
Abstract
To achieve high instruction throughput, instruction

schedulers must be capable of producing high-quality
schedules that maximize functional unit utilization while at
the same time enabling fast instruction issue logic. Many
solutions exist to the scheduling problem, ranging from
compile-time to run-time approaches. Compile-time solu-
tions feature fast and simple hardware, but at the expense
of conservative schedules. Dynamic schedulers produce
high-quality schedules that incorporate run-time informa-
tion and dependence speculation, but implementing these
schedulers requires complex circuits that can slow proces-
sor clock speeds.

In this paper, we present the Cyclone scheduler, a
novel design that captures the benefits of both compile-
and run-time scheduling. Our approach utilizes a list-
based single-pass instruction scheduling algorithm, imple-
mented by hardware at run-time in the front end of the pro-
cessor pipeline. Once scheduled, instructions are injected
into a timed queue that orchestrates their entry into execu-
tion. To accommodate branch and load/store dependence
speculation, the Cyclone scheduler supports a simple
selective replay mechanism. We implement this technique
by overloading instruction register forwarding to also
detect instructions dependent on incorrectly scheduled
operations. Detailed simulation analyses suggest that with
sufficient queue width, the Cyclone scheduler can rival the
instruction throughput of similarly wide monolithic
dynamic schedulers. Furthermore, the circuit complexity
of the Cyclone scheduler is much more favorable than a
broadcast-based scheduler, as our approach requires no
global control signals.

1 Introduction
In an effort to secure higher levels of system perfor-

mance, microprocessor designs often employ aggressive
scheduling techniques to extract instruction level parallel-
ism (ILP) from serial instruction streams. The goal of the
scheduler, be it a compile- or run-time based approach, is
to identify and execute independent operations on other-
wise unused functional unit resources. By more effectively
utilizing functional units resources, instruction throughput
increases and program run time is reduced.

As shown in Figure 1, it is possible to implement
instruction scheduling at compilation or during execution.
Compile-time instruction schedulers analyze the flow of

control and data in a program, and then re-order instruc-
tions in the binary so that during execution they will better
utilize processing resources. The primary advantage of
compile-time instruction scheduling is that the hardware
necessary to carry out the execution of instructions can be
very simple. For example, in machines such as Itanium
[8], the compiler selects “bundles” of independent instruc-
tions that are fetched and executed as a single unit, obviat-
ing the need for any complex dependence checking logic
in the underlying hardware.

The primary disadvantage of compile-time scheduling
is that it lacks an accurate assessment of dependencies
caused by branches and memory operations, as these are a
function of program execution. Consequently, any sched-
uling decisions implemented in the presence of these
instructions must be made conservatively. The conserva-
tive tendencies of compile-time schedulers are well recog-
nized, and as such, many proposals have been made to
lessen their effect. For example, branch boosting [24] and
predication [7] mitigate the effects of control dependen-
cies by pre-computing or hiding branch instructions.
Advanced loads [8] and run-time disambiguation [18]
reduce the impact of ambiguous load/store dependencies.

Dynamic scheduling at run-time suffers the opposite
disposition of compile-time scheduling. Since program
dependence analysis occurs at run-time, branch directions
and load/store addresses are often available to improve the
accuracy of scheduling. Modern designs go another step
further and incorporate branch and load/store dependence
predictions to further refine the schedules. However, the
hardware necessary to implement dynamic scheduling can

Figure 1. Compile-time vs. Run-time Instruction
Scheduling.

unscheduled
program

unscheduled
program

Static
Scheduler

Dynamic
Scheduler

C
om

pi
le

-ti
m

e
R

un
-ti

m
e

Functional
Units

Functional
Units

conservative
schedule

low-complexity
implementation

high-quality
schedule

high-complexity
implementation

Appears in the 30th Annual International Symposium on Computer Architecture (ISCA-2003), June 2003

Cyclone: A Broadcast-Free Dynamic Instruction Scheduler with Selective Replay

Dan Ernst, Andrew Hamel, and Todd Austin
Advanced Computer Architecture Lab

University of Michigan
Ann Arbor, MI 48109

{ernstd, ahamel, austin}@eecs.umich.edu

be quite complex and slow. Conventional dynamic sched-
ulers house a “window” of candidate instructions from
which ready instructions are sought for execution on avail-
able functional units. Instruction windows are imple-
mented using large broadcast-based content addressable
memories (CAMs) or dependence-broadcast matrices that
track instructions and their input dependencies.

