
0018-9162/02/$17.00 © 2002 IEEE February 2002 59

C O V E R F E A T U R E

SimpleScalar:
An Infrastructure
for Computer
System Modeling

T
o accelerate hardware development,
designers often employ software models of
the hardware they build. They implement
these models in traditional programming
languages or hardware description lan-

guages, then exercise them with the appropriate
workload. Designers can execute programs on
these models to validate the performance and cor-
rectness of a proposed hardware design.

Programmers can use software models to develop
and test software before the real hardware becomes
available. Although software models are slower than
their hardware counterparts, programmers can build
and test them in minutes or hours rather than in the
months needed to build real hardware. This fast
mechanism for design and test provides shorter time
to market and much higher quality first silicon.

Three critical requirements drive the implemen-
tation of a software model: performance, flexibility,
and detail. Performance determines the amount of
workload the model can exercise given the machine
resources available for simulation. Flexibility indi-
cates how well the model is structured to simplify
modification, permitting design variants or even
completely different designs to be modeled with
ease. Detail defines the level of abstraction used to
implement the model’s components. A highly
detailed model will faithfully simulate all aspects of
machine operation, whether or not a particular
aspect is important to any metric being measured.

In practice, optimizing all three model charac-
teristics in tandem is difficult. Thus, most model
implementations optimize only one or two of them,
which explains why so many software models exist,
even for a single product design. Research models
tend to optimize performance and flexibility at the
expense of detail.

The SimpleScalar toolset provides an infrastruc-
ture for simulation and architectural modeling. The
toolset can model a variety of platforms ranging
from simple unpipelined processors to detailed
dynamically scheduled microarchitectures with
multiple-level memory hierarchies. For users with
more individual needs, SimpleScalar offers a docu-
mented and well-structured design, which simpli-
fies extending the toolset to accomplish most
architectural modeling tasks.

SimpleScalar simulators reproduce computing
device operations by executing all program instruc-
tions using an interpreter. The toolset’s instruction
interpreters support several popular instruction sets,
including Alpha, Power PC, x86, and ARM.

MODELING BASICS
The typical approach to computer system mod-

eling leverages a simple approximate model with
good simulation performance and a modular code
structure. This simulator style suits researchers and
instructors well because the simple model focuses
on the design’s primary components, leaving out

Developed to provide an infrastructure for simulation and architectural
modeling, the SimpleScalar toolset offers an open source distribution
especially suited to the needs of researchers and instructors.

Todd Austin
Eric Larson
Dan Ernst
University of
Michigan

60 Computer

the minutiae of detail that might otherwise hinder
the model’s performance and flexibility. Industrial
users, on the other hand, require very detailed mod-
els to minimize design risk. Detailed modeling
assures that a design has no faulty components or
acute performance bottlenecks.

The additional detail necessary to implement
these models usually comes at the expense of model
performance. In industrial applications, individual
model performance often takes a backseat because
companies have the resources available to stock
large simulation server pools. Hardware simulation
tends to be a throughput-bound task: Designers
want to simulate multiple design configurations run-
ning several benchmarks. Adding more machines
to the simulation pool decreases the overall runtime
to the maximum runtime of any single experiment.
For example, Intel’s Pentium 4 design team used a
simulation pool that contained more than 1,000
workstations.1

In some cases, designers optimize a model for
performance and detail at the expense of flexibility.
Designers typically employ these models when they
need to faithfully represent a device at speeds capa-
ble of executing large workloads, but don’t need to
change the model.

Software performance analysis is an example of
this type of application. Software developers need
accurate depictions of program performance, but
rarely require changes to the model because they
are only concerned with program performance for
a particular processor.

The FastSIM simulator2 microarchitecture uses
memoization to record internal simulator states and
the actions taken—such as statistical variable
update—upon entering those states. This permits
microarchitectural models of arbitrarily high detail
to quickly process instructions. However, the imple-
mentation sacrifices significant flexibility because

the approach requires all microarchitecture com-
ponents to provide internal-state hashing mecha-
nisms and recording of per-cycle actions.

MODELING WITH SIMPLESCALAR
SimpleScalar was written in 1992 as part of the

Multiscalar project at the University of Wisconsin,
under Gurindar Sohi’s direction. In 1995, with
Doug Burger’s assistance, the toolset was released
as an open source distribution freely available to
academic noncommercial users. SimpleScalar LLC
now maintains the tool, which is distributed
through SimpleScalar’s Web site at http://www.
simplescalar.com.

