. The classic example of such an attack 

is the stack buffer overflow. When input to a buffer exceeds 

the pre-allocated size on the program stack, the return 

address in the stack frame may be overwritten. In this case, 

the user data is used as the target of a return instruction, 

which can then jump to malicious code including the input 

buffer on the stack. 

As a critical element of software exploitation, considerable 

effort has been expended to address control-flow attacks. 

Countermeasures such as stack protection, Address Space 

Layout Randomization (ASLR), and Non-Executable Data 

(NXD) have been widely adopted. Though many counter-

measures have been devised [1,6,7,26,27,30,34], control-

flow attacks remain a pervasive threat to computer security 

[35] due to the persistence of mixing runtime data with 

program control. Recently, mitigating techniques such as 

Control Flow Integrity (CFI) [1] and its descendents [33,34], 

Program Shepherding [17], and taint analysis [13] have been 

proposed. These techniques, which propose increased 

security through verification of runtime data, retain several 

vulnerabilities. Some are susceptible to CFG forgery attacks 

or allow the PC to target the middle of a basic block (or 

even the middle of an instruction). They also place 

constraints on their threat models that weaken their 
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protections, such as the requirement of non-executable data 

or the assumption that an attacker cannot read or infer the 

contents of data memory. Additionally, most works do not 

address call-graph based control flow (i.e., dynamic library 

calls and returns). In this work, we relax the constraints of 

previous work, by assuming that the attacker has free reign 

over all of data memory (read, write, and execute), while 

also addressing the important issues of call-graph protection 

and dynamically introduced code such as shared libraries. 

The limitations of previous works are discussed further in 

Section 7 and Table 2.  

1.2. Control-Data Isolation 
Previous works attempt to mitigate control-flow attacks 

through verification of the runtime data which enters the 

program counter. Though this additional layer infers 

increased security, it nevertheless leaves the original, 

fundamental vulnerability: user data is injected directly into 

the PC. By contrast, this work eliminates arbitrary control 

flow by eliminating the connection that exists between the 

PC and user data, a technique which we call Control-Data 

Isolation (CDI). By disallowing the use of runtime data as 

control-flow targets, the programmer can ensure that all 

executions adhere to their specified control-flow graph 

(CFG). 

In this paper, we implement CDI by generating code 

without the use of return and indirect jump/call instructions, 

the two types of instructions in modern architectures that 

connect user data and the PC. This creates some challenges 

in creating arbitrary code, in particular for calls/returns, 

indirect function calls, and shared libraries, but we show in 

Sections 2 and 3 how to implement (and subsequently 

optimize) these code sequences without the use of indirect 

control-flow instructions. The programs we create 

completely sever the link between the PC and user data, and 

if the entire system adheres to the principles of control-data 

isolation, all control changes are limited to valid CFG 

edges, eliminating the way attackers execute control-flow 

attacks today. 

1.3. Contributions of this Work  
The goal of this work is to identify the common thread of 

software exploitation and directly address the root cause: 

control targets derived from user data. In this work, we 

make the following contributions: 

 We present an effective, efficient, and scalable approach 

to enforcing the CFG of an application at runtime. We 

implement control-data isolation (CDI) as a compilation-

based transformation to existing software applications and 

library code.  We advance the state-of-the-art in control-

flow attack protection by targeting and eliminating the 

root cause: the injection of user data into the program 

counter.  

 We present an LLVM-based compiler implementation that 

generates control-data isolated code for non-trivial 

programs and shared libraries, eliminating the use of 

indirect control flow in compiled programs. 

 We analyze a diverse set of programs and design and 

evaluate targeted, profile-guided optimizations to improve 

the performance of control-data isolated code.  

 We evaluate the efficiency of CDI, showing through 

detailed experiments that the performance and storage 

costs are minimal, less than many of the previously 

proposed control-flow attack mitigation techniques. 

The remainder of this paper is organized as follows. 

Section 2 provides an in-depth analysis of CDI. Section 3 

details our implementation approach of eliminating all 

indirect control flow, while Section 4 addresses dynamic 

code from shared libraries. Section 5 provides detailed 

analysis of our LLVM compiler-based implementation, 

PitBull. Experiments testing our method and a full analysis 

of results are delivered in Section 6. Finally, Section 7 

evaluates related works, and Section 8 highlights 

conclusions and future work. 
 

2. Protecting Control Flow with Control-

Data Isolation 
Control-flow attacks work by injecting malicious runtime 

data into the program counter of a susceptible target process. 

They are a divergence from the programmer-defined CFG of 

an application, occurring when an attacker creates new 

control-flow edges from user data at runtime. This can take 

many forms such as return-oriented programming, heap 

spray attacks, stack smashing, and even hijacking calls to 

library functions. 

2.1. Threat and Trust Model 
The goal of a control-flow attack is to subvert the control 

flow of a vulnerable process and execute code of the 

attacker's choosing. In this work, we consider the attacker to 

play a powerful role. An adversary is assumed to possess 

arbitrary read, write, and execute privilege to data memory, 

including the stack and heap. That is, we start from the 

position that an attacker controls all of data memory. In 

traditional compilation techniques, many control-flow target 

addresses are derived from or stored in data memory; hence, 

once an attacker gains some level of read/write/execute 

control over data memory, there are typically many avenues 

to direct program flow to code of their choosing. This is 

precisely how control flow attacks are currently 

accomplished. 

We do make the assumption that the attacker cannot 

arbitrarily overwrite executing code segments at runtime. 

We see this assumption of non-writable code (NWC) as a 

fundamental element of security. Without this one 

protection, the attacker could simply substitute their own 

code for that of the application, obviating the need for 

control-flow attacks. Similarly, the program loader is trusted, 

as a compromised loader could simply replace system code 

with malicious code at load time. It is important to note, 

however, that the loader can be protected against attacks 

with CDI, in the same way as other applications. 

An important aspect of our relaxed threat model is the 

assumption that data segments, specifically the heap, may 

contain executable code. As long as the non-writable code 

requirement is met, an application may execute code in the 

heap with full CDI protections. Previous works including all 

works based on CFI [1], expressly forbid the execution of 

code on the heap. This requirement is due to their 
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susceptibility of forgery attacks. As they rely on labels 

placed at target locations, a heap spray attack could create 

forged labels which fraudulently identify malicious code as 

acceptable targets for an indirect call or jump. Our work is 

not susceptible to this attack, as all targets are embedded 

into the existing programmer-specified and loader-blessed 

instructions, eliminating the need to trust destination labels. 

The key element of both our threat model and CDI 

principle is that user data expressly cannot be trusted. An 

important distinction between CDI and previous works such 

as CFI [1], and its descendents [7,33], is their use of a 

shadow stack [24] to secure all return instructions. As the 

shadow stack is resident in data memory, it is inherently 

susceptible to attack and requires additional protection 

measures, increasing the potential attack surface. CDI 

provides the same protection against control-flow attack for 

all indirect instructions, obviating the need to trust or shield 

user data.  

2.2. CDI Threat Protection 

The implementation of CDI eliminates the possibility of 

any runtime data being used as a control-flow target address. 