In a dynamic scheduler, it is possible to extract more
ILP from a larger instruction window. This increased par-
allelism, however, will come at the expense of a slower
scheduler clock speed, due to an accordingly larger CAM
structure. Recent circuit-level studies [19][5] of dynamic
scheduler logic have shown that scheduler broadcast logic
dominates scheduler circuit performance. As a result, win-
dow sizes cannot be increased without commensurate
increases in scheduler operation latency. Other recent
studies [1] further suggest that as wire latencies grow due
to increased deep sub-micron parasitic capacitance effects,
these trade-offs may become even more acute with future
scheduler designs seeing little benefit from smaller tech-
nology sizes.

In this paper we present the Cyclone scheduler, a
design that draws from compile-time and run-time sched-
uling techniques in an effort to secure the low-complexity
of a compile-time scheduler and the high-quality instruc-
tion schedules of a dynamic scheduler. The hardware-
based instruction scheduler implements a simple schedul-
ing algorithm similar to compile-time list scheduling [16].
Instructions are scheduled based on the predicted latency
until the availability of its operands. To obtain high-qual-
ity schedules, we employ our scheduling algorithm at run-
time where it is implemented by a simple hardware unit in
the front-end of the processor pipeline. To further improve
schedules, the hardware-based list scheduler incorporates
branch predictions and load/store dependence predictions
to speculatively orchestrate execution in the presence of
control and memory dependencies. Once an instruction’s
latency has been predicted, it enters the tail of the Cyclone
scheduler queue, which implements a network of locally-

synchronized datapaths that route an instruction to its
functional unit at (or very shortly after) its proscribed exe-
cution time. To ensure correct program execution in the
presence of latency and dependence speculation, the
Cyclone scheduler incorporates a selective replay mecha-
nism that overloads the register forwarding infrastructure
to re-execute only those instructions dependent on incor-
rectly scheduled instructions. This same mechanism is
used to identify and flush instructions which have been
squashed due to mispeculation.

The Cyclone scheduler makes three substantial contri-
butions in the area of high-performance dynamic instruc-
tion scheduling. They are as follows:

• Broadcast free dynamic scheduling: The Cyclone
scheduler contains no global broadcast or control sig-
nals. Our design employs distributed methods to
schedule instructions, re-synchronize impaired sched-
ules, and recover from mispeculation. The lack of glo-
bal control enables very fast clocking and lower area
due to reduced interconnect requirements.

• Efficient dependence-based variable-latency instruc-
tion replay: In the event of a mispredicted latency or
dependence, the Cyclone scheduler is capable of
recovering schedules by selectively replaying only
those instructions dependent on the instruction forcing
the replay. The latency of a replay may be variable, and
it is set by the instruction that initiated the replay.

• First-class scheduling of memory dependencies: Our
design incorporates store-set predictions [4] into the
scheduling mechanism and treats store/load dependen-
cies in the same fashion as register dependencies. As a
result, our simulations and timing analyses fully
account for the impacts of memory communication on
the throughput of the scheduler.

The remainder of this paper is organized as follows.
Section 2 details the microarchitecture of the Cyclone

Figure 2. Cyclone Scheduler Architecture

replay?

fn
u n its

register file

ready bits

bypass

R E G E X /M E MS C H E D

in s truc tio n
p re -s ch e d u le rs to re s e t

p re d ic to r

b ra n c h
p re d ic to r in s truc tio n

p re -s ch e d u le rs to re s e t
p re d ic to r

b ra n c h
p re d ic to r

co u n td o w n /re p la y q u e u e

m a in q u e u e

(in c lu d e s t im in g in fo rm atio n)

s w itc hb a ck
d a ta p a th s

scheduler, including implementation of the instruction
replay mechanism and the hardware-based list scheduler.
Section 3 explains our methodology. Section 4 gives
detailed analyses of the Cyclone scheduler’s performance.
We compare its performance to an idealized monolithic
dynamic scheduler and examine the aspects of the Cyclone
scheduler that degrade its throughput. We also include
detailed analyses of the Cyclone scheduler circuit com-
plexity and area. Section 5 lists related work in scheduler
design, Section 6 gives conclusions, and Section 7 sug-
gests future refinements to the Cyclone design.

2 The Cyclone Scheduler
2.1 High-level Architecture

Figure 2 illustrates the high-level architecture of the
Cyclone scheduler. After register renaming, instructions
enter the instruction pre-scheduler, which predicts the
number of cycles that must elapse before the instruction’s
operands are available for execution. Once an instruction’s
latency has been predicted, it enters at the tail of the count-
down queue. In the countdown queue, instructions move
over locally-synchronized datapaths toward the end (left
side) of the queue at the rate of one queue entry per clock
cycle. When one half of the predicted latency until execu-
tion has expired, instructions jump to the lower main
queue via switchback datapaths. Like the countdown
queue, the main queue steps instructions toward execute at
the rate of one entry per clock cycle, permitting instruc-
tions to arrive at execute at (or near) their predicted execu-
tion time.