Since its release, SimpleScalar has become pop-
ular with researchers and instructors in the com-
puter architecture research community. For
example, in 2000 more than one-third of all papers
published in top computer architecture conferences
used the SimpleScalar tools to evaluate their
designs. SimpleScalar provides an infrastructure
for computer system modeling that simplifies
implementing hardware models capable of simu-
lating complete applications. During simulation,
model instrumentation measures the dynamic char-
acteristics of the hardware model and the perfor-
mance of the software running on it.

Figure 1 shows a typical SimpleScalar user ses-
sion, with the persistence-of-vision raytracer (POV-
ray) graphics application running on a detailed
Alpha processor microarchitecture model. The sim-
ulated graphical display in the screen’s upper-left
corner shows the program I/O. The simulator con-
sole window in the screen’s upper-right corner dis-
plays simulator-generated messages plus stdout/
stderr, the simulated program’s standard output.
At the bottom of the screen, the graphical pipeline
view window provides a graphical representation
of the simulated program’s execution on the
detailed microarchitecture model.

GPV shows the execution of instructions from
fetch until retirement, displaying each instruction’s
state throughout the pipeline. In the example, the
blue lines in the display represent long-latency I-
cache misses. GPV forms part of SimpleScalar’s visu-
alization infrastructure and provides a useful tool
for identifying hardware and software bottlenecks.3

SimpleScalar includes several sample models suit-
able for a variety of common architectural analy-
sis tasks. Table 1 lists the simulator models included
with SimpleScalar version 3.0. The simulators
range from sim-safe, a minimal SimpleScalar sim-
ulator that emulates only the instruction set, to sim-
outorder, a detailed microarchitectural model with

Figure 1. Sample
SimpleScalar user
session. (a) The
console window dis-
plays simulator-gen-
erated messages,
(b) the graphical
pipeline viewer
provides a represen-
tation of the simu-
lated program’s
execution, and
(c) the simulated
graphical display
shows program
output.

(a)

(c)

(b)

February 2002 61

dynamic scheduling, aggressive speculative execu-
tion, and a multilevel memory system.

All the simulators have fairly small code sizes
because they leverage SimpleScalar’s infrastructure
components, which provide a broad collection of
routines to implement many common modeling
tasks. These tasks include instruction-set simula-
tion, I/O emulation, discrete-event management,
and modeling of common microarchitectural com-
ponents such as branch predictors, instruction
queues, and caches. In general, the more detailed a
model becomes, the larger its code size and the
slower it runs due to increased processing for each
instruction simulated.

Figure 2 shows the SimpleScalar hardware
model’s software architecture. Applications run on
the model using a technique called execution-dri-
ven simulation, which requires the inclusion of an
instruction-set emulator and an I/O emulation mod-
ule. The instruction-set emulator interprets each
instruction, directing the hardware model’s activities
through callback interfaces the interpreter provides.

SimpleScalar includes instruction interpreters for
the ARM, x86, PPC, and Alpha instruction sets.
The interpreters are written in a target definition
language that provides a comprehensive mecha-
nism for describing how instructions modify regis-
ters and memory state. A preprocessor uses these
machine definitions to synthesize the interpreters,
dependence analyzers, and microcode generators
that SimpleScalar models need. With a small
amount of extra effort, models can support multi-
ple target instruction sets by implementing the full
range of callback interfaces the target definition
language defines.

The I/O emulation module provides simulated
programs with access to external input and output
facilities. SimpleScalar supports several I/O emula-
tion modules, ranging from system-call emulation
to full-system simulation. For system-call emula-
tion, the system invokes the I/O module whenever
a program attempts to execute a system call in the
instruction set interpreter, such as a callpal
syscall instruction in the Alpha instruction set.
The system emulates the call by translating it to an
equivalent host operating-system call and directing
the simulator to execute the call on the simulated
program’s behalf. For example, if the simulated
program attempts to open a file, the I/O emulation
module translates the request to a call to open()
and returns the resulting file descriptor or error
number in the simulated program’s registers.

