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Abstract
Memory operations remain a significant bottleneck in dynam-

ically scheduled pipelined processors, due in part to the inabil-
ity to statically determine the existence of memory address depen-
dencies. Hardware memory renaming techniques have been pro-
posed to predict which stores a load might be dependent upon.
These prediction techniques can be used to speculatively forward a
value from a predicted store dependency to a load through a value
prediction table. However, these techniques require large, time-
consuming hardware tables.

In this paper we propose a software-guided approach for iden-
tifying dependencies between store and load instructions and the
Load Marking (LM) architecture to communicate these dependen-
cies to the hardware. Compiler analysis and profiles are used to
find important store/load relationships, and these relationships are
identified during execution via hints or an n-bit tag. For those loads
that are not marked for renaming, we then use additional profiling
information to further classify the loads into those that have accu-
rate value prediction and those that do not. These classifications
allow the processor to individually apply the most appropriate ag-
gressive form of execution for each load.

1 Introduction

Accurate determination of memory dependencies between store and
load instructions will be one of the keys to performance on future
superscalar processors. Compiler techniques have been developed
for finding loop carried dependencies and disambiguating poten-
tially aliased loads and stores. When these dependencies can be de-
termined, the compiler can effectively expose instruction level par-
allelism and loop-based parallelism. The problem of determining
these dependencies in a timely fashion during execution has proven
more difficult. Processors allow loads and stores to execute out-of-
order by comparing the load and store addresses. The latency in
calculating the addresses to do this comparison can be several cy-
cles, delaying memory re-ordering until late in the pipeline. There-
fore, dynamic scheduling of memory operations is constrained not
only by real dependences, but often by non-existent dependencies.

Two hardware approaches were recently proposed that find de-
pendencies between the load and store instructions and then use
these dependencies during the fetch stage of the processor for Mem-
ory Renaming [14, 20]. The hardware would predict which loads
were dependent upon stores to enable loads to bypass memory
by communicating the value of the store directly to the load in-
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struction. As a by-product, this technique also enables accurate
value prediction [11, 21, 18] for some loads. While these hardware
techniques were successful at finding store/load dependencies, they
require a large store cache of prior store instructions to find the
store/load dependencies, a buffer to hold the dependencies found,
and a value file to provide the predicted value.

The goal of this paper is to extend the prior memory renam-
ing technique of Tyson and Austin [20]. The memory renaming
architecture either (1) communicated a value from a store to a load
for value prediction, or (2) provided last value prediction for load
instructions. We propose the Load Marking (LM) architecture to
use profiles to accurately classify which instructions would benefit
more from (1) memory communication, (2) last value prediction,
or (3) neither of these prediction techniques. The Load Marking
architecture performs this classification and labels those instruc-
tions using profiling hints. Our results show that these store/load
dependencies can be accurately found via compiler analysis and
profiling. This reduces the amount of required hardware for mem-
ory renaming, and improves the performance of proposed memory
renaming architectures by providing hardware hints or explicit tags
in the instructions.

We examine two techniques to communicate load-store depen-
dences to the architecture: load marking hints (LM hints), and a
small n-bit tag (which we call the Memory Renaming Tag, MRT).
When LM hints are used, they provide a filter indicating which
store and load instructions will contribute positively to hardware
memory renaming. When MRT tags are used, the tags are assigned
by the compiler and are contained within the store and load instruc-
tion. A store and load with the same tag are mapped to the same
value prediction entry in a table similar to hardware Memory Re-
naming [20].

Other loads are marked as either candidates for load value pre-
diction or no prediction. By only applying the appropriate opti-
mization to each load, mis-speculations are reduced dramatically.
Using these techniques, we are able to identify nearly 37% of all
dynamic instructions to use values produced by either store-load
prediction or value prediction, and achieve more than a 98% pre-
diction accuracy.

In section 2 we describe the motivation for this research and re-
lated work. We then describe the functionality of the memory com-
munication tag architecture in section 3. Section 4 briefly describes
the profiling techniques we developed to capture the store/load re-
lationship information needed to accurately allocate the MRT tags.
In section 5 we describe the algorithm used for allocating the tags to
the load/store instructions. The profile and simulation methodology
is described in section 6, and the results are described in section 7.
We conclude the paper in section 8.
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2 Related Work

The Load Marking architecture provides static prediction for mem-
ory communication and value prediction. Hardware solutions for
these problems have been proposed, each showing improvements
in processor performance.

2.1 Memory Address Disambiguation

A number of dynamic memory disambiguation techniques have
been proposed to improve the accuracy of dependence specula-
tion [6, 8, 15].

The Memory Conflict Buffer (MCB) proposed by Gallagher et
al. [8] provides a hardware solution with compiler support to al-
low load instructions to speculatively execute before stores. The
addresses of speculative loads are stored with a conflict bit in the
MCB. All potentially ambiguous stores probe the MCB and set the
conflict bit if the store address matches the address of a speculative
load. The compiler inserts a check instruction at the point where
the load is known to be non-speculative. The check instruction
checks the speculative load’s conflict bit in the MCB; if not set, the
speculation was correct, otherwise the load was mis-speculated.

A similar approach for software-based speculative load execu-
tion was proposed by Moudgill and Moreno [15]. Instead of using
a hardware buffer to check addresses, they check values. They al-
low loads to be speculatively scheduled above stores, and in addi-
tion they execute the load in its original location. They then check
the value of the speculative load with the correct value. If they are
different a recovery sequence must be executed.

A pure hardware approach for speculative load execution pro-
posed by Franklin and Sohi [6], called the Address Resolution Buffer
(ARB), directs memory references to bins based on their address
and uses the bins to enforce a temporal order among references to
the same address. The use of bins reduces the associativity of the
search and allows for multiple disambiguation requests in one cy-
cle, since the disambiguation process is decentralized and localized
to a bin. The ARB provides forwarding of values from store to load
instructions that are in the current instruction window.