To facilitate the construction of high-quality instruc-
tion schedules, the Cyclone scheduler supports control and
data speculation. Load/store dependencies, branch direc-
tions and load dependencies are all speculated by the
instruction scheduler using a branch predictor and a store-
set predictor [4]. If the speculative schedule becomes cor-
rupt (due to, for instance, an input sourced by a load that
missed in the data cache, or a late switchback), the
Cyclone scheduler is capable of repairing the schedule on-
the-fly using a selective replay mechanism that re-exe-
cutes only those instructions dependent on incorrectly
scheduled instructions.

To implement selective replay, instructions access
physical storage ready bits immediately before attempting
execution. If an instruction arrives at execute and its oper-
ands are ready, it commences execution as planned. If the
instruction’s operands are not yet ready, the latency until
execution is once again predicted, and the instruction is re-
inserted back into the countdown queue. In addition, the
physical register destination of the replayed instruction is
marked unavailable in the ready bit table. Subsequent
instructions that are dependent on this operation will find
this operand unavailable and replay as well. Using this
dependence-based replay approach, only those instruc-
tions that use the result of an incorrectly scheduled instruc-
tion must be replayed. It is important to note that the
replay mechanism is sufficiently robust that it can detect
and correct any scheduling errors by replaying instructions
until their operands arrive. As such, the instruction pre-
scheduler need only act as a schedule predictor, any errors
it introduces into the instruction schedule will be safely
corrected by the replay mechanism.

Wide issue is supported by the Cyclone scheduler by
providing additional capacity for scheduling and timing
instructions within the Cyclone scheduler queue. It is pos-

sible to increase the capacity of the scheduler queues by
providing space for multiple instructions in each entry. We
term these additional instruction slots rows. The scheduler
depicted in Figure 2 contains a 4-row Cyclone scheduler
queue.

The Cyclone scheduler has lower circuit complexity
than conventional broadcast-based scheduler designs
(such as a Tomasulo [7] or matrix scheduler [6]) because it
lacks centralized control mechanisms of any kind. All
communication occurs locally between instruction entries
in the Cyclone scheduler queue. Comparatively, broad-
cast-based schedulers must send dependence information
to all other instructions each cycle, making highly capaci-
tive broadcast wires with long propagation delays a neces-
sity.

2.2 Instruction Pre-Scheduler
The instruction pre-scheduler, illustrated in Figure 3a,

is responsible for scheduling instructions into the instruc-
tion queue such that instructions reach the execute stage
immediately after their inputs are computed. Our design is
a variant of the data flow prescheduling design presented
by Michaud [12]. The instruction pre-scheduler resides in
the front-end of the pipeline, after instruction renaming
and before the execution queues. Each cycle, instruction
placement is computed by the scheduler for each instruc-
tion in program order. Instructions are placed at the tail of
the countdown queue such that, if an instruction is
expected to execute in N cycles, it will be given a timer
value that will prompt it to cross over to the main queue in
N/2 steps. For a W-wide decode width processor design,
the instruction scheduler places the next W dynamic
instructions into the tail of the countdown queue each
cycle.

Conceptually, the instruction pre-scheduler computes
for each instruction the delay until all inputs are available.
This task is accomplished with a simple timing table and a
MAX calculation. An instruction with two inputs available
at times t0 and t1 can begin execution at MAX(t0, t1). The
result of the instruction will be available at MAX(t0,
t1)+L, where L is the latency of the instruction operation.
As shown in Figure 3a, each instruction accesses the tim-
ing table, which produces the delay (in cycles) until the
input is available. Each instruction then computes the

Figure 3. The front-end pre-scheduler architecture is
shown in a) and an example chain of four dependent

instruction (with delays until execute) are shown in b).
All instruction operations in the example execute in a

single cycle.

I0

I1

I2

I3

PSCHED0

max

max

+

reschedule?

tim
ing table

PSCHED1

I0

I2I3

16

Example Schedule

a) b)

max

+

max

+

dep
check

MUX control

I1

8 6 2

7
17

18 8

4
7

maximum delay of its inputs, and the result is used as the
index to place the instruction into the queue.

The instruction scheduler timing table is indexed with
the logical register index, and it returns the delay until the
operand is ready. For instructions with immediate oper-
ands or no operands (e.g., load-imm), the timing table
returns a zero delay. When an instruction is scheduled, its
schedule time is written into the scheduler timing table
under the destination register index. To allow the schedul-
ing of dependent instructions in back-to-back fetch
groups, the destination delay values are also forwarded
back into the pre-scheduler logic.