Other I/O targets provide finer-grain emulation
of actual hardware devices. For example, the

SimpleScalar/ARM release includes an I/O emulator
for Compaq IPaq hardware devices. This emulator
is detailed enough to boot the ARM Linux operat-
ing system. Device-level I/O emulation has the
added advantage of analyzing the operating system
portion of an application’s execution. This addi-
tional fidelity proves especially useful with server
applications, where networking and file system ser-
vices demand much of the workload’s runtime.

At the center of each model, the simulator core
code defines the hardware model organization and
instrumentation. Figure 3 lists the code for a hard-
ware timing model of a simple microarchitecture
in which all instructions execute in a single cycle
except for loads and stores. These instructions exe-
cute in two cycles if they hit in the data cache, or in
10 cycles if they miss.

The simulator core defines the simulator’s main
loop, which executes one iteration for each instruc-
tion of the program until finished. For a timing
model, the main loop must account for the pro-
gression of execution time, measured in clock cycles
for this model. The cycle variable stores the exe-
cution time, which counts the total number of clock
cycles required to execute the program up to the
current instruction. To determine the relative per-
formance of programs, the model compares the

Table 1. SimpleScalar baseline simulator models.

Simulator Description Lines Simulation
of code speed

sim-safe Simple functional simulator 320 6 MIPS
sim-fast Speed-optimized functional simulator 780 7 MIPS
sim-profile Dynamic program analyzer 1,300 4 MIPS
sim-bpred Branch predictor simulator 1,200 5 MIPS
sim-cache Multilevel cache memory simulator 1,400 4 MIPS
sim-fuzz Random instruction generator and tester 2,300 2 MIPS
sim-outorder Detailed microarchitectural timing model 3,900 0.3 MIPS

Program binary

Target ISA I/O interface

Stats

Dlite!

MemoryRegs

Simulator
core

Loader

B Pred

Resource

Cache

Host interface

Host platform

Target ISA emulator I/O emulator

User programs

Prog/Sim interface

Functional core

Performance core

Figure 2. Simple-
Scalar simulator
software architec-
ture. Applications
run on the simulator
using execution-
driven simulation,
which requires the
inclusion of an
instruction set
emulator and an I/O
emulation module.

62 Computer

total number of cycles to complete their execution.
The simulation model increments cycle once for
each instruction, once again for loads and stores,
and 10 more times for any access that missed in the
data cache.

The cache.c module supplied with the Simple-
Scalar distribution implements the data cache.
Figure 3 shows the relevant portion of the imple-
mentation. The cache module uses a hash table to
record the cache blocks it contains. If an access
address matches an entry in the hash table, the
access returns the hit latency. If an access address
does not match an entry in the hash table, the sys-
tem calls the cache miss handler, which returns the
number of clock cycles required to service the cache
miss. The model builder specifies the miss handler,
which may be another cache module or a DRAM
memory model. The cache module does not return
the value accessed in the cache because this value
has no effect on cache access latency. For designs in
which the cache contents affect access latency, such
as compressed cache designs, the system can con-
figure the cache module to store and return the value
accessed.

In addition to standard component models,
SimpleScalar provides a variety of helper modules
that implement useful facilities that many models
require. These modules include a debugger, pro-
gram loader, symbol table reader, command line
processor, and statistical package.

The sample code in Figure 3 uses the statistical
package to manage model instrumentation. The
stat_register() interface registers the simula-
tor instrumentation variables insn and cycle with
the statistical module. Once registered, the statis-
tical package tracks updates to statistical counters,
producing on request a detailed report of all model
instrumentation. The stat_formula() interface
allows derived instrumentation to be declared, cre-
ating a metric that is a function of other counters.
In Figure 3, instruction per cycle (IPC) denotes a
derived statistic equal to the number of instructions
executed divided by the total execution cycles.

Simulators interface to the host machine via the
host interface module, a thin layer of code that pro-
vides a canonical interface to all host machine data
types and operating system interfaces. Simulators
that use host interface types and operating system
services can be easily run on new hosts by simply
porting the host interface module. In Figure 3’s
sample code, counter_t and word_t are canon-
ical types, exported by the host interface, that
define the maximum-sized unsigned integer and 32-
bit signed integers, respectively.

EXECUTION-DRIVEN SIMULATION
All SimpleScalar models use an execution-driven

simulation technique that reproduces a device’s
internal operation. For computer system models,
this process requires reproducing the execution of
instructions on the simulated machine. A popular
alternative, trace-driven simulation, employs a
stream of prerecorded instructions to drive a hard-
ware timing model. This method uses a variety of
hardware- and software-based techniques—such
as hardware monitoring, binary instrumentation,
or trace synthesis—to collect instruction traces.