In this work we accomplish this goal by disallowing the 

execution of indirect control-flow instructions. Simply put, 

an indirect jump, call, or return will never be executed. This 

eliminates the critical element pervasive to control-flow 

attacks. Without these instructions, stack smashing, heap 

spray, buffer-overflows, return-to-GOT, and return-to-libc 

attacks are crippled, as they all rely on the ability to derail 

the control-flow of a process, currently achieved by 

polluting the data value of indirect control-flow targets. 

Further, the availability of useful code gadgets and any 

remaining control-flow attacks are diminished to legal 

traversals of the program's CFG, since it is not possible to 

jump to the middle of a basic block (or instruction). By 

addressing, and removing, the root of the problem we can 

significantly reduce the software attack surface by limiting 

control to the programmer-specified CFG. The extent of the 

protection is determined by the degree to which the code 

running on the machine adheres to CDI principles. If all 

code running utilizes CDI, then user-injected data cannot 

find its way into the PC, and the system is hardened against 

control-flow attacks. To facilitate this ultimate goal, we 

focus on CDI-based compilation for applications, libraries, 

and dynamically introduced code objects, such as shared 

libraries.   

In our relaxed threat model, we enable code to be executed 

in data space. This supports the use of a prevalent 

technology previous works have not: just-in-time 

compilation (JIT). JITted code presents challenges to CDI 

implementation, such as jump tables for loop unrolling. 

However, problems analogous to this have already been 

addressed by our work for similar structures such as the 

global offset table (GOT). Though we do not inhibit just-in-

time compilation, it is beyond the scope of this work and 

remains a prime target for future work.  

2.3. Achieving Higher Levels of Protection by 

Isolating Control and Data 
The threat model defined above creates many 

opportunities for ambitious attackers to achieve arbitrary 

code execution. Some instructions, namely indirect control 

flow instructions, derive control flow, in whole or part, on 

runtime data. When an attacker gains some level of control 

over data memory, this runtime data can be manipulated in a 

malicious manner, permitting an attacker to use (and abuse) 

the programmer's indirect jumps at will. This can be 

observed in attacks such as code gadgets, heap sprays, and 

buffer overflows. These attacks must, at some point, rely on 

a control-flow target derived from user data which may be 

injected by an attacker.  

 
Figure 1 - CDI Control Flow Protection. Indirect branches are converted 
to direct conditional branches, severing the link between potentially 
malicious runtime data and the program counter.   

To assure that the program's execution adheres to the CFG 

defined by the programmer, we isolate control-flow from 

runtime data. To achieve this end, we focus on all control 

flow decisions at runtime including those which are 

encapsulated in the executable code objects and control 

transfers in between. Thus with CDI, all valid edges in the 

CFG of an application are encoded in the programmer-

specified and loader-blessed instructions of an application. 

This CFG functions as the golden model which completely 

defines the valid control flow of an application. That is to 

say, any dynamic paths which adhere to the CFG are 

potentially secure, but any paths which violate the CFG are 

explicitly insecure. By embedding all control-flow targets 

within programmer-written instructions, rather than derived 

from user data, we eliminate the weakness in software 

which enables all control-flow attacks.  

Figure 1 depicts a simple code sequence vulnerable to 

control-flow attacks, and an equivalent code sequence 

constructed with CDI that is protected from control-flow 

attacks (the full details of this process are discussed in 

Section 3). To prevent exploitation of indirect control flow 

instructions, we simply remove them from software. The 

indirect branches are replaced by direct branches, which 

only allow predetermined know-valid edges. The 

permissible targets of these instructions, i.e., Ret_1, 

Ret_2, bar, and baz, are identified via CFG discovery.  
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The control-data isolated code has no avenue for 

potentially malicious runtime data to be injected into the PC. 

As such, all target addresses of control-flow come from the 

programmer-specified text segment of an application. By 

eliminating the use of indirect instructions, attacks such as 

Stack Smashing become impossible to implement directly 

on the programmer's CDI-protected code. Similarly, attacks 

such as Heap Spray attacks rely on the execution of a 

control-flow instruction which derives its target from data 

memory. Even rootkits, where 96% of Linux rootkits 

integrate control-flow attacks [22], rely on subverting data 

which is injected into the program counter. Additionally, 

return-oriented programming (ROP) attacks, including those 

without any function calls, are defeated as these attacks rely 

on an initial derailment of the control-flow from the CFG by 

user data injected into the PC.  

Implementing CDI requires validation of all control 

targets, which in turn requires complete knowledge of the 

CFG. Indirect control flow instructions such as function 

pointers make control flow graph discovery a challenge. In 

spite of this, previous works have demonstrated that the task 

of CFG discovery is achievable [1,7,28,31,34,33]. Our CFG 

discovery approach is addressed in-depth in Section 3.1. 

Another key challenge, often overlooked by previous works, 

is control flow transfer between dynamically-linked objects 

such as shared libraries. Our work solves this issue, as 

detailed in Section 4.   

Analyze Whole-Program CFG

Convert Indirect Branches to Direct MBRs

Convert MBRs to Native Instr. Conditional Branch Sleds

Execute Program, Profiling Sled Usage

Indirection-Free Binary

Source Code

Optimized Indirection-Free Binary

Generate Profile-Optimized Sleds

Figure 2 - CDI Compilation Flow. CDI-protected, indirection-free code is 
generated from application source code. This process converts indirect 
control-flow to direct branching, which is then profiled to optimize runtime 
performance of CDI-hardened code.  

Indirect control flow is an intrinsic part of modern 

software, so its removal has the potential to adversely 

impact the performance of programs. We address this 

concern by leveraging profile-guided code generation to 

efficiently select validated targets, which is detailed in 

Section 3.3. We develop an efficient, effective CDI software 

implementation which assures the runtime integrity of a 

program's CFG, demonstrated in Section 5. At first glance, 

it may appear that eliminating indirect control flow will 

inherently result in program slowdowns. However, previous 

research into devirtualization demonstrates that such a 

process is utilized to facilitate program speedups [3,14,16]. 

Devirtualization is the process by which dynamic virtual 

function calls are replaced with object test and direct calls, 

similar to the process depicted for fptr in Figure 1. By 

leveraging superior branch prediction, devirtualization has 

been proven to improve execution speed in the object-

oriented languages to which it has been applied. 

 

3. CDI via Elimination of Indirect Control 

Flow 

The work of creating software free of indirect control flow 

can be accomplished at varying stages in software 

development. In this work we propose a combination of a 

compile-time and load-time solutions that eliminate the use 

of indirect instructions in binaries. To achieve this, we must 

discover the CFG of an application and from it identify the 

indirect branching instructions and their control-flow targets. 

This information is used in eliminating indirection by 

substituting hard-coded, direct control flow into the target 

application. We also implement and identify several 

optimizations to apply when creating applications free of 

indirect control-flow. 

An overview of this approach is shown in Figure 2. The 

CDI process begins by discovering the CFG of an 

application, and subsequently identifying all indirect control 

flow instructions, i.e., returns and indirect jumps and calls. 