2.2.1 Limiting Dependence Chains
A complication arises in the design of the pre-sched-

uler because instructions in an issue group may share
dependencies between each other. These dependencies
create a recurrence in the scheduler timing computation
such that the input to the MAX computations may be the
result of the MAX computation of earlier instructions in
the same group. We have performed extensive simulations
with a range of designs for dealing with inter-instruction
dependency scheduling. One conclusion we reached fairly
early was that it is insufficient to issue only the indepen-
dent instructions in each cycle. This insight is not surpris-
ing in retrospect, as placing an in-order issue mechanism
anywhere before the dynamic scheduler should greatly
degrade the throughput of the dynamic schedule.

The scheduler design presented in Figure 3a allows
dependent chains of instructions to compute their correct
start times within the same cycle. The output of each
MAX calculation can be forwarded to any later instruc-
tion, to override an input with an earlier computed sched-
ule time. In the first cycle of schedule (PSCHED0), the
timing table is probed to determine the delay until input
operands are available. In the second cycle of scheduling
(PSCHED1), the MAX function computes the time the
instruction operands are available, and forwards this
results to the inputs of all MAX computations in later
cycles.

While the datapaths in the circuit would permit arbi-
trary length chains of dependent instructions (up to four in
the figure), the dependence logic limits the computation to
at most two cascaded MAX computations. Simulations
indicate that dependence chains longer than two instruc-
tions happen in less than 3% of all fetch cycles for
SPEC2000. Our MAX calculations are limited to 6 or 7 bit
subtraction operations (depending on maximum Cyclone
queue depth); consequently, the resulting scheduler is both
fast and accurate. In the event an instruction chain length
is longer than two, the dependence check logic will indi-
cate this case by the end of the PSCHED1 cycle by assert-
ing the reschedule signal, which forces an additional cycle
to complete the schedule times of long dependent chains.
This additional cycle causes very little degradation in per-
formance, since the instructions at the end of long chains
would not be ready to execute immediately anyway.

An example of dataflow instruction scheduling is
illustrated in Figure 3b. Instructions I0 and I1 compute
their ready times and forward them to the inputs of
instruction I3’s MAX calculation. Instruction I1’s MAX
calculation is also forwarded to one input of instruction I2.
After two cascaded MAX calculations, all four instruc-
tions have correctly computed their schedule times. It is
interesting to note that in a VLIW machine instructions
within a fetch group are independent. This would further

simplify the instruction pre-scheduler because MAX com-
putations would never need to be forwarded to later MAX
computations in the same fetch group.

To keep the pre-scheduler logic simple, it does not
accept new instructions until the current fetch group has
been fully scheduled. In addition, the instruction scheduler
will stall when the queue entry for any of the scheduled
instructions is full. In any of these events, the scheduler
will retry on subsequent cycles until the full instruction
fetch group is scheduled and inserted, at which point
scheduling may continue.

2.2.2 Memory Scheduling
It is vital to the production of accurate schedules that

loads be scheduled as soon as possible after dependent
stores, otherwise, load/store dependencies will cause a sig-
nificant number of instruction replays. These replays
increase the pressure in the Cyclone queue, potentially
preventing later instructions from entering the main
Cyclone queue, and delaying the execution of loads for a
complete trip through the replay loop. To accurately
schedule loads, we have adapted the store set dependence
predictor [4] to time the execution of load instructions.
The store set predictor tracks the stores that are a source
for a particular load and assigns to that group a store set
identifier. Loads are scheduled after the last store from the
store group still in flight when the load is dispatched. The
approach can be readily adapted to the Cyclone scheduler
by recording with each store set identifier the delay until
the last store in flight completes. When scheduling stores,
the latency of a store operation is equal to the time to for-
ward a store value to a load instruction, typically the
latency for the load/store queue forwarding mechanism
(one cycle in our experiments).

2.3 Switchback Datapaths
To implement the instruction schedule computed by

the pre-scheduler, instructions are injected into the tail of
the Cyclone scheduler queue with a prediction of how far
the instruction should progress down the countdown queue
before turning around and heading back toward execution
in the main queue. Switchback datapaths provide the con-
nections over which instructions can turn around and head
back toward execution. Their inclusion in the design is
vital to keeping the scheduler circuit complexity low. With
them, it is possible to eliminate any random access ports
into the scheduler queue. Instead, all instructions must
enter at a single point into the tail entry of the countdown
queue, after which they work their way to execution to
meet their predicted delay.