Advantages
Execution-driven simulation provides many pow-

erful advantages compared with trace-based tech-
niques. Foremost, the approach provides access to
all data produced and consumed during program
execution. These values are crucial to the study of
optimizations such as value prediction, compressed-
memory systems, and dynamic power analysis.

In dynamic power analysis, the simulation must
monitor the data values sent to all microarchitec-
tural components such as arithmetic logic units and
caches to gauge dynamic power requirements. The
hamming distance of consecutive data inputs
defines the degree to which input bits change,
which in turn causes transistor switching that con-
sumes dynamic power.

SIMULATOR CORE
counter_t insn;
counter_t cycle;

sim_main()
{
stat_register(“insn”, &insn, “total instructions”);
stat_register(“cycle”, &cycle, “total cycles”);
stat_formula(“IPC”, “insn/cycle”, “inst per cycle”);

while (!sim_done)
{
inst = sim_execute_insn();

insn++;
cycle++;
if (inst.flags & F_MEMOP)
cycle += cache_access(inst.addr)

}
}

CACHE COMPONENT
time_t cache_access(addr_t addr)
{
word_t index = cache_hash(addr)
if (tag[index] == addr)
{ /* hit */

cache_update_lru(index);
return 1;

}
else
{ /* miss */

cache_handle_miss(addr);
} return 9;

}

Figure 3. Sample
code for a hardware
timing model of a
simple microarchi-
tecture in which all
instructions execute
in a single cycle,
except for loads and
stores.

February 2002 63

Execution-driven simulation also permits greater
accuracy in the modeling of speculation, an aggres-
sive performance optimization that runs instruc-
tions before they are known to be required by
predicting vital program values such as branch
directions or load addresses. Speculative execution
proceeds at a higher throughput until the simula-
tion finds an incorrect prediction, which flushes the
processor pipeline and restarts it with correct pro-
gram values. Before this recovery occurs, however,
misspeculated code will compete for resources with
nonspeculative execution, potentially slowing the
program. Trace-driven techniques cannot model
misspeculated code execution because instruction
traces record only correct program execution.
Execution-driven approaches, on the other hand,
can faithfully reproduce the speculative computa-
tion and correctly model its impact on program per-
formance.

Drawbacks
Execution-driven simulation has two potential

drawbacks: increased model complexity and inher-
ent difficulties in reproducing experiments. Model
complexity increases because execution-driven
models require instruction and I/O emulators to
produce program computation, while trace-driven
simulators do not. SimpleScalar mitigates this addi-
tional complexity through the use of a target defin-
ition language and a set of internal tools that
synthesize the emulators that SimpleScalar models
require. The target definition provides a central
mechanism for specifying the complexities of
instruction execution, including operational seman-
tics, register and memory side effects, and instruc-
tion faulting semantics. The same facility makes it
straightforward for SimpleScalar models to support
multiple instruction sets.

Because execution-driven simulators interface
directly to input devices through I/O emulation,
reproducing experiments that depend on real-
world external events may be difficult. For exam-
ple, changes in response to network latency and
the contents of incoming requests affect a Web
server application running on an execution-driven
model. Trace-driven experiments do not experi-
ence these difficulties because instruction traces
record the effects of external inputs within the
instruction trace file. To overcome this repro-
ducibility problem, SimpleScalar provides an exter-
nal input tracing feature. Such traces record
external device inputs to a program during its live
execution. Replaying traced inputs to the simu-
lated program recreates the original execution.

Since these traces only contain external
inputs, they are small and can be easily
shared with other SimpleScalar users.

SYSTEM MODEL INFRASTRUCTURE
Our primary impetus for releasing Simple-

Scalar stemmed from our desire to reduce the
effort required to become a productive
researcher in the computer architecture
research community. By its very nature a quan-
titative engineering discipline, computer archi-
tecture modeling requires access to tools
capable of measuring program characteristics
and performance. In the past, no such tools
were widely available. Thus, much of the early work
in computer architecture could be performed only at
large universities and corporations where resources
were available to develop the necessary tools.
Building computer system modeling tools from
scratch requires a significant development effort that
consists mostly of writing mundane software com-
ponents such as loaders, debuggers, and interpreters.
Constructing these components requires great effort.
Making them reliable is even more difficult, taking
time that could be better spent on innovation.