These are then converted to multi-way branches (MBRs) 

and a complete target set for each MBR is then identified. A 

sled of conditional branch/direct jump pairs, one for each 

target, is substituted for each MBR. The sled does the work 

of converting indirect jumps to direct ones, by comparing 

the proposed target one-by-one with all of the validated 

potential targets of the indirect jump. An example of a sled 

is depicted in Figure 1 by the instructions  

 if(*fptr==bar) call bar;  

else if(*fptr==baz) call baz;  

which are substituted for the vulnerable indirect call. When 

a matching target is found, a direct jump is made to the 

validated target; otherwise, an invalid control-flow decision 

is declared. The resulting code is dynamically profiled and 

optimized for performance. This process is studied in further 

detail in Section 3.3. 

3.1. CFG Discovery 

To enforce the golden-model CFG at runtime, a complete 

CFG which encapsulates all possible paths through a 

program for non-trivial software applications must be 

determined. Lifting binary code to determine the CFG of an 

application is both an active and well researched topic 

[2,4,5,28]. However, such a task is made difficult 

specifically due to indirect control flow. Previous works 

such as CFI have been able to determine the precise CFG 

from binary analysis, while in this work we obtain such 

information from our LLVM-based compilation flow.   

We shall only consider indirect control flow instructions 

for CFG analysis, as direct control flow instructions are both 

trivial for building a CFG and they are not subject to code 

injection attacks (given the non-writable code assumption of 

our threat model). The key issue, then, to constructing a 

runtime invariant CFG is to determine the set of all possible 

targets for each and every indirect control flow instruction, 

as shown in Figure 3. 
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for each instruction inst in application 

  if type(inst)  == return 

  target_set(inst)=all instruction after 

 call_sites  

  elseif type(inst)  == indirect_call 

  target_set(inst) = all function where    

 function_type(function)== call_type(inst) 

  elseif type(inst)  ==indirect_jump 

  target_set(inst) = all instruction where  

 instruction == target(inst)    

  elseif type(inst)  == virtual_call 

  target_set(inst) = all function where  

  vptr(inst)   vtable(function)    

  elseif type(inst)  == optimized_switch 

  target_set(inst) = all instruction where  

 instruction == case(inst)    

  elseif type(inst)  == function_pointer_call 

  target_set(inst) = all function_ptr where   

 function_type(function_ptr) == 

 function_type(inst) 

  replace inst with multi-way_branch mbr where 

  target_set(mbr) == target_set(inst) 

 

Figure 3 - Indirect Instruction Target Set for CFG Construction. For 
each individual indirect jump, call, or return, all allowable control flow 
edges must be determined prior to executing the code. 

Considering software at a low level, indirect control flow 

may be categorized into three groups: jumps, calls, and 

returns. Indirect jumps, such as those arising from switch 

statements, are implemented for performance when the 

case set for a switch statement is large. At compile time, 

the target set of basic blocks for the case statements is 

known, making resolution of control flow edges simple. 

Other indirect jumps often have but a single target, e.g., 

process linkage table (PLT) entries. These must be resolved 

at load time for shared library linking. In any case, the exact 

address will be known at least by load time, thus, the 

potential targets of indirect jumps is knowable before 

execution begins. 

Direct function calls and returns may be resolved from the 

call graph for an application. Indirect calls and their returns, 

however, are a special challenge which arises from 

programming constructs like function pointers. Pointer 

analysis in general is difficult for compilers, limiting 

optimization possibilities. However, in terms of CFG 

construction, function pointer analysis has distinct 

advantages over conventional pointer analysis. Most 

compilers, including gcc and g++, enforce function pointer 

assignment by argument and return types. We leverage this 

knowledge for greater precision in call-graph CFG analysis. 

There are special conditions which can work to defeat 

efficient function pointer analysis, such as function pointer 

casting and return type casting, using data types such as 

void *. However, a complete and correct (but perhaps 

conservatively constructed) CFG remains determinable. In 

the worst-case analysis, a function pointer may be assumed 

to reach any function. Performing function pointer analysis 

provides a more concise CFG, which further reduces 

potential code gadgets. Concurrently, this also improves 

runtime performance by reducing the size of conditional 

branch sleds for indirect function calls. 

Virtual functions are implemented as indirect calls via the 

vptr attribute. Previous work has shown that these may be 

converted to direct calls by source code rewriting [18]. 

During compilation however, the same essential information 

for vtable implementation, i.e. class inheritance and 

overriding, is leveraged to derive a valid target set for a 

vptr directed call.  

Returns are the most prevalent of all indirect instructions. 

In theory, the potential set of  targets for any return can be 

determined by identifying all call sites for a function. In 

practice this does not always hold true, as programming 

constructs such as tail calls must be detected to reveal the 

true target. By reverse CFG walking, all reachable paths are 

found to determine possible return targets. 

Position independent code (PIC) are code objects where 

the resolved address of any instruction is not known until 

the library is loaded. This presents a special challenge to 

discovering the CFG when considering objects compiled 

with PIC. However, the CFG for this code is fully 

discoverable at compile-time, as the underlying information 

about target sets for multi-way branches is available without 

dependence on addressing information.   

3.2. Indirection Elimination  
Elimination of indirect control-flow is the heart of this 

work. This severs the link between potentially insecure data 

and the program counter. Once a complete CFG has been 

constructed for an application, indirect control flow is no 

longer necessary for correct execution. 

Indirection elimination is the process by which indirect 

control flow is replaced by direct control flow. The most 

straightforward approach is to replace an indirect branch 

with an equivalent set of conditional branches. This 

construct, called a sled, tests a potential target address 

against the known set of valid targets identified by CFG 

discovery. For example, a return statement would be 

replaced by a series of if...then statements, where each 

if statement tested a potential known-valid return address, 

which if matched would lead to a direct jump to the valid 

target. This process is depicted in returning from functions 

bar() and baz() in Figure 1. After complete indirection 

conversion has been achieved, all targets are reached by 

direct jumps or calls. Consider the event where an attacker 

is able to corrupt the data for a return, i.e., stack smash. All 

potential valid targets will be tested against the tainted value, 

which will fail to redirect control flow. At the end of any 

sled, a direct call to an abort function is inserted. This 

allows for the graceful exit of the program under attack, 

which can also be used to collect information on the attack. 

Though elegant, CDI may introduce inefficiencies to 

runtime performance. Some instructions, particularly returns, 

may have a large set of valid control transfer targets. 

Performance implications are explored in detail in Section 6.   
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3.3. CDI Performance Optimizations 

Assessing potential runtime implications of CDI, there are 

two major elements which may contribute to a degradation 

in performance. The first is the number of targets for each 

multi-way branch. A large set of valid targets will generate a 

correspondingly large sled of conditional branches. This 

creates both a larger binary and the potential to execute a 

greater number of instructions before taking the intended 

edge. There are several ways to address this concern.  
Multi-Way Branch Target Ordering. A significant 

optimization is the profile-guided ordering of conditional 

branches in multi-way branch sleds, the process of which is 

shown in Figure 4. Dynamic profiling of edge counts can 

dictate insertion order of conditional branches. Complex 

orderings could be envisioned, such as tuning for branch 

prediction accuracy. However, the simple method of 

ordering edges by descending execution frequency provides 

a highly effective way to minimize the average number of 

not-taken branches which must be executed before arriving 

at the correct edge. 