2.2 Value Prediction

Lipasti et al. [11] describe a mechanism in which the value of a load
instruction is predicted based on the previous values loaded by that
instruction. In their work, they used a value table to store the val-
ues to predict and a confidence mechanism for deciding whether
the value is likely to be correct based on past performance of the
predictor. Further work has looked at predicting the value of in-
structions using stride, context predictor, and hybrid predictors [16,
18, 21].

Recent research has shown that instruction values have pre-
dictable behavior between different inputs [2, 3, 7]. These stud-
ies showed that profiling can be used to accurately guide last value
prediction. Our research extends these profile-guided techniques
by not only predicting the value for load instructions, but also pre-
dicting store/load relationships.

2.3 Memory Renaming

Research by Moshovos et. al. [14] and Tyson and Austin [20] found
that memory communication between store and load instructions
can be accurately predicted in hardware. Both of these approaches
use special store caches to find the store/load dependencies, and
then an additional buffer to record the relationships found. Once
a stable store/load relationship was identified, the hardware would
forward store results directly to dependent loads, thereby improv-
ing the speed of communication through memory. Our research

shows that profiling can accurately find the important store/load
dependencies.

To evaluate the effectiveness of our Load Marking architecture,
we compare it to our previous hardware memory communication
approach [20] shown in Figure 1. We used a modified version of
the SimpleScalar simulation tools from this prior study; we use a
derivative of that simulator to provide our new results and an IPC
comparison with the original memory renaming architecture. For
effective memory communication, the architecture has (1) a Store
Cache to cache stores recently seen, (2) a Store/Load Cache to hold
the dependencies found, (3) a Value File for rename/value predic-
tion, and (4) a confidence mechanism (not shown in the Figure)
to determine when to use the prediction. The next two paragraphs
summarize the functionality of the memory renaming architecture
for store and load instructions.

When a store instruction is decoded, it indexes into the Store/Load
Cache with the store PC to find its Value File entry. If there is a
miss, the store is allocated the least recently used Value File en-
try and it updates its new Store/Load Cache entry to point to this
Value File entry. The store then updates the Value File entry with
the current value of the store or a pointer to the instruction pro-
ducing the value for the store. When the effective address for the
store becomes available, the store indexes into the Store Cache with
its address and updates the entry to point to its current Value File
index.

When a load instruction is fetched/decoded, it uses its PC to
index into the Store/Load Cache to find its Value File entry. If there
is a hit, the Value File entry is then used for predicting the value for
the load instruction. After the load’s effective address is known, the
load indexes into the Store Cache with its address to find an alias.
If an alias is found, the load updates its Store/Load Cache entry to
have the same Value File index as the aliased store. If an alias is
not found, then the load updates its Store/Load entry to point to the
Value File index corresponding to indexing the Value File with the
load’s PC. This is used for last value prediction. If there was no
store alias, then the load updates its Value File entry with the last
value used by the load. For further details, please see the complete
description of the memory renaming architecture in [20]. The goal
of our Load Marking architecture is to simplify the hardware, by
providing the communication between store and load instructions
in software only requiring a Value File for prediction.

3 Adding Load Marking to Memory Renaming

The Load Marking architecture extends the instruction set architec-
ture to identify different classifications of loads. For a given store
or load, this classification identifies which part of the memory re-
naming architecture [20] the store or load can benefit from. Note
that the proposed memory renaming architecture in [20] contains
two parts. Either values can be communicated from stores to loads
via the value file, or loads can benefit by using the value file for
last value prediction. Therefore, in our classification loads can be
candidates for either:

� Rename - Loads that have been identified as good candidates
for static memory renaming.

� Value Predict - Loads that are found to be predictable above
a certain threshold by last value prediction, but do not exhibit
sufficient load/store relationship predictability.

� Non-Speculative - Loads that were not found to be suffi-
ciently predictable.

Load marking allows the processor hardware to handle each
load in the most efficient manner for speculative execution. At a
minimum, an architecture to support load marking requires (1) ISA
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addr
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index by pc
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Finding the Value File Entry

Figure 1: The structure of the memory renaming architecture [20]. The Store Cache is used to find the relationships between store and load
instructions. The Store/Load cache is used to keep track of which Value File entries to use for store and load instructions. Store instructions
use the value file entry to store their last value or a pointer to the instruction producing the value. Load instructions used the value file entry
to predict the value to use for the load.

Value File (1K entries)

Rename tag
portion of 
Value file}store R3, 1024(R7) [tag=5]

store R25, 0(R5) [tag=3]
...

load R9, 48(R2) [tag=5]
load R1, 1096(R7) [tag=vp]

load R5, 24(R14) [tag=vp]
load R3, 0(R25) [tag=none]

indexed by tag

indexed by pc

Figure 2: The structure of the value file for the Load Marking MRT
architecture. A portion of the value file is used for static memory
renaming.

bits to identify a load’s classification, and (2) the value file to pro-
vide renaming and value prediction.

3.1 Implementation of Load Marking

In this paper we examine two Load Marking architectures. The
first, LoadMark Hints, uses profiling to create hints to classify the
type of speculation to use for a given load. The second architec-
ture, LoadMark MRT, uses profiles to find dependencies between
store and load instructions, and uses memory rename tags (MRT) to
explicitly direct value forwarding from a store to a load instruction.

3.1.1 Load Marking Hints for Memory Renaming

Stores and loads that are found via profiling/compiler analysis to
benefit from memory renaming are marked for renaming. Loads
which benefit more from value prediction are marked for value
prediction, and all other loads are marked as non-speculative. To
provide LoadMark hints, the architecture needs to provide three
new opcodes (rename-store, rename-load, value-predict-load). The
compiler analysis uses profiles to filter out stores and loads from the
memory renaming architecture. Stores not marked for renaming do
not update the Store Cache. Load’s marked as non-speculative do
not use the Store/Load Cache shown in Figure 1. Load’s marked

for value prediction index into the Value File directly using their
PC. This helps reduce the pressure on the renaming architecture,
especially since only a small portion of the static store and load
instructions contribute to renaming. This significantly reduces the
size of the Store Cache and Store/Load Cache needed.