Although SimpleScalar can be thought of as a
simulator collection, we view it as an infrastructure
for computer system modeling. The differences
between a tool and an infrastructure lie in the care
taken in designing the internal modules and inter-
faces. An infrastructure must organize these com-
ponents to permit their reuse over a wide range of
modeling tasks. Moreover, the module interfaces
must be expressive and well documented. Computer
architecture researchers can use SimpleScalar’s per-
formance-analysis infrastructure to evaluate com-
plex design optimizations by specifying them as
changes and comparing their relative impact on
baseline models.

Figure 2 shows the baseline modules that com-
prise SimpleScalar’s software architecture. These
modules export functions ranging from statistical
analysis, event handlers, and command-line pro-
cessing to implementations of modeling compo-
nents such as branch predictors, caches, and
instruction queues.

Open source and academia
Academic noncommercial users can download

and use SimpleScalar tools free of charge. In addi-
tion, researchers can use SimpleScalar source code
to build new tools and release them to other acad-
emic noncommercial users. The only restriction
regarding redistribution is that the code must

Computer
architecture

modeling requires
access to tools

capable of
measuring program

characteristics
and performance.

64 Computer

include the SimpleScalar academic noncommercial
use license.

An open source distribution model gives users
maximum flexibility in how they can modify and
share the infrastructure. If the interfaces exported
within the infrastructure prove insufficient for eas-
ily implementing a new model, users can extend the
sources as required to implement their ideas. If
these additions are generally useful, users can
choose to distribute these enhancements to others.
The Wattch model (http://citeseer.nj.nec.com/
brooks00wattch.html), a framework for analyzing
and optimizing microprocessor power dissipation,

provides an excellent example of this capability.
Wattch required significant changes to the baseline
models, including an infrastructure to model phys-
ical device characteristics such as area and energy.
The “Architecture-Level Power Modeling with
Wattch” sidebar describes these challenges and
their solutions in detail.

An open distribution model has potential draw-
backs, however. Once the source code becomes
available, the tool is likely to undergo a higher level
of inspection than typical for research software.
Given such scrutiny, it behooves researchers to
make available only their highest quality work.

Margaret Martonosi and David Brooks,
Princeton University

Vivek Tiwari, Intel

Power dissipation and thermal issues have
assumed increasing significance in modern-
processor design. As a result, making power
and performance tradeoffs more visible to
chip architects and even compiler writers has
become crucial. To support this work, many
researchers have begun developing tools to
estimate the energy consumption of archi-
tectures and system software.

Before the late 1990s, most power analy-
sis tools operated below the architecture or
microarchitecture levels and achieved high
accuracy by calculating power estimates
for designs only after developers completed
layout or floorplanning. In contrast, archi-
tecture-level power modeling seeks to pro-
vide reasonably accurate high-level power
estimates at useful simulation speeds much
earlier in the design process.

Tracking Data Activity
With these issues in mind, in 1998 we

began to develop Wattch, an architecture-
level power modeling framework.1 Wattch
performs power analysis by tracking, on a
per-cycle basis, the usage and data activity
of microarchitectural structures such as the
instruction window, caches, and register
files. We use the unit-level usage statistics
to scale appropriate power models that
correspond to these structures. These fully
parameterizable power models are based

on capacitance estimates of the major inter-
nal nodes within these structures.

Wattch can be used for several types of
architectural-level studies. Power-perfor-
mance design tradeoff studies can be per-
formed by simply varying microarchi-
tectural parameters such as issue width,
instruction window size, cache size, and
so on. Studying the power and perfor-
mance effect of additions to the microar-
chitecture can also be explored by model-
ing performance issues and instantiating
power models for the additional hard-
ware structures. Finally, compiler tech-
niques and software energy profiling
experiments can be performed.

Choosing an Infrastructure
When choosing a performance estima-

tion infrastructure on which to base
Wattch, we could choose to modify one
of a handful of existing infrastructures or
write our own. In the end, we found the
SimpleScalar toolset attractive because of
its parameterizable microarchitecture,
wide user support, and well-established
code base.

On the other hand, using SimpleScalar
out of the box for power modeling pre-
sented some downsides. For example, the
Register Update Unit structure is not rep-
resentative of most modern microarchi-
tectures. We based Wattch on the original
RUU version of SimpleScalar so that its
differences from the original code base
would be minimized. Fortunately, users

can fairly easily modify SimpleScalar or
Wattch’s microarchitecture to look more
appropriate.