Single Target Set Reduction. The simplest optimization is 

the reduction of single-target indirect instructions to 

unconditional, direct jumps.  

Frequent Function Cloning. Another simple optimization 

is function duplication for frequently called functions, which 

can proportionately reduce the set of valid return targets for 

each individual function clone. This optimization works 

well for small functions with many call sites. 

Large Target Set Resolution. This optimization replaces a 

series of conditional branches with another mechanism 

which has either constant or logarithmic time complexity, 

e.g., a binary search tree. Any search method would incur 

some overheads, creating a minimum threshold to seek an 

alternate for a series of conditional branches. For example, a 

long series of conditional branches where the first is almost 

exclusively taken will execute faster than a search over the 

same targets in the average case. 

START Compile to I R

Profile?

Indirection 
Elimination

Compile 
Profiling 

Executable

END

N Y
Compile 

Optimized 
Executable

Execute

Profile 
Data

 
Figure 4 - Dynamic Profiling for CDI Optimization. The runtime 
performance of multi-way branches implemented with direct conditional 
branches is greatly impacted by target ordering. By profiling target 
execution counts, we leverage inherent branch bias and order conditional 
branches by execution frequency. 

The second major performance factor in indirection 

elimination is branch prediction performance for the 

inserted conditional branches. Branch mispredictions have 

non-trivial impact on runtime performance of applications. 

As such, addressing the predictability of the extra branches 

inserted to eliminate indirection is a concern. The only 

controllable dimension to conditional branch insertion is 

their ordering. Choosing an ordering by execution frequency, 

ascending or descending, provides the average-case 

performance benefit of executing the most predictable 

branches first. Both the overwhelmingly taken and never 

taken branches will be nearly perfectly predictable. 

However, ordering with the most oft-taken branches first 

provides the added benefit of executing less untaken 

branches in the best and average case. 

3.4. Detecting Attacks in CDI Protected 

Programs 

When a control flow attack occurs on a CDI protected 

program, the realized effect is to exhaust the list of 

allowable targets in a conditional branch sled without taking 

any edge. This will also happen in the event of  a non-

malicious data corruption bug affecting a potential control-

flow target. When this happens, the application will instead 

directly call a handler routine which gracefully exits the 

program. This handler can aid in debug/diagnosis by 

obtaining information about the crash, in the form of a 

unique ID for the call and the offending target address. This 

data can then be analyzed to determine the nature of the 

unexpected control edge.  

To prevent control-flow attacks, it is essential to disallow 

any control flow which violates the predetermined CFG. All 

control flow is classified as either authorized or illegal, to 

facilitate our relaxed attack model (only a single illegal edge 

is needed to perform a heap spray attack). By disallowing all 

illegal CFG edges, we remove the essential element of 

control-flow attacks, thereby hardening software against 

them. 

4. CDI Implementation for Shared Libraries 
Not all control flow edges originate and terminate within a 

target binary. Many applications make calls to functions in 

dynamically-linked libraries at runtime. In order to provide 

protection for any application, the library code it calls 

should also adhere to the principle of CDI. To achieve this, 

we extend the use of indirection elimination to shared 

libraries. 

4.1. Dynamic Nature of Shared Libraries 

Shared libraries are referred to as such because a single 

copy of the library can be loaded once into physical memory 

and shared at multiple start addresses by multiple processes 

running concurrently. Further, they are dynamically linked 

when an application is loaded into memory. The dynamic 

nature of shared libraries make them a natural match for 

indirect control-flow. However, this also creates a natural 

vulnerability to control-flow attacks as well. An example of 

this is the return-to-libc attack [8], which circumvents non-

executable stack protection to call attacker-desired functions 

in libc. 

The dynamic nature of shared libraries, and their pervasive 

use of indirect control flow, presents new challenges for 

implementing CDI. These challenges include position 

independent code (PIC), the use of indirect jumps in the 

PLT in conjunction with the global offset table (GOT), and 

returns to potentially many different applications from a 

shared function in a library. Here we demonstrate the 

process of CDI in the context of shared libraries on Linux 
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systems, though similar methods would be applicable to 

other approaches such as Dynamically Linked Libraries 

(DLL's) for Windows. 

The current implementation of dynamically-linked shared 

libraries on Linux operating systems works as follows. 

Shared library code is compiled separately from application 

code and linked together when the application is executed. 

This linking is accomplished by the resolution of shared 

symbols in the symbol table of all linked objects. Each 

function call to a shared library is facilitated by the PLT and 

the GOT. When a function is called, the application 

executes a direct call to the PLT entry in the application 

code associated with the shared library function. The PLT 

entry then executes an indirect jump to the function, the 

target of which is stored in the GOT. When the library 

function completes execution, control returns to the original 

call site. 

To facilitate the sharing of libraries, the address of a 

shared library function in the virtual address space must be 

resolved, as this is typically a randomized location in the 

memory space due to ASLR. When a function is called for 

the first time, the target address of the PLT jump in the GOT 

will not target the desired library function, but instead the 

next instruction in the PLT entry. This is a direct jump to a 

helper function which will determine the actual address of 

the desired function, via the program loader using the 

symbol tables of the code objects. Once the target address is 

established, the corresponding entry in the GOT is 

overwritten with the actual address of the desired function. 

This process is called binding, typically seen as lazy binding 

where the binding between objects is done at runtime upon 

the first invocation of a library function. This introduces an 

inherent weakness to control-flow attack, as the GOT table 

of function addresses could be overwritten with data at 

runtime which is then directly injected into the PC at the 

next shared library function invocation. Attacks on the GOT 

due to this weakness have been demonstrated [9,25]. 

4.2. Enforcing CDI for Shared Libraries 

Elimination of indirect control-flow removes the need to 

establish trust in user data. Target set resolution for MBRs 

remains the same process regardless of whether code is 

static, relocatable or position-independent. However, PIC 

code cannot contain absolute address references. To remedy 

this, all conditional branch/direct jump sleds are comprised 

of PC-relative address references. This allows all jumps and 

calls within PIC code  to be implemented as direct jumps 

and calls. 

In order to enforce CDI for shared library calls, our work 

eliminates the use of all indirect jumps implemented in the 

current structure using the PLT and GOT. An overview of 

our shared library implementation is depicted in Figure 5. 

Shared libraries remain separately compiled and linked by 

the program loader when an application is executed. As 

before, the PLT is used to invoke the library function. 

However, with CDI the program loader will overwrite the 

indirect jump instruction in the PLT entry with a direct call 

to the address of the library function, which was previously 

being written into the GOT as an indirect target. This is 

depicted in the application in Figure 5. We enforce dynamic 

linking at load time (i.e., non-lazy binding) before any 

runtime data is encountered. Thus, all control transfer 

targets are derived from programmer-specified instructions 

and the program loader, side-stepping any need to trust 

runtime data. 