3.1.2 Load Marking Architecture with MRT Tags

For the LoadMark MRT architecture, dependencies between store
and load instructions are represented by an MRT tag. Renaming
occurs when the store and load have the same tag. This MRT tag
serves as an index into the memory renaming Value File [20], which
communicates the value of the store to the load during execution.
The MRT tag and the bits needed to classify a load can be repre-
sented either with extra bits in load and store instructions, or with
special marker instructions in the code. We assume the former.

Classification and tagging would require the 3 new opcodes
(rename-store, rename-load, value-predict-load). In addition, log(n)
bits added to the load and store instruction format, where n speci-
fies the number of possible tags.

For loads marked for rename prediction, the Value File is used
to communicate values between store and load instructions with
the same MRT. This same value file is used to predict values for
load instructions marked for last value prediction in the memory
renaming architecture.

The MRT tags are used as the index into the Value File for
tagged stores and loads. When a store with a valid MRT tag is
entered into the reorder buffer (ROB), it updates the Value File with
either the value of the store (to be written) or a pointer to the ROB
entry that will produce the value for the store. After a load with a
valid MRT tag is fetched, the MRT tag is used as a direct index into
the Value File retrieving either a value or a pointer to a ROB entry.

When the number of MRT tags is less than the size of the Value
File, rename prediction only uses the first n entries (n being the
number of tags) in the Value File. Figure 2 shows the Load Mark-
ing MRT architecture examined in this paper. The only hardware
needed is a Value File used to communicate the renaming, and this
same Value File is used for value prediction. We report results for
a Load Marking MRT architecture that uses 8 tags (3 bits). We ex-
amined using more tags (e.g., 1024 tags), but this provided only a
minor improvements over an 8 MRT tag architecture.

Figure 2 shows that stores and loads with the same tag will map
directly to the same entry in the Value File. Loads marked for value
prediction use their PC to directly index into the Value File. These
loads blindly value predict using the value stored in the table entry,
ignoring all renaming. It is similar to the static profile-based value
prediction scheme proposed in [7, 11].
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Since the store/load relationships are represented by tags, the
MRT architecture no longer needs the Store Cache and Store/Load
Cache shown in Figure 1.

3.2 Non Speculative Loads

Loads that do not use memory renaming or value prediction use
normal hardware alias detection to order loads with respect to stores.
The technique we simulate is similar to the load/store disambigua-
tion methods used by the Pentium Pro [13] or the Power PC-620 [10].
Loads are stalled until all earlier store addresses are known. Once
all earlier store addresses are available, the disambiguator can de-
termine if the load value should be forwarded from a store in the
store buffer or from the data cache. If the load is sourced by a
store in the store buffer and the store data is not yet available, the
load stalls until it is available; otherwise, the load is scheduled to
execute.

3.3 Consuming Predicted Values

The memory renaming architecture we model in this paper uses se-
lective prediction [4], which only pays the cost of misprediction if
a predicted value was actually used (consumed) by a dependent in-
struction. Each load that hits in the store/load cache will produce
a predicted value/tag, but dependent instructions on that load will
only consume the predicted value once they are in the reservation
station and there are idle functional units. Our architecture is dif-
ferent than memory renaming described in [20], since it delays the
decision of using a predicted value until late in the pipeline.

For a predicted load instruction, the value file provides either
(1) a predicted value or (2) a physical tag pointing to the instruction
producing the value. When performing memory renaming, a load
producing a predicted tag from the Value File will be split into two
separate instructions – spec-move and the original load. Both of
these instructions will have the same register mapping and same
physical register destination. The spec-move will be hooked up
to the the instruction producing the value, and acts as a register
move. The spec-move is only used when a load is predicting a value
communicated by a store, and the instruction producing the input
to the store has not yet completed execution. The spec-move is not
used when the load predicts a value from the Value File. In our
architecture, the value or physical tag for the spec-move is stored
in the result register for the load instruction after the prediction is
produced from the Value File.

We modified the register file to contain a speculative bit (spec
bit) and a value bit. The spec bit indicates if the register file entry
contains a real value or a speculative value/tag. The value bit is
used to indicate if the speculative data stored in the register is either
a speculative value or a physical tag to the spec-move. In addition,
we modified the reservation station to contain the spec bit and value
bit, to indicate the type of value stored for both input operands in
the reservation station.

Consider an instruction Y, dependent upon a load Z, dispatched
to a reservation station. If the load instruction has completed, then
no speculation will need to occur. If the load has not completed
and it has been predicted, the load destination register’s spec bit
will be true and instruction Y will read the speculative value or tag
from the register file. If a physical tag to instruction X is read from
the register file, then instruction X will be the spec-move which
will produce the speculative value for the load. In addition to this,
the reservation station still holds a pointer to the original load in-
struction Z that is producing the real value for instruction Y for
the given operand. If the spec-move X completes before load Z,
then Y’s reservation station will have the speculative value stored
as one of its input operands and the value-bit will be changed from
tag to value. If at any time the load Z finishes executing before

instruction Y starts executing, then the load will update the correct
operand value for instruction Y, the spec bit will be set to false, and
the ready bit for that operand will be set to true.

When deciding which instruction to execute next for a func-
tional unit, the reservation stations are first searched for instructions
with ready, non-speculative operands. If no ready instructions can
be found, the architecture will choose to predict instructions whose
remaining operands have their value bit set to value. Note that
in this architecture, a predicted load instruction only causes a mis-
prediction penalty if a dependent instruction actually used the pre-
dicted value. If a dependent instruction does not use the predicted
value, then there is no misspeculation penalty. We used this ar-
chitecture in a prior selective value prediction study, and a more
detailed description can be found in [4].

3.4 Mis-speculation Recovery

Each of the prediction schemes has the potential to violate depen-
dencies. Memory renaming and value prediction can mispredict the
dependence and mispredict the value.