Wattch was one of the first attempts to
demonstrate that power analysis can be
performed at the architectural level with
reasonable accuracy and speed. It has also
provided our group and others with a
useful measurement platform for doing
power-aware research studies. Perhaps
most importantly, Wattch and its first-
generation counterpart tools from Penn
State2 and Intel3 may serve as first steps
toward future power-and-performance
estimation tools with even better trade-
offs between accuracy and performance.

References
1. D. Brooks, V. Tiwari, and M. Martonosi,

“Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,”
Proc. 27th Ann. Int’l Symp. Computer
Architecture, IEEE CS Press, Los Alami-
tos, Calif., 2000, pp. 83-94.

2. N. Vijaykrishnan et al., “Energy-Driven
Integrated Hardware-Software Optimiza-
tions Using SimplePower,” Proc. 27th Ann.
Int’l Symp. Computer Architecture, IEEE
CS Press, Los Alamitos, Calif., 2000, pp.
95-106.

3. G. Cai and C.H. Lim, “Architectural-Level
Power/Performance Optimization and
Dynamic Power Estimation,” Cool Chips
Tutorial in Proc. MICRO32, http://huron.
cs.ucdavis.edu/Micro32/presentations/cool
_chips.pdf, 1999.

Architecture-Level Power Modeling with Wattch

February 2002 65

Many researchers have studied the internals of
the SimpleScalar code, including Doug Burger and
colleagues, who compared SimpleScalar’s sim-out-
order model to a validated Alpha 21264 microar-
chitecture model.4 Although this study showed that
SimpleScalar successfully predicted the perfor-
mance trends of programs running on the modeled
hardware, it also uncovered several inaccuracies in
the sim-outorder model that required code updates.

An open source distribution makes it more diffi-
cult to commercialize the effort later, because hav-
ing access to the source makes it easier for potential
customers to use the technology without a license
or to recreate a similar product based on the open
source.

Proactive user support
SimpleScalar’s user base currently includes

approximately 500 researchers and about twice as
many students. The support load manifests in two
forms: direct support for user questions and code
maintenance.

Direct user support creates by far the largest
demand. SimpleScalar’s primary developers answer
about 10 e-mail messages per week, with many
more arriving just before popular conference dead-
lines or code updates. Most questions come from
users who experience difficulty installing or run-
ning the model.

Experienced users often write to SimpleScalar’s
developers seeking advice on how to implement a
particular new feature. A smaller portion of the
support load addresses the continual process of
code maintenance. The code must be routinely
updated to accommodate host operating system
and target compiler updates that affect the Simple-
Scalar I/O emulators and host interface. In addi-
tion, the developers must fix code bugs and model
inaccuracies, then promptly disseminate the up-
dates to the user community. Locating the resources
to support SimpleScalar thus presents a perennial
problem.

To keep the support load as light as possible, we
have devised several proactive mechanisms that
support SimpleScalar users. Like most other open
source projects, we make available detailed docu-
mentation, including a user tutorial, hacker’s guide,
and FAQ database.

We also draw assistance from the large and active
user community through SimpleScalar’s mailing
lists. We encourage users with problems to send e-
mail messages to the mailing lists before contact-
ing the developers. As a result, other SimpleScalar
users answer nearly half of all support questions.

We archive the mailing lists on the
SimpleScalar Web site, where users can
browse through old messages, often finding
answers to their questions.

New SimpleScalar users typically require
the most support. We encourage them to
attend SimpleScalar tutorials, held occasion-
ally in conjunction with popular computer
architecture conferences. Each tutorial pro-
vides a detailed overview of how to use and
extend SimpleScalar tools.

For users attempting to build their first model,
we offer a minimal SimpleScalar model and tutor-
ial. This version demonstrates the absolute mini-
mum code required to build a SimpleScalar model,
serves as a starting point for learning about
SimpleScalar modeling, and doubles as a useful
baseline for simple modeling projects.

Finding and building appropriate benchmarks to
drive simulation experiments can present a hurdle
for new SimpleScalar users. To assist them, we
make available precompiled binaries for the SPEC,
MediaBench, and MiBench benchmark suites.
Making this resource available takes little addi-
tional effort because we use these benchmarks
internally for testing.