 
Figure 5 - CDI for Shared Library Control Flow Transfer. All indirect 
control flow is replaced by direct calls and jumps, resolved at load time 
and written to the PLT, obviating the need for the GOT in function calls. In 
the case where more than one object may invoke a library function within 
the same process, an RLT entry is created, which executes a sled to 
return execution to the calling code object PLT entry. This then selects the 
correct return point in the application. Each process has a unique copy of 
the PLT and RLT while continuing to share the library code. 
 

The task of returning from a shared library call is the last 

challenge in eliminating indirect control flow, and it 

requires eliminating the use of the return instruction. 

Here we leverage the same mechanism used to call the 

library function: the PLT. The return instruction is replaced 

with a direct, PC-relative jump to a new PLT entry whose 

purpose is to return control-flow back to the calling code 

object. This PLT entry then contains a direct jump to one of 

two locations. In the case where only one dynamically-

linked code object in a process address space may call a 

given function, the PLT of the called function contains a 

direct jump back to the PLT of the calling function. If there 

is more than one code object in a process address space 

which may call the library function (e.g., malloc() is called 

by both the application and library other than libc) then the 

single direct jump from the PLT will prove insufficient. In 

this case, a new code object is defined, referred to as the 

return linkage table (RLT). An RLT entry holds a 

conditional branch/direct jump sled which contains the 

return target addresses for all of the possible calling code 

objects within the address space of the process calling the 

library function. The PLT entry in the called function will 

then directly jump to its respective RLT entry. When the 

prospective return address is compared to the list of 

allowable targets and a match is found, the RLT then 

executes a direct jump to the target. The RLT is depicted in 

the shared library object in Figure 5.  
The inclusion of direct jumps in the PLT and RLT require 

that they not be shared in memory (as they will differ for 
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each application). Thus, they are aligned on page boundaries 

immediately following the shared PIC code of the library. 

This facilitates the ability to reach the PLT for each 

application by the same instruction in the library function. 

Consequently, all the benefits of shared libraries are retained 

such as dynamic linking and a single copy of large libraries 

like glibc. Additionally, the elimination of indirection in the 

implementation of shared libraries effectively removes the 

ability to perpetrate GOT-based attacks and any attack 

which exploits a return instruction, as not a single 

return instruction will remain in any code executed by a 

process.  

It should be noted that the elimination of indirection in 

PIC is greatly aided by PC-relative instructions in the x86-

64 and ARM ISAs. In other ISAs such as 32-bit x86, PIC 

implementation is more complicated by lack of PC-relative 

jump instructions. In such a case, CDI can still be readily 

achieved. To accomplish this, sharing would be disallowed, 

and libraries would be implemented as relocatable code, 

which is identical in implementing CDI as application code.   

5. PitBull: Compiler-Based CDI 

To validate our control-data isolation enforcement via 

indirection conversion, PitBull (Positive Indirection 

elimination By LLVM) was built. PitBull is a compiler 

optimization utilizing the LLVM compiler infrastructure 

[19]. The set goal was to establish feasibility for indirection-

free executables. Of equal importance, this also facilitates 

the analysis of runtime performance implications of CDI. 

Compile Application to LLVM-IR with clang

opt LLVM general optimization pass 

opt LLVM target set identification and indirect call/jump 
elimination pass 

opt LLVM return instruction
 preparation pass 

Assembly code rewriting eliminating
return instructions

Final assembly and compilation

Application binary free from indirect 
control flow instructions

Figure 6 - PitBull Compilation Flow. Applications are compiled to be 
free of indirect control flow instructions. Leveraging the LLVM compiler 
infrastructure, optimization passes identify all valid targets of indirect 
control flow and insert conditional branches in replacement. 

The LLVM optimization-based implementation of PitBull, 

shown in Figure 6, works as follows. The target applications 

are first compiled to LLVM-IR with the clang compiler. All 

IR files are then linked by the llvm-link tool. A standard 

optimization pass is then performed by the LLVM tool opt. 

At this point the target executable has been compiled into 

LLVM-IR and is ready for our indirection conversion 

optimization passes, invoked again with the LLVM tool 

opt. The primary pass first identifies the nodes and edges 

of the CFG relevant to indirect calls, jumps, and returns. 

Function pointer analysis is performed to identify control 

flow edges not readily available from the standard -dot-

callgraph LLVM opt pass. Once the targets of indirect 

control flow instructions have been identified, indirect call 

and jump instructions are replaced with a series of 

if..then (icmp..br)statements. For each allowable 

target, a compare is made to the candidate target, followed 

by a direct jump to the allowable target. A second pass then 

aggregates call and return data in preparation for the ensuing 

assembly-level rewriting passes. The transformed LLVM-IR 

is then compiled to assembly via the LLVM llc tool.  

At this point, indirect calls and jumps have been 

eliminated from the target application. Returns are then 

handled by assembly code rewriting. First, a label is placed 

after each call of the program. Next, all return statements are 

replaced with a series of compares and direct jumps. The set 

of valid return targets, provided by the first opt pass,  have 

their corresponding newly inserted labels compared to the 

stack pointer. Each compare is followed by a conditional 

direct jump to the compared label. After all compares and 

conditional jumps are inserted, a terminating call to the 

attack handling routine is inserted. Since we substitute direct 

jumps for returns, the stack pointer is incremented before 

any compares, which then compares to the stack pointer 

minus one word.  

All indirect instructions have now been replaced by 

compares and direct jumps. The code is then assembled and 

an executable is produced. We note that the process for 

relocatable code is exactly the same as that for static 

application code. When the code is relocated at load time, 

the relocation table will update all absolute address 

references with their new location, for both the compares 

and direct jump instructions. 

To facilitate shared libraries, we also eliminate indirect 

control flow instructions in PIC code. This requires a more 

nuanced approach than static or relocatable code. The target 

sets for indirect branching instructions are identified exactly 

as before. However, the inserted sleds must be PIC-

compliant and may not contain absolute address references. 

To implement this, our system instead utilizes PC-relative 

instructions. For each allowable target, a comparison is 

made to the candidate target, followed by a PC-relative 

direct jump. 

In our framework, we do not implement load-time 

functionality. This means that our current LLVM compiler-

based implementation does not provide our proposed CDI 

protection against GOT-based attacks. However, we do 

model overheads associated with dynamic library 

implementation, including non-lazy binding. Further, the 

additional sled added to the calling application PLT, 

depicted in Figure 5, is simulated by adding the sled as 

padding to the return location of the called library function. 

The execution of library calls would be nearly identical in 

performance, save the last step would be a direct call from 

the PLT. As stated for devirtualization in Section 2.3, this is 

expected to improve execution time for calls. Returns from 

libraries would potentially suffer from additional RLT entry 

traversal. However, this impact would be minimal, as in our 

benchmarks only 2% of control transfer from library calls 
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require an RLT entry, while the remainder would jump 

directly from the PLT of the shared library to the PLT of the 

application. 