We examine the same mis-speculation recovery options as [20]:
squash and re-execute. Squash recovery re-fetches the instructions
from the cache on a mispredict, and is analogous to branch mispre-
diction recovery. Re-execution recovery re-executes only those in-
structions dependent (directly or indirectly) on the mis-speculated
load. This is accomplished by re-injecting the correct loaded value
onto the result bus. Instructions that had used the speculative value
would see the new value and re-execute, which may in turn cause
more re-executions.

For the simulation results in this paper, we assume a mini-
mum 8 cycle misprediction penalty (for both value and rename
mispredicts) for squash recovery. The penalty will be longer if
the incorrectly predicted load instruction is stalled in the proces-
sor pipeline. The instructions following the mispredicted load are
then re-fetched just as in a branch misprediction. For re-execution
recovery, the penalty accrued is the delay from resending the in-
structions through the processor pipeline, starting with instruction
issue, once their dependencies are ready.

4 Pro�ling Analysis

Our load marking and dependence tagging architecture depends on
profile analysis of dynamic load-store behavior. This section briefly
describes the two types of profiling information we collect to clas-
sify the loads for memory renaming, value prediction, and non-
speculation. These profiles are then fed back into the compiler to
perform the load marking hint and rename tag allocation described
in section 5. To find the relationships between store and load in-
structions, we record the addresses written by store instructions;
these addresses are matched when a load instruction is executed.

In finding store/load dependencies we are only trying to find
the dependencies that the memory renaming architecture can accu-
rately predict. The renaming architecture cannot correctly predict
loop carried dependencies with a dependence distance greater than
one loop iteration, because a static characteristic of the load and
store instruction (either the PC or the assigned MRT) is always used
to index the prediction tables. Thus values from earlier iterations
would always be overwritten by more recent iterations (assuming
the load and store execute every iteration) for a loop carried depen-
dency with a distance greater than one. See [20] for more details.

The profiler keeps track of a list of store dependencies found
for each load. For the programs we examined, we found that on
average 31% of the loads had 0 store dependencies (e.g., constant
values), 32% of the loads had 1 dependency, and 37% of the loads
had 2 or more dependencies. Statistics are kept so that after the
profile is generated, we know for each load what the predication

4



accuracy would be if (1) the load was predicted using store/load
communication (called the Rename Prediction accuracy) or (2) the
load was predicted using Last Value Prediction. These are the two
options we have for the memory renaming architecture [20]. See
Appendix A for more details on how the profiling was performed.

5 Identifying Loads and Stores for Memory Renaming

The profile data described in the previous section characterizes each
load in several ways, including its potential for renaming success.
This section describes the process of translating the profile infor-
mation into specific load marking hints and tagging decisions.

A number of heuristics are applied to the data obtained through
profiling to filter out infrequent load-store relationships, infrequently
executed loads, and less predictable loads. Live variable analysis
(LVA) is then used to direct the coloring of load-store dependences
chosen to receive tags for the LoadMark Tag architecture. This al-
lows efficient and non-destructive sharing of tags. This information
can then be conveyed to the load marking architecture through the
mechanisms described in section 3.

The flow graph that is created to perform this analysis is a
global inter-procedural control flow graph of the program based on
the execution profile. To make this graph manageable in perform-
ing the analysis we apply frequency heuristics described below to
partition the graph into highly coupled regions. Therefore, we find
store/load relationships and perform the tag allocation across pro-
cedure boundaries.

5.1 Rename Candidate Pruning Heuristics

We use a number of heuristics to reduce the number of candidates
for memory renaming, and apply them in the following order:

1. Low Frequency

This heuristic removes infrequently traversed edges from the
flow graph. Basic blocks which then have no successors or
predecessors are removed from the flow graph.

2. Reach

The reach heuristic then removes load/store dependencies
that have become partitioned by the low frequency heuris-
tic. Stores which cannot reach a load are removed from the
load table entry for that particular load.

3. Rename Predict

The predict heuristic filters out loads with poor memory re-
name predictability. The prediction metric is calculated as-
suming all the store relationships found in the profiling phase
for that load were given the same tag. If the predictability is
above a predict threshold (currently 80%), then the load will
be marked as a potential tagged load, and it will be passed to
the merge heuristic. The predictability of the load is based
on the rename prediction metric for a load, as described in
section A.1.

4. Merge

The merge heuristic combines common store dependencies
for a particular load under a single tag. This is useful in cases
where a load is dependent on multiple stores along different
paths of execution. By using the previous Rename Predict
heuristic to determine taggable loads, we avoid cases where
loop carried dependencies or stores along the same path of
execution can make merging unattractive. For the programs
we examined, a simple blind merge heuristic performed well,
where all remaining store relationships for a load are given
the same tag.

5. Classify

The classify heuristic determines the prediction mechanism
to be used for each load, if there were infinite tags available.
Classify marks each store as rename or normal, and each
load as described in section 3: rename, value predict, non-
speculative.

At this point in the algorithm, no further compiler analysis is
needed for the LoadMark Hint architecture. The steps to classify
stores and loads described above, results in a classification to help
guide which load and store instructions should use memory renam-
ing and which load instructions should use value prediction.

For the LoadMark MRT architecture, additional compiler anal-
ysis is needed to allocate the MRT tags in the store and load instruc-
tions. The remainder of this section describes this tag allocation
algorithm.

5.2 Allocation of Memory Renaming Tags

The memory tag corresponds to an entry in the value table, used
to communicate the value between the related store/load pair. The
allocation of memory tags consists of (1) identifying the live paths
for store/load relationships, (2) coloring these relationships so that
store/load pairs that are live at the same time are given different
MRT tags, and (3) allocating tag numbers in such a way as to avoid
conflicts with loads which are using the same value table entry for
value prediction.

5.2.1 Live Range Analysis

In an effort to reduce the number of tags needed for a particular
program, we run a version of live analysis to determine the live
range for a tag from a particular store to its dependent loads.