Users run SimpleScalar tools on a wide variety
of machines, so distributing code that builds cleanly
and works on a broad selection of platforms sig-
nificantly reduces support needs. SimpleScalar pro-
vides portability through the host interface layer, a
collection of types and routines that implements
machine-independent host abstractions. By simply
providing definitions for a new machine, users can
port SimpleScalar code to a new platform.

Currently, SimpleScalar supports a diverse col-
lection of host platforms, ranging from Windows/
NT to Linux/x86 to Sparc/Solaris. We distribute
SimpleScalar with a self-test mechanism that vali-
dates its build. The self-test simulation includes
binaries, comparing their output to reference
results. If the tests succeed, users can be confident
that their SimpleScalar build works properly.

We have found that instructors are early adopters
of research infrastructure, which means that both
they and their students need support. Although the
number of student users can grow quickly, their
support requirements are quite similar, and we have
found that we can proactively service their needs
by providing support materials to their instructors.
Recently, we released an instructor’s kit that pro-
vides the components necessary to employ
SimpleScalar in the classroom. The toolset includes
a small collection of popular benchmarks with both

A self-test
simulation

compares binary
output to

reference results.

66 Computer

inputs and reference outputs as well as teach-
ing materials and suggested projects at all
levels of instruction.

LOOKING FORWARD
During the decade that SimpleScalar has

been in use, we have continually adapted the
infrastructure to researchers’ needs. We will
continue to improve the toolset and move it
into new research areas by extending its
capabilities. Currently, we are working
toward three major enhancements, reflective
of trends in computer architecture research:
support for embedded system modeling,

enhanced modeling capabilities, and development
of sustainable user support services.

Embedded system modeling
The computer architecture research community

has expressed growing interest in exploring embed-
ded targets that support diverse applications and
specialized hardware such as digital signal proces-
sors. In response to this trend, we are implement-
ing an ARM target for SimpleScalar. The distri-
bution will include pipeline and memory system
models for the Intel StrongARM SA-1110 and
XScale SA-2 microprocessors.

The ARM target supports the ARM7 integer
instruction set and FPA floating-point extensions.
The target I/O emulator supports ARM Linux call
emulation and complete device-level emulation of
the Compaq iPAQ platform. The device-level iPAQ
emulator implements a real-time clock, interrupt
controller, flash memory, and serial devices. A test
release of the SimpleScalar/ARM distribution is
available at http://www.simplescalar.com.

For future releases, we are working with the
University of Michigan’s Trevor Mudge to imple-
ment a TI C30 digital signal processor target. The
C30 is an embedded target device that performs
audio, video, or signal processing. SimpleScalar’s
C30 target model can be combined with a general-
purpose processor model, such as the ARM, to
allow modeling of heterogeneous multiprocessors.

Enhanced modeling capabilities
To date, SimpleScalar development has concen-

trated primarily on creating facilities for perfor-
mance modeling. This emphasis served users well
throughout the 1990s, when improving perfor-
mance was a primary research focus. Looking for-
ward, however, other design constraints, such as
power dissipation and system reliability, are grow-
ing in importance. Power concerns cut across all

market segments, from high-end systems where
power dissipation rates affect system cooling costs,
to low-end embedded systems where power
requirements define battery life. Reliability con-
cerns are receiving more attention as deep submi-
cron fabrication technologies compromise
transistor reliability.

We are working with Mudge to develop Power-
Analyzer, an infrastructure capable of modeling
power and energy requirements for a wide range of
pipelines and memory systems. PowerAnalyzer
incorporates high-fidelity physical microarchitec-
ture models into SimpleScalar. These models can
accurately measure dynamic and static power dis-
sipation. In addition, we are adding reliability analy-
sis tools to SimpleScalar, which will make it possible
to inject faults into a model and monitor its
response.

Many SimpleScalar users have made suggestions
for improving the toolset’s modeling capabilities,
which we implement in the MicroArchitecture
Simulation Environment.5 MASE improves the
speed and ease with which users can build complex
microarchitecture models by providing higher-level
abstractions for constructing models, implementing
improved underlying simulation facilities, and
introducing an infrastructure for validating com-
plex models.