Figure 4 illustrates the switchback datapaths and con-
trol logic. Instructions time their entry into the main queue
using simple countdown logic. Instructions are injected
into the countdown queue with a timer value equal to half
of their total predicted latency. When the countdown com-
pletes the instruction will begin attempting to switchback
to the main queue. As shown in Figure 4a, instructions
with an even numbered latency jump down to the entry
directly below (m0), while instructions with odd num-
bered latencies jump down and to the left (mp). This rout-
ing approach inserts an additional step between entry and
execute for instructions with odd numbered predicted
latencies. Without the diagonal datapaths, all latencies
would have to be even as the same number of queue
entries would be traversed down and back to reach execu-
tion.

To keep countdown logic simple, we employ a cas-
caded Johnson counter [28], which requires N bits to count
a maximum of 2N states. The advantage of the Johnson
counter is that it only requires one inverter per entry in the
countdown queue. An additional feature of the Johnson
counter is that we are able to pick counter states such that
the most-significant bit of the counter state transitions
when switchback should occur, eliminating the need for
any comparison logic on counter values.

Because main queue entries can accept instructions
from multiple sources (e.g., mp, r1, and r0 in the figure),
request conflicts must be resolved. In the event of multiple
requests, highest priority is given to the previous main
queue entry (mp). This entry must have highest priority
because it has nowhere else to go and it cannot stall. If the
previous main queue entry is empty, priority is next given
to the above switchback channel (r0), followed by the
channel diagonally above and to the right (r1). If count-
down queue entries cannot enter the main queue due to
request conflicts, they will instead enter the following
countdown queue entry. This conflict delays the execution
of the instruction in the countdown queue by one cycle.
Consequently, the instruction will continue to make
repeated requests for switchback until either i) it finds an
available path, or ii) it reaches the end of the countdown
queue at which point it is guaranteed entry into the tail of
the main queue. The topology of the Cyclone scheduler
queues is such that every instruction will have at least one
empty queue entry to move into for the following cycle. In
addition, instructions are also guaranteed to eventually
reach execution (by traversing the entire length of the
queues). As a result, forward scheduler progress is always
maintained and no global synchronization is required,
which keeps scheduler circuit speeds fast.

Each Cyclone scheduler row is associated with a spe-
cific group of functional units. As shown in Figure 4a,
instructions switchback to the row in the main queue cor-
responding to the row they are occupying in the count-
down queue. This policy ensures that instructions will find
the appropriate functional unit when they reach the exe-
cute stage. We found in our circuit analyses that the local
nature of switchback control provided significant head-
room in circuit performance. As a result, for instructions
with multiple functional units available to execute their

operations, we permit them to switchback to one of two
fixed rows in the main queue (with identical functional
units), based on availability of queue space. This policy
helps to reduce switchback conflicts and leads to more
efficient schedules.

2.4 Replay and Speculation Recovery
The Cyclone scheduler incorporates a unified mecha-

nism to implement selective instruction replay and mis-
peculation recovery. Immediately proceeding execution,
instructions probe a table of physical register ready bits to
check the availability of operands. This check is necessary
because of the speculative nature of Cyclone scheduling.
Any incorrect schedules, due to factors such as latency
misprediction, incorrect memory dependence prediction,
or switchback conflicts, may alter the schedule, resulting
in instructions possibly entering execution before their
operands are available. If the ready bits indicate an
instruction’s operands are ready, its destination register
ready bit is set valid and the instruction continues into exe-
cution. In the event an instruction cannot complete execu-
tion in its predicted execution latency (for example, if a
load instruction misses in the cache when a hit was pre-
dicted), the instruction sets its destination register ready
bit to invalid. Later instructions that access this invalid
register will replay and indicate that their result is unavail-
able, forcing a cascaded dependence-based instruction
replay. All instructions that replay enter the countdown
queue with a new predicted latency.

Branch and load/store dependence mispeculations are
implemented using a similar mechanism. When an instruc-
tion behind a mispeculated instruction is squashed, it is
marked as such, and the instruction will continue until it
reaches execution, at which point the scheduler will drop
the instruction. We avoid flushing the scheduler queue as
instructions before mispredicted branches may still be in
flight, and we also avoid checkpointing Cyclone queue
valid bits as this would make access ports into the sched-
uler queue necessary.

Mispeculated instructions are identified using specu-
lation masks, similar to those in the R10000 [29]. The
speculation mask of each instruction is included with the
instruction in the Cyclone scheduler queues. When
instructions reach the end of the main queue, they probe
the speculation state. If the table indicates that the instruc-
tion has been squashed, it is dropped. For all experiments,
we use a five bit speculation mask. This size mask permits
at most 32 speculative paths within the window at once.
Instructions requiring additional masks would likely be
very speculative and have a low probability of retiring.