We define the start of the live range in terms of marked store
instructions. A store is a def of a particular store instruction, and
a dependent load is a use of that store. The algorithm used to cal-
culate the live range is different than normal live variable analysis,
because the store (def) is not necessarily on all predecessor paths
of the load. Using normal live analysis, the liveness of the store
would tend to propagate all the way up the flow graph when every
path containing a use (load) did not also contain a corresponding
def (store). Therefore, we perform a depth first search from a store
to each load that depends upon it instead, marking all basic blocks
along every possible path from store to load as live for that store.

We also include in the live range the reachability of load/load
relationships, marking all paths from the load back to itself. The
load/load relationships identifying all the paths the MRT tag would
need to be unique to allow the load to still benefit from last value
prediction. A load may have a store dependency on one path to
the load in a loop, but not on another path. In this situation the
load will use the predicted value from the store part of the time,
and last value prediction (from the load’s previous value) the rest
of the time. We need to include the load/load path in the live range
for the load in order to make sure that the load’s value table entry
(specified by the tag) is not overwritten by a value from another
instruction on the load/load reachability path.

The union of the store/load and the load/load resulting live sets
forms the live range for a tagged store and load.

Before allocating the tag, we further reduce the candidate set
by removing loads which do not make significant gains using MRT
tags over value prediction. This makes tag allocation more efficient
and reduces the number of necessary tags. After tag allocation, any
loads that were classified for renaming but not given a tag, are then
rechecked to see if they could be accurately classified for value
prediction.
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Profile Data Set Simulation Data Set % Load
Dynamic # instr Base # instr Dynamic # instr Static lds Overlap

Program Input Exe M % ld % st Input IPC fastfwd M Exe M % ld % st total # % exec Stat Dyn
compress short 9 28.5 11.6 ref 1.1812 10 93 26.3 9.4 3058 18.7 17.0 99.6
gcc 1stmt 337 24.0 10.6 1cp-decl 1.5965 500 1041 23.7 10.3 69691 42.1 39.4 100.0
go 2stone9 546 28.0 7.7 5stone21 1.8543 500 32699 27.5 7.4 17669 76.4 67.7 100.0
li puzzle 28243 22.9 12.3 ref 2.5794 500 18089 28.2 14.7 7266 28.3 23.6 99.6
perl jumble 2883 21.9 13.5 scrabbl 2.4251 200 28243 24.4 14.3 20048 21.9 19.4 95.1
hydro2d train 4447 24.0 7.9 ref 1.1151 500 42785 24.1 7.9 25255 16.6 16.5 100.0
su2cor train 10744 20.5 9.1 ref 2.6399 500 33928 20.5 9.1 25626 18.1 18.1 100.0
tomcatv train 4729 27.7 8.4 ref 2.7850 500 27832 27.9 8.4 23206 10.7 10.6 100.0

Table 1: Data sets used in gathering results for each program.

5.2.2 Coloring

Once live ranges have been calculated, loads are assigned colors
that will correspond to virtual tags. Later, virtual tags will be
mapped to physical tags. Our current design assumes that there
are as many virtual tags as there are physical tags. The use of vir-
tual tags allows us to defer the assignment of loads to particular
value file locations. When a load is colored, other loads which are
not live at the same time as the colored load and which do not have
overlapping live ranges can be assigned the same color. Since it
is possible that there are more loads than tags, loads are assigned
colors in priority order, based on the number of correct predictions
tag-based prediction would provide over the number of correct pre-
dictions that ordinary last value prediction would provide.

Once as many loads have been colored as the number of tags
permits, the remaining loads are re-classified for value prediction if
applicable.

5.2.3 Tag Allocation

Since tagged loads and ordinary value-predict loads will share a
portion of the common value file, it is important to prevent as
many collisions between loads as possible. We can estimate the
frequency of use for each table entry based on our profiles of load
activity. We then assign the virtual rename tags that are used the
most, based on execution counts, to the physical tags which corre-
spond to the value file entries least-used by value prediction.

6 Evaluation Methodology

To perform our evaluation, we collected information for some of
the SPEC95 benchmarks. The programs were compiled on a DEC
Alpha AXP-21164 processor using the DEC C and FORTRAN
compilers. We compiled the SPEC benchmark suite under OSF/1
V4.0 operating system using full compiler optimization (-O4 -ifo).

Table 1 shows the two data sets we used in gathering results for
each program, the number of instructions executed in millions (Exe
M), and percent of executed instructions that were loads (%ld) and
stores (%st). For the simulation data set we also show the base IPC
obtainable for each benchmark without any value speculation, the
number of instructions in each benchmark that we fast forwarded
past before beginning simulation, the number of static store instruc-
tions, and the percentage of these that were executed. The final two
columns show the percent of static and dynamic overlap for load
instructions between the two input sets. The profiling data set is
used to generate the load marking hints and tags. We then use
the simulation data set to simulate the programs when gathering
the statistical performance results. The Base IPC is smaller than in
some prior studies, since we are modeling longer memory latencies
(120 cycles to retrieve data from main memory).

We used ATOM [19] to instrument the programs and gather the
rename and value profiles. During profiling, we collected data on
temporal ordering of dependencies, the size of the MRT candidate

Fetch Interface delivers two basic blocks per cycle, but no more
than 8 instructions total

Instruction Cache
32k 2-way set-associative, 32 byte blocks, 12 cycle
miss latency

Branch Predictor
hybrid - 8-bit gshare w/ 16k predictors [12] + 16k
bimodal predictors
8 cycle mis-prediction penalty (minimum)

Out-of-Order Issue
out-of-order issue of up to 16 operations per cycle,
128 entry re-order buffer, 32 entry

Mechanism load/store queue, loads may execute when all prior
store addresses are known

Architecture Registers 32 integer, 32 floating point

Functional Units
8-integer ALU, 4-load/store units, 2-FP adders, 2-
integer MULT/DIV, 2-FP MULT/DIV

Functional Unit Latency
integer ALU-1/1, load/store-2/1, integer MULT-3/1,
integer DIV-12/12, FP adder-2/1

(total/issue) FP MULT-4/1, FP DIV-12/12

Data Cache
32k 2-way set-associative, write-back, write-
allocate, 32 byte blocks, 12 cycle miss latency
four-ported, non-blocking interface, supporting one
outstanding miss per physical register
512k 4-way set-associative, unified L2 cache, 64
byte blocks, 120 cycle miss

Virtual Memory
4K byte pages, 30 cycle fixed TLB miss latency af-
ter earlier-issued instructions complete

Table 2: Baseline Simulation Model.

set, the average number of stores upon which a load depends, and
other useful metrics.