6. Experimental Evaluation 

To fully understand the runtime implications of CDI, the 

performance of our compiler implementation was evaluated. 

The testing platform consists of 64-bit x86 workstations 

running Ubuntu 12.04 LTS Precise Pangolin with Linux 

kernel 3.5.0-39-generic. Compilation and optimization is 

accomplished with clang and LLVM, both release version 

3.3. All optimization passes are registered LLVM passes, 

while the assembly code rewriting is performed using Perl. 
 

6.1. Benchmark Applications 

Several security-sensitive and network-facing applications 

were chosen to evaluate runtime performance. These include 

sha1sum, sha256sum, sha512sum, and md5sum from the 

GNU Coreutils suite, as well as tcpdump, a popular network 

packet analyzer and bftpd, an ftp server. The SPECINT2000 

benchmarks were also included to allow a direct comparison 

between our work and earlier works such as CFI [1]. We 

further implemented CDI for the musl libc library [20], due 

to a known lack of compatibility between clang and glibc. 

6.2. Performance Evaluation 

SPEC benchmarks were executed with the standard 

runspec interface. Other benchmarks were executed while 

processing as input large, 45GB network capture files. 

Results are timed and averaged over 5 runs, shown in Table 

1. The runtime overheads shown reflect the increase in 

runtime for benchmarks relative to the original, unmodified 

applications. Default compilation parameters are held 

constant for both original and modified binaries. The naïve 

runtime overheads represent the performance overhead 

without any subsequent optimizations. Ranging  from 

almost zero to nearly 2X slowdown, the naïve 

implementation averages about 45% for all benchmarks. 

When optimizations are applied (as detailed in Section 3.3), 

we see a dramatic decline in the execution overheads for all 

benchmarks, where over half have no perceivable overhead 

at all. There is also a noticeable difference in runtime 

overheads between SPEC benchmarks and the network-

facing applications. SPEC benchmarks, by design, are 

generally compute-intensive workloads. However, the 

remaining applications, such as tcpdump, typically have 

performance which is I/O bound. For these workloads, 

which are a prime candidate for CDI protection, the cost for 

such protection is hidden by I/O overhead.  

6.3.  Impact of Optimization 

As observed in Table 1, optimization has a considerable 

impact on performance. There are two main factors which 

influence this; the heavily biased nature of dynamic branch 

execution, and the execution frequency of indirect control 

flow instructions. In our experiments, we implemented an 

optimization based on execution frequency of indirect 

branch targets. Benchmark applications were profiled to 

collect edge counts for the MBR edges. This information is 

then fed back into a second compilation. Edge counts are 

utilized to order conditional branch insertion for indirection 

conversion, by descending order of execution frequency. 

This yields the optimized performance shown in Table 1. 

When considering the dynamic behavior of branches, it 

has long been known that branches are heavily biased to one 

particular branch direction during execution [32]. This 

Table 1 - Control/Data Isolation Performance. The optimized runtime overhead from CDI appears in the first column. The last 8 columns detail indirect 
control flow edges metrics for benchmarks. The static details the properties of the CFG related to indirect control flow instructions. Dynamic data reflects 
the runtime control edges seen during execution. Together, these contrast dynamic and static properties of control flow. Runtime overhead can be seen to 

positively correlate with control flow edges. 

Benchmark 

Optimized 
Runtime 

Overhead 

Naïve  
Runtime 

Overhead 

Binary Size 
Increase 

Valid Control Flow Edges per Indirect Instruction 

Static Dynamic 
Max Mean Median Mode Max Mean Median Mode 

gzip 0.7% 4.3% 14% 45 5.7 2 2 15 3.0 2 1 

vpr 1.0% 2.5% 33% 116 5.1 3 2 20 2.7 2 1 

gcc 34.4% 59.2% 112% 1946 30.3 8 2 648 5.5 2 0 

mcf 0% 0% 10% 2 1.0 1 1 2 1.0 1 1 

crafty 4.0% 10.0% 29% 33 5.8 3 2 16 2.4 2 2 

parser 5.3% 39.3% 46% 216 8.3 3 2 151 6.1 2 2 

eon 22.8% 51.2% 73% 114 7.2 2 0 33 0.5 0 0 

perlbmk 20.9% 189.1% 148% 537 31.4 18 18 134 3.8 1 0 

vortex 20.1% 143.0% 42% 192 11.7 4 3 158 8.7 2 1 

bzip2 0.9% 1.5% 9% 3 2.1 2 2 3 1.4 1 1 

twolf 0.7% 1.1% 24% 18 3.8 2 2 8 1.5 1 1 

md5sum 0% 0% 25% 8 2.6 2 2 3 1.0 1 0 

sha1sum 0% 0% 22% 8 2.6 2 2 3 1.0 1 0 

sha256sum 0% 0% 20% 8 2.6 2 2 3 1.0 1 0 

sha512sum 0% 0% 16% 8 2.6 2 2 3 1.0 1 0 

bftpd 0% 0% 81% 109 6.8 2 2 41 1.5 0 0 

tcpdump 0% 1.2% 174% 400 75.5 65 65 14 0.1 0 0 

SPEC Avg. 10% 45.6% 49% 134 10.2 4.4 2 108 3.7 1.5 1 

 

 
Average 6.5% 29.6% 52% 293 10.2 4.4 2 74 2.5 1.2 0 
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biased property strongly facilitates the high accuracy of 

modern branch prediction.  

Though indirect branches are more difficult to predict [16], 

they remain highly biased as well [30]. To assess this bias, 

we profiled execution of benchmarks to determine the 

distribution of dynamically executed targets, shown in 

Figure 7. When indirect control flow instructions are broken 

down into binary branch decisions, the resulting control 

flow points, taken individually, become more easily 

predicted than the original indirect branch. As shown in 

Table 1, the dynamic target set is considerably smaller than 

the static set. This highlights the crucial factor for runtime 

overheads; dynamic branching properties, not static, are the 

driving force behind runtime performance. 

 
Figure 7 - Indirect Branch Bias. Branching instructions are heavily 
biased in execution. The percentage of instructions as a function of the 
most common targets for each indirect branch/call/return are binned by 
execution frequency. For all benchmarks combined, the most commonly 
executed target of each MBR accounts for over 66% of all edges executed. 

The second property of software which heavily dictates 

the performance of indirection conversion is the relative 

execution frequency of indirect control flow. For all 

benchmark applications, indirect instructions accounted for 

1% of the total instructions executed. Coupling this with 

highly biased branches, it is no surprise that indirection-free 

transformations incur minimal overheads. 

As shown in Table 1, runtime overheads generally tend to 

be positively correlated with the size of target sets for 

indirect instructions. One indirect instruction in the gcc 

benchmark had 648 different valid targets executed at 

runtime (a return instruction). That implies that at least 

once, a function was forced to execute 647 not-taken 

conditional branches before finding the correct edge for a 

return. This highlights the opportunity for a low time-

complexity alternatives to conditional branch insertion, as 

discussed in Section 3.3., which is left for future work. 