When a mispeculation occurs, the instruction pre-
scheduler timing table must be updated to reflect that
instructions squashed no longer are forwarding to instruc-
tion being decoded. We leverage two observations to sim-
plify recovery of the pre-scheduler timing table. First, their
is no strict requirement that the instruction pre-scheduler
timing table be correct. The primary motivation for updat-
ing the timing table is that it improves the schedule accu-
racy for instructions after mispredicted branches. Second,
we observe that instructions following a mispeculation
nearly always arrive at execute with their operands ready,
because in long pipelines it will take many cycles for
newly fetched instructions reach execution. During this
delay, most instructions in flight will have completed. As
an example, simulation of the highly speculative bench-
mark GCC revealed that 99.98% of all first accessed logi-

Figure 4. Switchback Logic. The options an instruction
has for crossing from the countdown or replay state to
the main queue are shown in a). A diagram of this logic

for a single instruction, and its critical path logic
equation is shown in b).

lo
med
hi

priority
MUX

Vm0 = Vmp | Vr0 | tr1 | (rr1 & Vm0)

a) b)

datav datav datav

datav datavdatav datavdatav datav

r r

countdown logic
t t

countdown/replay queue

main queue

m0 m1mp

r0 r1

mp m0

cal operands were ready following a mispredicted branch.
As such, we can accurately approximate the new pre-
scheduler timing table by simply resetting all delay times
to zero whenever a mispeculation occurs.

A similar technique is used to recover from load
mispseculations. Loads are assigned a speculation mask at
decode. In the event a later store arrives after a speculative
load completes (revealing an incorrect store-forward), the
load’s speculation mask and those that follow it are
marked invalid and instructions following the load in the
Cyclone queue are squashed when they reach execute.
Like the register pre-scheduler timing table, all entries in
the store-set timing table are set to zero after a mispecula-
tion.

3 Experimental Methodology
3.1 Architecture Simulation

The architectural simulators used in this study are
derived from the SimpleScalar/Alpha version 3.0 tool set
[2], a suite of functional and timing simulation tools for
the Alpha AXP ISA. The timing simulator executes only
user-level instructions, performing a detailed timing simu-
lation of an aggressive dynamically scheduled micropro-
cessor with two levels of instruction and data cache
memory. Simulation is execution-driven, including execu-
tion down any speculative path until the detection of a
fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results from
all 25 of the SPEC2000 benchmarks [25]. All SPEC pro-
grams were compiled for a Compaq Alpha AXP-21264
processor using the Compaq C and Fortran compilers
under the OSF/1 V4.0 operating system using full com-
piler optimization (-O4). The simulations were run for 100
million instructions using the SPEC reference inputs. We
used the SimPoint toolset’s Early SimPoints [23] to pin-
point program locations to simulate for peak accuracy.

We simulated both the broadcast-based scheduler and
the Cyclone scheduler on two different pipeline configura-
tions. First, we simulated a machine with a width of 4
throughout the pipeline, from fetch to commit. Second, we
simulated a machine with a width of 8 throughout the
pipeline. In addition, we simulated the Cyclone scheduler
with an issue width of 8, but leaving the fetch and commit
rates at 4 instructions per cycle. The number of functional
units was kept constant across all configurations. The pro-
cessor had 5 integer units, 2 of which were capable of mul-
tiplication/division, and 3 FP units, 2 of which were
capable of multiplication/division/square root, and 4 mem-
ory ports. FU latencies varied depending on the operation,
but all FUs, with the exception of the divide units, were
fully pipelined allowing a new instruction to initiate exe-
cution each cycle.

The Cyclone simulator models the architecture dis-
cussed in section 2. The Cyclone main and countdown
queues were fixed at at length of 8 which gave the
Cyclone an overall loop length of 16. The underlying
ROB was varied between 64 and 256 entries. Load/store
dependencies are checked within a 32 entry load/store
queue.

Our baseline broadcast-based configuration models a
current generation out-of-order processor microarchitec-
ture. We modeled machines with instruction window sizes
ranging from 16 to 128 and ROB sizes ranging from 64 to
256 instructions. All configurations had a 32 entry load/

store queue. There is a 5 cycle minimum branch mispre-
diction penalty.

The memory system for all of the models consists of
32k 4-way set-associative L1 instruction and data caches.
The data cache is dual-ported and pipelined to allow up to
two new requests each cycle. There is also a 512k 4-way
set-associative unified L2 cache with a 12 cycle hit
latency. If there is a second-level cache miss it takes a total
of 76 cycles to make the round trip access to main mem-
ory. The models use a 4k-GSHARE branch predictor with
an 8-bit global history and an 2k entry BTB.

In order to reduce the effects of unknown stores and
harness dependence information between stores and loads,
a store-set predictor [8] is included in both our baseline
and our Cyclone configurations. The store-set predictor
has 128-entries and is 4-way set-associative. The store-set
predictor will find links between loads and sourcing stores
allowing loads to speculatively execute before unresolved
stores ahead in the load-store buffer.