The simulators used in this study are derived from the Sim-
pleScalar/AXP tool set [1], a suite of functional and timing simula-
tion tools for the Alpha AXP ISA. Simulation is execution-driven,
including execution down any speculative path until the detection
of a fault, TLB miss, or branch mis-prediction. The baseline micro-
architecture model is detailed in Table 2. The minimum mispredic-
tion penalty is 8 cycles for branches, and 8 cycles for value predic-
tion and rename prediction when using squash (re-fetch) recovery.
The penalty can be longer, based on the latency of a predicted in-
struction making its way through the pipeline.

Our baseline simulation configuration models a future gener-
ation micro-architecture. We’ve selected the parameters to cap-
ture two underlying trends in micro-architecture design. First, the
model has an aggressive fetch stage, employing a variant of the col-
lapsing buffer[5]. The fetch unit can deliver two basic blocks from
the I-cache per fetch cycle, up to 8 instructions. If future genera-
tion micro-architectures wish to exploit more ILP, they will have to
employ aggressive fetch designs like this or one that is comparable,
such as the trace cache[17]. Second, we’ve given the processor a
large window of execution, by modeling large reorder buffers and
load/store queues. Large windows of execution expose the ILP nec-
essary to reach future generation performance targets; and at the
same time they expose more store/load communication and thus
benefit more from more precise load/store scheduling. To compen-
sate for the added complexity of disambiguating loads and stores in
a large execution window, we increased the store forward latency
such that the scheduler requires two cycles to react to any new store
address.
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We investigated the use of both large and small hardware con-
figurations in our simulation of the memory renaming experiments
from [20]. The larger configuration consists of a 1024-entry, 4-
way set associative Store/Load cache and a 1024-entry Value File
with LRU replacement. To detect initial dependence edge bind-
ings, we use a 1024-entry 4-way associative Store Address Cache.
The smaller configuration uses a 256-entry 4-way set associative
Store/Load Cache, a 256-entry Value File, and a 256-entry 4-way
Store Address Cache.

The original renaming architecture had a 2-bit saturating con-
fidence counter [9] associated with each Store/Load cache entry.
As shown in [4], the confidence associated with a prediction is
a critical component to achieving performance with value specu-
lation. After experimenting with a variety of confidence levels,
we settled on using a 4-bit confidence counter for squash recov-
ery, and no confidence mechanism for re-execution recovery. Since
re-execution has a very low mispeculation penalty, it can be advan-
tageous to use all possible predictions. 1-bit confidence provided
only slightly better results than no confidence for re-execution re-
covery, and 2-bit confidence performed worse. Squash recovery
has a high misprediction penalty and therefore it is necessary to
use high confidence to eliminate as many mispredictions as possi-
ble. Our 4-bit counter requires a threshold value of 14 to recom-
mend prediction, is decremented by 7 on a misprediction, and is
incremented by 1 on a correct prediction.

7 Performance Results

This section presents simulation results for guiding memory re-
naming using load marking. We show that software marking of
loads and stores can help increase the performance of hardware-
based memory renaming and that using explicit tags can perform
as well as the hardware-based approach, providing memory renam-
ing without the extra hardware for tracking the dependencies. All
these results used the profile input to generate the LoadMark hints
and tags, and the simulation input to perform the simulations.

7.1 Memory Renaming

We now examine the performance of the two architectures that use
the load marking information, and compare our results to the orig-
inal memory renaming architecture using selective prediction de-
scribed in section 3.3.

The first architecture (LoadMark Hints) modifies the original
memory renaming architecture to use LoadMark hints to indicate
which stores and loads should use memory renaming, and which
loads should use last value prediction. Only stores that are marked
for renaming are put into the store cache. Only loads that are
marked for renaming search the store cache for a dependency. If a
dependency is found, it is recorded in the store/load table described
in [20], so that both the store and load will use the same value table
entry. Loads that are marked as last value prediction use the value
table for last value prediction indexed by the load’s PC.

The second architecture (LoadMark MRT) uses MRT tags to
communicate directly to the hardware which value table entry to
use for memory renaming. We use 3-bit tags to communicate the
entry, using the tag allocation described in section 5. This allows 8
entries in the value table to be used for communication. This Load-
Mark MRT architecture only requires the Value File table and a
confidence table for prediction. It does not require the Store Cache
or Store/Load Cache, like the original memory renaming architec-
ture.

Figures 3 and 4 show the performance for squash miss recovery
for Value Files with 1024 and 256 entries respectively. We show the
IPC speedup over the baseline architecture for the original memory
renaming architecture using selective prediction, the load marking
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Figure 3: Percent speedup over baseline architecture for squash
recovery with 1024 entry prediction tables.
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Figure 4: Percent speedup over baseline architecture for squash
recovery with 256 entry prediction tables.
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Figure 5: Percent speedup over baseline architecture for reexecu-
tion recovery with 1024 entry prediction tables.

hints architecture (LM Hints), and the load marking MRT architec-
ture with hardware confidence prediction (LM MRT). The results
for the 1024 entry Value File show that while the hardware renam-
ing scheme provides a 4% speedup in performance, the load mark-
ing hints and MRT architectures can provide speedups around 6%
by filtering out highly predictable loads and stores. This result is
even more dramatic in tomcatv and su2cor. When the size of
the Value File is reduced to 256 entries, rename performance drops
to around 1% speedup, while the LM MRT architecture provides
a 5% speedup, despite the smaller table size. This is an important
result, since the prior work showed little to no improvement for
renaming with squash recovery.