7. Related Work 

This work is conducted in light of many techniques which 

have been devised in an attempt to address control-flow 

attacks. An abridged list is presented here, divided into 

software and hardware approaches. Direct comparisons are 

summarized in Table 2. 

7.1.  Software Mechanisms 

An important work in this area is Control Flow Integrity 

(CFI) by Abadi et al. [1], which spurred an avalanche of 

interest in the dynamic enforcement of software CFGs at 

runtime. The relatively low overhead, simple solution set a 

high bar for all subsequent efforts. In their work, the authors 

utilized a labeling system to verify the authenticity of a 

target address. Return instructions are guarded by a shadow 

stack, with the code segment register functioning as the 

shadow stack pointer. Though CFI is an elegant solution, it 

relies on a more restrictive attack model than our work 

while incurring greater execution overheads. Further, with 

reliance on a shadow stack located in data memory, and not 

addressing shared library calls and returns, there are 

continued concerns about control-flow attacks. In contrast, 

CDI's threat model assumes that the attacker fully owns data 

memory, with read, write, and execute privilege. 

A recent work which expands upon CFI is Control Flow 

Integrity for COTS  Binaries [33] by Zhang and Sekar. This 

work provides a solid implementation for CFI 

instrumentation for stripped binaries. However, it was not 

extended to protect control transfer between shared library 

and application code (e.g., GOT attack [9]). It also retains 

limitations from binary-rewriting such as not handling 

dynamic code generation.   

G-Free [21] is a compiler-based approach to eliminating 

ROP attacks. This is a two-pronged approach of excising 

unintended return or return-like instructions, along with 

encryption-based verification of the context in which 

indirect branches are executed (e.g., a ret instruction is 

executed only after the first block of the function in which it 

resides has been executed). Though this appears to constrain 

code gadgets, the approach offers no protection from non-

code gadget attacks such as heap spray and return-to-GOT. 
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Most Common Target 

66% 

4% 

Work 

Explicit Dependencies Susceptible to these Attacks Relies on Data 

Memory Security 
Eliminates Usage 

of Indirect Control NWC ASLR W⊕X Shadow Stack Heap Spray GOT Read 

This work Yes No No No No No No No Yes 

Abadi et al. [1] Yes No Yes Yes No Yes No Yes No 

Xia et al. [30] Yes No No No Yes Yes No Yes No 

Budiu et al. [7] Yes No Yes Yes No Yes No Yes No 

Zhang, Sekar [33] Yes No No Yes No No No Yes No 

Kiriansky et al. [17] Yes No No No No No Yes Yes No 

Cowan et al. [10] Yes No No No Yes Yes Yes Yes No 

Table 2 - Related Works. The first set of columns details what system dependencies are explicitly required to maintain the purported security benefits of 
a work. The next set details which vulnerabilities a work provides no hardening against. The final column states whether a work eliminates the root cause 
of contemporary control flow attacks: indirect control-flow . Our work remains as the single one to harden against all control-flow attacks while maintaining 
only the most fundamental dependency of NWC. NWC=non-writable code, Shadow Stack=separate stack in memory to verify return address targets, 
GOT=Attacks on calls to libraries, Read=Technique is weakened if attacker can read or infer any data memory contents or locations. 
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Another foundational work is Secure Execution Via 

Program Shepherding by Kiriansky et al. [17]. Utilizing 

dynamic binary instrumentation, Program Shepherding 

enforces a security policy by monitoring control flow 

transfer at runtime. Though Program Shepherding could 

enforce a policy similar to CDI, it still cannot determine all 

valid indirect branching targets without nontrivial 

compilation support (such as what we propose in this work). 

The CFG as enforced by program shepherding is 

emblematic of the actual CFG, and therefore cannot offer 

the same level of protection as CDI. When an application's 

CFG is discovered at runtime, the targets of indirect jumps 

cannot be known before they execute, and therefore cannot 

be verified dynamically. This allows a jump to the middle of 

an x86-64 instruction, permitting unfettered code gadgets 

within an application.  

Recently, compiler-based solutions have also been 

proposed. One such work is Enforcing Forward-Edge 

Control-Flow Integrity in GCC & LLVM [29], which 

instruments applications with CFI checks and labels at 

compile time. Though Tice et. al. achieve low runtime 

overheads, they do not address return instructions, which 

constitute the majority of indirect control flow. Their 

approach remains vulnerable to code gadgets, as the range 

verification for jumping to compiled executables allows 

jumping to the middle of instructions.  

Another compiler-based approach to CFI is Control-Flow 

Restrictor: Compiler-based CFI for iOS [23]. In their work, 

Pewny and Holz share the most commonality with our work, 

applying a similar MBR conversion approach. However, 

focusing on iOS on an ARM platform, they do not explore 

large, complex applications with many functions or topics 

such as PIC or shared libraries.  

7.2. Hardware Solutions 

A variety of hardware-based solutions have been proposed 

to address control flow security. One example is 

Architectural Support for Software-Based Protection [7]. 

That work is an extension of the original CFI [1] work, with 

a proposed ISA extension to move CFI label checking into 

hardware. This work carries with it the same weaknesses as 

CFI. Another hardware solution is offered in the work 

CFIMon: Detecting Violation of Control Flow Integrity 

using Performance Counters by Xia et al. [30]. This work 

leverages existing hardware in the form of performance 

counters. Though their solution has low overheads, it has to 

contend with deficiencies such as false positives and 

negatives, as well as allowing “suspicious” branch targets to 

execute, making the technique readily susceptible to heap 

spray attacks. 

It should be noted that all previous works may be 

classified as mitigation techniques. That is, they all seek to 

guard, verify, or otherwise shield the root of the problem for 

control-flow attacks: indirect branching. As such, they all 

rely heavily on a host of security assumptions, which are in 

turn susceptible to attack. Regardless of the proposed 

solutions, of which there are many, control-flow attacks 

persist. In contrast, our work directly addresses the root 

issue and permanently removes it by isolating control from 

user data.  
 

8. Conclusions 

Computer security has become a dominant topic in the 

information age. The software attack surface has remained 

as a chief area of security exploit for years. Though 

vulnerabilities have been well studied, exploitations persist. 

Given the continuing nature of these attacks, this work 

directly addresses and eliminates the prevailing root of the 

problem: indirect control flow.  

In this work we presented a novel approach to software 

security, called control-data isolation, which eliminates the 

link between potentially malicious runtime data and 

program control by eliminating the use of indirect control in 

generated software. We have shown that  eliminating the 

root cause giving rise to the predominant mode of control-

flow attacks is not only feasible, but has minimal impact on 

runtime performance. Control-data isolation provides a 

greater level of security than previous proposals while 

experiencing overheads that are comparable or better. We 

feel strongly that by directly addressing control-flow attacks, 

rather than mitigating them, the overall software attack 

surface can be greatly diminished. 