3.2 Circuit Timing Methodology
To get a full understanding of the consequences of our

design decisions, the circuit characteristics of the different
scheduler structures must be examined. The circuit delays
for the Cyclone scheduler were calculated using the same
SPICE design flow we used in [5]. The critical circuit
paths were first modeled in SPICE and then optimized by
Synopsys’s AMPS circuit optimization tool. Finally, tim-
ing analysis was performed using Avant!’s HSPICE circuit
tool (version 2001.2), using transistor parameters supplied
by Taiwan Semiconductor Corporation for their TSMC
0.18µm 1.8V fabrication process. These parameters are
available from MOSIS’s secure website [15]. The circuit
delays for CAM-based scheduler windows used in this
study were derived from the models used in [5], as well.

3.3 Area Estimate Methodology
To estimate the chip area of each design, we use the

process independent register bit equivalent (RBE) metric
defined by Mulder, et al. [17], where one RBE equals the
area used by one register file bit. The metric takes into
account both the area of the cells themselves, as well as
the overhead of control logic, driver logic, and sense
amps.

One parameter not accounted for in the original RBE
equations given in [17] is the number of access ports for a
memory structure. Because the size of each side of a
memory bit must scale up linearly with the number of
ports, the total effect on area is quadratic [22]. In our
model, we apply this port scaling factor to the portions of
the RBE area equation that pertain to the footprint of the
data bits.

4 Performance Results
4.1 Impact on IPC

The IPC extracted by the Cyclone scheduler is consis-
tently below those produced by the traditional broadcast-
based scheduler. The most substantial cause (direct or
indirect) of IPC loss is switchback conflicts in the
Cyclone. If an instruction wishes to cross from the replay
queue to the main queue, it cannot do so if another instruc-
tion is currently occupying that slot. This will cause the
instruction to cross at a different point which will delay its
arrival at the execute stage by at least one cycle. This may
not significantly impact the execution of the instruction in

question, but it can disrupt the execution of the descen-
dents of that instruction. When parent instructions fail to
execute as scheduled, children that are scheduled for that
parent’s completion time will arrive early which will force
the child instruction as well as all of that child’s descen-
dents to replay. Not only are these instructions now forced
to replay, but they are also now consuming slots at the tail
of the replay queue into which the decode-stage is trying
to insert new instructions.

To mitigate these effects, we tried several different
approaches. First, because the Cyclone structure scales
well with issue width, we made the queues wider in hopes
of reducing the number of conflicts. In this case, there
were still cases where conflicts would occur due to there
being a valid entry in the only row that an instruction was
allowed to jump to. Because we determined that the
switchback logic was far off the critical path, we gave
each entry of the replay queue switchback paths to two dif-
ferent entries in the main queue.

Also, in an effort to improve the accuracy of the
Cyclone schedules, we experimented with a Cyclone
design which includes variable length dynamic replay.
This design adds a retiming table to the register read stage
of the pipeline. As instructions leave the main Cyclone
queue, they probe the ready bits of their operands. If any
operands are unavailable, the retiming table will indicate
the number of cycles until the operand is available for use.
The instruction then takes the maximum delay of all of its
unavailable operands, adds its latency to the result, and
then stores this value into the retiming table at the index of
its destination register. Finally, the instruction enters the
replay queue with a latency equal to the maximum of its
unavailable operands. In the baseline system, all replays
are signaled with a single ready bit, and the new latency is
set to one cycle, meaning that replaying instructions
immediately attempt to cross back over to the main queue.

The effects of all these optimizations are shown in
Figure 5. Using the double switchback logic, the average
IPC was only slightly (~1%) higher, with some bench-
marks, like gzip seeing as much as 5% improvement. Also,
simulation shows that the finer-grained variable-length
replay support provided little extra scheduler throughput
on most benchmarks. However, art and equake were 20%
and 10% higher, respectively. Given the added area neces-

sary to implement the multi-ported retiming table (approx-
imately 100608 RBEs for an 8-wide configuration), this
additional precision is not likely to be worth the complex-
ity cost for a real design.

4.2 Circuit Speed
The SPICE circuit timing results are shown in Table

1. The critical path for the Cyclone runs through the pre-
scheduling logic. It consists of two 8-bit MAX operations,
and one 8-bit addition. The switchback logic was also sim-
ulated, and it was determined to be off the critical path.
This was because all communication was only to each
entry’s neighbors and there was only a small amount of
logic. The Cyclone also benefits from not needing any
selection logic, since it issues one instruction each cycle
from every row.