Figures 5 and 6 show the performance of re-execution when us-
ing 1024 and 256 entry prediction tables as described in section 6.
In addition to showing the speedup over the baseline architecture of
the rename, LM Hints, LM MRT architectures, we also show what
speedups could be achieved with these architectures with perfect
confidence prediction for the 256 entry results in figure 6. Perfect
confidence prediction eliminates mispredictions by always using a
predicted value if it is correct. This will give some measure of the
absolute benefit of each technique. Despite the low misprediction
penalty of re-execution recovery, the results show that load mark-
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Figure 6: Percent speedup over baseline architecture for reexecution recovery with 256 entry prediction tables.

Rename LoadMark Hints MRT
Programs % lds % MR % lds % MR % lds % MR
compress 39.1 0.0 45.5 0.0 63.8 1.4
gcc 9.7 2.4 13.7 2.2 16.1 1.6
go 5.6 3.6 5.9 2.2 6.5 2.6
li 21.1 1.2 23.2 0.8 26.1 0.7
perl 32.5 1.7 25.1 1.7 24.8 1.7
hydro2d 57.6 0.3 57.9 0.2 64.3 0.4
su2cor 45.7 0.6 53.9 0.5 52.9 0.5
tomcatv 33.3 0.4 45.3 0.5 37.7 0.6
average 30.6 1.3 33.8 1.0 36.5 1.2

Table 3: Rename Prediction Accuracy for 1024 entry table with
squash recovery.

Rename LoadMark Hints MRT
Programs % lds % MR % lds % MR % lds % MR

compress 30.7 1.7 41.1 1.1 63.8 1.4
gcc 3.9 3.9 7.6 4.3 9.5 3.0
go 2.0 5.1 3.0 3.3 4.5 3.9
li 16.1 2.7 22.3 1.1 24.5 0.8
perl 1.6 7.2 11.8 2.2 17.3 3.2
hydro2d 57.6 0.3 57.9 0.2 64.3 0.4
su2cor 9.9 3.4 19.7 1.8 33.3 0.0
tomcatv 4.4 0.0 10.4 1.1 24.9 0.5
average 15.8 3.0 21.7 1.9 30.3 1.6

Table 4: Rename Prediction Accuracy for 256 entry table with
squash recovery.

ing still provides improvement over the original memory renaming
architecture.

Tables 3 and 4 show the statistical effects of using load mark-
ing. They show the percent of time an instruction used a predicted
value from a load for each architecture and the corresponding mis-
prediction rate. For the 1024 entry table, we see that adding load
marking hints to the renaming architecture provides an increase in
the percent of instructions using predictions from 30.6% to 33.8%
on average and decrease the miss rate from 1.3% to 1.0% on av-
erage. The use of MRT tags increases the number of predictions
used to 36.5%, and reduces the miss rate down to 1.2% on average.
Again, this effect is even more dramatic in the 256 entry Value File.

Load Marking provides several benefits to the original renam-
ing architecture:

� The LoadMark hints increases the performance of the origi-
nal renaming architecture by filtering out stores which should
not be put into the Store Address Cache. In addition, filtering
out loads that do not benefit from renaming or value predic-
tion will reduce the contention for the hardware predictor and

increase prediction accuracy. This reduction can be signifi-
cant, since only a small fraction of the total number of static
stores and loads can benefit from renaming.

� The analysis can provide improved prediction accuracy by
finding loads that are more predictable using last value pre-
diction than renaming. We found several loads that fit into
this category, even though they had aliased stores in the pro-
file.

� The compiler can analyze how a load interacts with all the
stores it may be dependent on, and intelligently choose only
a portion of them for memory renaming. For example, we
found on average that 20% of the loads are dependent upon
more than 4 stores, but not all of these stores may provide
accurate prediction using memory renaming.

� Since the LoadMark MRT architecture provides explicit tags
for stores and loads to communicate, a load will benefit from
renaming without having to wait for the hardware to discover
the store/load relationship. This is very important for small
tables, which will have a lot of replacements due to capacity
misses.

7.2 Discussion

Using MRT tags with the load marking architecture in itself is not
a complete solution for memory renaming. Hardware techniques
are still needed, especially because of pre-compiled library routines
and system calls which all programs use. Even so, LoadMarking
could be used in concert with hardware renaming to improve the
prediction accuracy by providing stream-lined communication via
the MRT tag registers.

Using LoadMark hints to filter stores and loads has been shown
to provide improved performance. Library routines and system
calls do not pose a problem for using such hints. The saving and
restoring of registers across system calls are good candidates for
dynamic hardware renaming. A compiler that used LoadMark hints
could easily take this into consideration by not filtering out stores
and loads in the vicinity of calls to external routines.

8 Conclusions

As execution windows continue to grow in an effort to expose more
instruction level parallelism, it becomes imperative to accurately
identify store/load communication in order to exploit that paral-
lelism. To this end, a great deal of research has been invested in de-
vising means to disambiguate stores and loads, predict their values,
or improve their communication. In this paper, we motivate and de-
scribe the Load Marking architecture; an approach that effectively
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classifies previous load speculation techniques. Our approach ex-
tends the instruction set to classify loads according to which predic-
tion technique works best. By classifying loads, the Load Marking
architecture is capable of choosing the best available predictor for
each load. This flexibility provides accurate memory communica-
tion and value prediction.

This paper described and evaluated a design of the Load Mark-
ing architecture using detailed microarchitecture timing simulation.
For a reasonably sized Value File, we found that an average of 34%
of the dynamically executed instructions in our simulations used
values produced by loads using LoadMark hints, with an overall
prediction accuracy of 99%. Load Marking MRT allowed 37% of
the dynamically executed instructions to consume predictions on
average, with an overall prediction accuracy of nearly 99%. Since
different inputs were used to guide the marking and to gather the re-
sults, this shows that the classification of loads was very predictable
even between different inputs sets.