8.1. Future Work 

The implementation offered in this work demonstrates the 

possibility of indirection-free execution. There are many 

improvements which could be made to further enhance 

performance. Optimizing indirection conversion where a 

large number of target edges exist is a prime target for 

improvement. Due to the dynamic nature of computing, 

exploring hardware-based acceleration for CDI 

implementation would also prove a promising extension to 

enforcing CDI principles. 

Acknowledgements 
The authors would like to thank the reviewers, whose 

insights improved this work. This work was supported in 

part by C-FAR, one of the six SRC STARnet Centers, 

sponsored by MARCO and DARPA. 

References 
 

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, Control Flow 
Integrity, ACM Trans. Inf. Syst. Secur., 2009, pp. 1-40. 

[2] K. Anand et al., A compiler-level intermediate representation based 

binary analysis and rewriting system, Proc. of the 8th ACM European 
Conf. on Computer Systems, 2013, pp. 295-308. 

[3] D. Bacon and P. Sweeny, Fast Static Analysis of C++ Virtual function 

Calls, Proc. of theConf. on Object-Oriented Programming, Systems, 
Languages, an Applications, 1996, pp. 324-341. 

[4] A. R. Bernat and B. P. Miller, Anywhere, any-time binary 

instrumentation, Proceedings of the 10th ACM SIGPLAN-SIGSOFT 

workshop on Program analysis for software tools, 2011, pp. 9-16. 

[5] A.R. Bernat and B.P. Miller, Structured Binary Editing with a CFG 

Transformation Algebra, 19th Working Conference on Reverse 

Engineering (WCRE), 2012, pp. 9-18. 

[6] T. Bletsch, X. Jiang, and V. Freeh, Mitigating code-reuse attacks with 

control-flow locking, Proc. of the 27th Annual Comp. Sec. App. Conf., 

2011, pp. 353-362. 

89



[7] M., Erlingsson, U. Budiu and M. Abadi, Architectural support for 
software-based protection, Proceedings of the 1st workshop on 

Architectural and system support for improving software 
dependability, 2006, pp. 42-51. 

[8] c0ntext. (2012, April) Bypassing non-executable stack during 

exploitation using return-to-libc. [Online]. 
http://css.csail.mit.edu/6.858/2012/readings/return-to-libc.pdf 

[9] c0ntext. (2011) How to Hijack the Global Offset Table with pointers. 

[Online]. http://www.exploit-db.com/papers/13203/ 

[10] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, Point-Guard: 

Protecting pointers from buffer overflow vulnerabilities, 12th USENIX 

Security Symposium, 2003. 

[11] L. Garber, Melissa Virus Creates a New Type of Threat, Computer, 

vol. 32, no. 6, pp. 16-19, 1999. 

[12] Gartner. (2013) Gartner. [Online]. 
http://www.gartner.com/technology/home.jsp 

[13] J.L. Greathouse et al., Testudo: Heavyweight security analysis via 

statistical sampling, 41st IEEE/ACM International Symposium on 
Microarchitecture, 2008, pp. 117-128. 

[14] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani, A 

Study of Devirtualization TEchniques for a Java Just-In-Time 
Compiler, Proc. of theConf. on Object-Oriented Programming, 

Systems, Languages, an Applications, 2000, pp. 294-310. 

[15] Kaspersky. (2013) Computer Threats. [Online]. 
http://www.kaspersky.com/threats 

[16] H. Kim et al., VPC prediction: reducing the cost of indirect branches 

via hardware-based dynamic devirtualization, Proceed. of the Interntl. 
Symp. on Computer Architecture, 2007, pp. 424-435. 

[17] V. Kiriansky, D. Bruening, and S. Amarasinghe, Secure execution via 

program shepherding, Proc. of the USENIX Security Symp., 2002. 

[18] B. Kuhn and D. Binkley, An enabling optimization for C++ virtual 

functions, Proceedings of the 1996 ACM symposium on Applied 

Computing, 1996, pp. 420-428. 

[19] C. Lattner and V. Adve, LLVM: A Compilation Framework for 

Lifelong Program Analysis & Transformation, Proc. of the Intl. Symp. 

on Code Generation and Optimization (CGO), 2004. 

[20] (2014, February) musl-libc. [Online]. http://www.musl-libc.org/ 

[21] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, G-Free: 

Defeating Return-Oriented Programming through Gadget-less 
Binaries, Proc. of the Annual Computer Security App. Conf., 2010, pp. 

49-58. 

 

[22] Jr., N. Petroni and M. Hicks, Automated detection of persistent kernel 
control-flow attacks, Proceedings of the 14th ACM conference on 

Computer and communications security, 2007, pp. 103-115. 

[23] J. Pewny and T. Holz, Control-Flow Restrictor: Compiler-based CFI 

for iOS, Proc. of the Annual Comp. Security App. Conf., 2013, pp. 

309-318. 

[24] M. Prasad and T. Chiueh, A binary rewriting defense against stack 

based buffer overflow attacks, Proc. of Usenix Tech. Conf., 2003, pp. 

211-224. 

[25] M. Ramilli. (2011, November) Global Offset Table Injection 

Procedure. [Online]. http://marcoramilli.blogspot.com/2011/11/global-

offset-table-injection-procedure.html 

[26] Y. Shi, S. Dempsey, and G. Lee, Architectural Support for Run-Time 

Validation of Control Flow Transfer, International Conference on 

Computer Design (ICCD), 2006, pp. 506-513. 

[27] Y. Shi and G. Lee, Augmenting Branch Predictor to Secure Program 

Execution, 37th Annual IEEE/IFIP International Conference on 

Dependable Systems and Networks, DSN, 2007, pp. 10-19. 

[28] H. Theiling, Extracting safe and precise control flow from binaries, 

Proceedings. Seventh International Conference on Real-Time 

Computing Systems and Applications, 2000, pp. 23-30. 

[29] C. Tice et al., Enforcing Forward-Edge Control-Flow Integrity in 

GCC & LLVM, 23rd USENIX Security Symposium, 2014. 

[30] Y. Xia, Y. Liu, H. Chen, and B. Zang, CFIMon: Detecting violation of 
control flow integrity using performance counters, 42nd Annual 

IEEE/IFIP International Conference on Dependable Systems and 

Networks (DSN), 2012, pp. 1-12. 

[31] L. Xu, F. Sun, and Z. Su, Constructing precise control flow graphs 

from binaries, University of California, Davis, Tech. Rep. 2009. 

[32] C. Young, N. Gloy, and M. Smith, A comparative analysis of schemes 
for correlated branch prediction, Proceedings of the Iinternational 

Symp. on Computer Architecture, 1995, pp. 276-286. 

[33] M. Zhang and R. Sekar, Control Flow Integrity for COTS Binaries, 
USENIX Security Symposium, 2013, pp. 337-352. 

[34] C. Zhang et al., Practical Control Flow Integrity and Randomization 

for Binary Executables, IEEE Symposium on Security and Privacy 
(S&P), 2013, pp. 559-573. 

[35] T. Zimmermann and S. Neuhaus, Security Trend Analysis sith CVE 

Topic Models, International Symposium on Software Reliability 
Engineering (ISSRE), 2010, pp. 111-120. 

 

90