To simplify the modeling of advanced specula-
tive microarchitectures, MASE includes a facility
that can recover model state to any arbitrary
instruction. The memory interface has been up-
dated to model devices with nondeterministic
latency, permitting the study of advanced memory
systems. The baseline performance model has been
updated to more accurately represent modern
microarchitectures. A checker component provides
extensive debug and validation support, which
assists users in locating inaccurate or incorrect per-
formance-model features. Finally, the software
architecture has been improved and modularized,
making the code easier to understand and modify.

Sustainable user-support model
As the SimpleScalar community continues to

grow, we must explore new avenues for support-
ing additional users. To date, its developers, users,
and funding sources—the National Science
Foundation and the Defense Advanced Research
Projects Agency—have generously supported
SimpleScalar. Moving forward, we will rely on
commercial users to build a sustainable support
model. In 1999, we founded SimpleScalar LLC to
provide a commercial licensing service for

SimpleScalar’s
software

architecture has
been improved

and modularized,
making the code

easier to understand
and modify.

February 2002 67

SimpleScalar tools. Commercial licenses for the
toolset are fairly inexpensive compared to similar
CAD tools, and commercial users pay only a one-
time fee. To ensure that commercialization does not
interfere with the academic use of SimpleScalar, our
company provides a low-cost commercial use
license to implement technology transfer between
academic researchers using the toolset and corpo-
rations funding their research.

W e seek to grow SimpleScalar’s commercial
market so that it can fully sustain the user
community’s needs. To date, companies in

the field have been eager to support this effort. We
are optimistic that by building this revenue mecha-
nism, SimpleScalar will continue to serve as a valu-
able resource to researchers and instructors
interested in the design, evaluation, and optimiza-
tion of computing systems. �

Acknowledgments
This work was supported by the NSF CADRE

program, grant no. EIA-9975286, and DARPA
Award No. F33615-00-C-1678. Eric Larson is sup-
ported under a National Science Foundation
Graduate Fellowship.

References
1. R.M. Bentley, “Validating the Pentium 4 Micro-

processor,” Proc. Int’l Conf. Dependable Systems
and Networks (DSN-2001), IEEE CS Press, Los
Alamitos, Calif., 2001, pp. 193-198.

2. E. Schnarr and J. Larus, “Fast Out-of-Order
Processor Simulation Using Memoization,” Proc.
8th Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Systems
(ASPLOS-VIII), ACM Press, New York, 1998, pp.
283-294.

3. C. Weaver et al., “Performance Analysis Using
Pipeline Visualization,” Proc. IEEE Int’l Symp.
Performance Analysis of Systems and Software
(ISPASS-2001), IEEE CS Press, Los Alamitos,
Calif., 2001, pp. 18-21.

4. R. Desikan, D. Burger, and S.W. Keckler, “Mea-
suring Experimental Error in Microprocessor Sim-
ulation,” Proc. 28th Ann. Int’l Symp. Computer
Architecture (ISCA-28), ACM Press, New York,
2001, pp. 266-277.

5. E. Larson, S. Chatterjee, and T. Austin, “MASE:
A Novel Infrastructure for Detailed Microarchi-
tectural Modeling,” Proc. IEEE Int’l Symp. Per-
formance Analysis of Systems and Software
(ISPASS-2001), IEEE CS Press, Los Alamitos,
Calif., 2001, pp. 1-9.

Todd Austin is an assistant professor in the Uni-
versity of Michigan’s Electrical Engineering and
Computer Science Department. His research inter-
ests include computer architecture, computer sys-
tem verification, and performance analysis tools
and techniques. Austin received a PhD in computer
science from the University of Wisconsin-Madison.
Contact him at taustin@eecs.umich.edu.

Eric Larson is a PhD candidate in the University
of Michigan’s Electrical Engineering and Computer
Science Department. His research interests include
computer architecture, compilers, software devel-
opment, and computer system simulation. Contact
him at larsone@eecs.umich.edu.

Dan Ernst is a PhD candidate in the University of
Michigan’s Electrical Engineering and Computer
Science Department. His research interests include
computer architecture and VLSI design. Contact
him at ernstd@eecs.umich.edu.

computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST

UPGRADE YOUR MEMBERSHIP

Advancing in the IEEE Computer Society
can elevate your standing in the profession.

Application to Senior-grade membership
recognizes

✔ ten years or more of professional
expertise

Nomination to Fellow-grade membership
recognizes

✔ exemplary accomplishments in
computer engineering

REACH
HIGHER