Simulation results yielded 6% speedups on average for using
LM hints for squash recovery. These results are important since
prior memory renaming studies showed little to no improvement
for squash (re-fetch) recovery, which is much simpler and more
feasible to implement than reexecution recovery. In addition, the
LoadMark hints require only 3 new opcodes to provide the ISA
hints. The LoadMark MRT architecture with tags was able to also
provide a 6.1% speedup on average for squash recovery, with sig-
nificant hardware savings.

The Load Marking architecture showed large speedups for a
few programs – 13% for tomcatv and 12% for su2cor, both for
squash recovery. When using smaller table sizes, the Load Marking
architecture was still able to provide good speedups for both squash
and re-execute recovery. Original rename prediction suffered from
the smaller table sizes and provided significantly less speedup than
with the 1024-entry table, especially for squash recovery.

The focus of this paper was profile-based classification of loads
and identification of load-store relationships. In the absence of pro-
file information, this information must be gained through loop car-
ried and alias data dependence compiler analysis. In future work
we will explore how well the compiler can classify loads and stores
using only static analysis.
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A Pro�ling Details

This Appendix provides the description of the profiler we used to
find the store/load relationships that the memory renaming archi-
tecture can take advantage of and accurately predict. Figure 7
shows the steps taken when profiling a store instruction. Each
static store instruction is assigned a unique ID during instrumen-
tation. When a store instruction is executed, its unique ID is used
to access the corresponding store entry in the store array. The store
entry structure has hash pointers so that the store entry can be in-
serted into and quickly found in a hash table, which is hashed by
the current address of the store. The address, value, and current
time stamp of the store are updated as shown in the figure. For
each store, we only keep track of the last address seen by the store.
If the current address of the store is different than its last address,
the current address of the store is looked up in the hash table to find
the Last Store that Referenced that Address (LSRA). The LSRA
store’s address is then invalidated, since we allow a given address
(memory location) to be owned by at most one store a time.

Figure 8 shows the code sample used to profile load instruc-
tions. When a load is executed, its unique ID is used to access the
corresponding load entry in the load array. The first part of the rou-
tine updates the prediction statistics described in section A.1. The
rest of the profile routine updates the store/load relationship list,
and updates the fields for last value, last address, time stamp, and
number of times the load was executed. In order to update the rela-
tionship list, the address of the load is looked up in the store hash
table to find a prior store with the same address. If a store/load re-
lationship is found, then the corresponding store is recorded in the
store list for the load unless this same load has been executed more
recently than the store.

The store/load list finds all load/store dependencies, but it does
not provide a complete picture of the effectiveness of renaming for
a load. The renaming architecture described in section 3 will for-
ward or predict the value of the last instruction to update the value
table entry. When a load is encountered during profiling and finds
a store relationship, the load-store dependence would be renamed
correctly only if the store were the last instruction to update the
value table entry. But another store sharing the same tag, or even
this same load could have written to the value table more recently.
To get an accurate picture on how effective renaming would be for
a load we gather the Renamed Prediction metric, which models the
prediction the load would see with the renaming and value predic-
tion hardware.

A.1 Value Prediction and Rename Prediction Metrics

As seen in Figure 8, we record two value prediction metrics when
profiling load instructions. The first metric is last value prediction,
which predicts for a load the value of the load the last time it was
executed. This is called the load LVP.

The other metric, called Rename Prediction (RP), provides the
prediction accuracy of the load if it were to use renaming (in an
infinite value table). This models the prediction that the hardware
would provide if a single MRT tag was used for all stores in a load’s
store list. The RP accuracy of the load is determined by examining
how many times the load’s current value matched the value of the
most recent store (MRS) alias executed, because the MRS would
have potentially updated the value table entry last. If the load was
more recently executed than the MRS, the correct rename predic-
tion for a load would instead occur if the load’s last value matched
the current value of the load, because the prior load would have
more recently updated the value table entry with its last value. The
code to count the number of correct rename predictions is shown in
Figure 8.

/* SE (store entry) is the current store’s data structure */

/* LSRA is the last store instruction that referenced addr */

void profile store (uniqueID, addr, value) f
SE = store array[uniqueID];

if (SE–>last addr ! = addr) f
/* Invalidate the address of store that last accessed addr */
LSRA = store lookup hashtable by addr(addr);
if (LSRA ! = NULL)

LSRA–>invalidate address and hash pointers();

SE–>last addr = addr;
SE–>update address hash pointers();
g

/* Update store stats */
SE–>last value = value;
SE–>time stamp = ++time;

g

Figure 7: Profile Code for Store Instructions

/* LE (load entry) is the data structure for current load */

/* MRS (most recent store) is the most recently executed store
in the load’s store list according to the time stamp */

/* SE (store entry) is the store that last referenced the address
addr, if one exists. */

void profile load (uniqueID, addr, value) f
LE = load array[uniqueID];

/* Update Last Value Prediction metric */
if (LE–>last value == value)
LE–>num cor LVP ++;

/* Update Rename Prediction metric */
MRS = LE–>find most recent store();
if (MRS ! = NULL)
if (LE–>time stamp >MRS–>time stamp) f

/* Load would have last updated the value table entry */
if (LE–>last value == value)
num cor rename pred ++;

g else f
/* MRS would have last updated the value table entry */
if (MRS–>last value == value)
num cor rename pred ++;

g

/* Insert store/load relationship into store list for load */
SE = store lookup hashtable by addr(addr);
if ((SE ! = NULL) && (SE–>time stamp > LE–>time stamp))
LE–>update store relationship list(SE);

/* Update load stats */
LE–>last addr = addr;
LE–>last value = value;
LE–>time stamp = ++time;
LE–>num times exe ++;
g

Figure 8: Profile Code for Load Instructions.
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