4.3 Complexity Tradeoff
There are many different factors to take into account

when evaluating scheduler designs. The primary goal is
high instruction throughput. This can be accomplished
either through high IPC or through low-complexity logic
which can be run at a higher clock speed. A good sched-
uler design must also take into account its total power con-
sumption. This factor is tightly related to both the chip
area of the design of its circuit complexity.

The Cyclone scheduler takes advantage of this rela-
tion by providing a design that is much smaller and less
complex than a broadcast-based window. First, because all
signals in the structures are local, the throughput is
increased due to much faster logic speeds, at the expense
of decreased IPC. Also, the Cyclone scheduler structure
has a much smaller chip footprint than a broadcast-based
scheduler. For example, an 8-decode, 8-issue Cyclone
queue takes up approximately 12% of the area of a 64-
instruction 8-issue CAM scheduler, and approximately
28% of the area of a similarly sized matrix scheduler.

Both of these advantages are seen in Figures 6, 7, and
8, which analyze the tradeoffs between throughput and
area. Throughput is presented in instructions per nanosec-

Figure 5. IPC effects of Cyclone optimizations. All
configurations have an issue width of 8.

0

0.5

1

1.5

2

2.5

3

3.5

art equake facerec mesa swim FP AVG bzip2 gap gcc gzip vortex INT AVG

In
st

ru
ct

io
n

s
P

er
 C

yc
le

32-entry 8-wide baseline

Cyclone

Cyclone w/ Double
Switchback Paths
Cyclone w/ Retiming
Table
Cyclone w/ both

Table 1. Critical path latencies calculated with
SPICE for different scheduler configurations

Config
Timing

(ps) Config
Timing

(ps)

Cyclone 193

16/4-Wide 284 16/8-Wide 345

32/4-Wide 349 32/8-Wide 448

64/4-Wide 466 64/8-Wide 671

128/4-Wide 775 128/8-Wide 1243

Table 2. Component breakdown for scheduler and
register file area. Areas are in Register Bit

Equivalent (RBE)

Config Scheduler Reg File Total

Cyclone 8-Wide 16682.4 338504 355186.4

CAM 8-W 64-Entry 143527.7 338504 482031.7

Matrix 8-W 64-Entry 58510.1 338504 397014.1

ond (IPns).1 We examined both broadcast-based and
Cyclone-style designs, varying instruction window size
(for broadcast designs) and issue width. Figure 6 com-
pares 4-wide execute configurations, while Figure 7 exam-
ines 8-wide configurations. Because the size of the register
file changes dramatically with the number of ports, its
total size is a large factor when making decisions on
scheduler design. Figure 8 presents the design space for
both widths, with the register file area included. The
breakdown of the scheduler and register file area is given
in Table 2. The Cyclone scheduler’s simplicity and lack of
global control allows for fast clock rates and high through-
put, but in far less area than same-width conventional
designs.

5 Related Work
The technique of timing instruction arrival to execu-

tion, based on dynamic dependence information, has been
gainfully employed in the past. Our pre-scheduler design
is most like Michaud’s dataflow prescheduler [12] in
which a timed queue structure was filled by a list-like sin-
gle-pass instruction scheduler. In Michaud’s design,
instruction’s progressed into a small CAM-based dynamic
scheduler where there were precisely scheduled. Pala-
charla’s dependence-based FIFO schedulers [19] queues
instructions behind dependent operations. The FIFO
queues lead to a small CAM-based schedule window. The
queues are stepped individually based on availability of
operands in the scheduler window. The ILDP processor
further refines the dependence-based instruction schedul-
ers to include instruction set support for describing depen-
dent instruction chains [9]. LeBeck’s WIB scheduler
identifies instructions dependent on long latency opera-
tions (data cache misses), and directs these operations to a
secondary scheduler [10]. When the long latency opera-

tion nears completion, the dependent operations are
dumped en masse into a small CAM-based dynamic
scheduling window. Morancho used a similar approach to
move dependent operations following long latency
instructions out of the instruction window [14]. Unlike the
WIB, they record relative instruction latencies to simplify
the re-execution of operations once a valid schedule has
been built. We utilize a similar approach in our replay
mechanism. As instructions replay, dependencies between
dependent operations are maintained by their spacing in
the scheduler queues. Unlike the WIB and Morancho's
work, our scheduler is completely broadcast free. We pick
a schedule and fully commit to it for the lifetime of the
instruction, using the replay mechanism to accommodate
any incorrectly scheduled instructions. Raasch’s seg-
mented instruction queue [20] utilizes course-grained tim-
ing information to direct instructions to a sequence of
small CAM-based instruction windows. As instructions
near execution, they move to instruction queues closer to
functional unit results.

Our Cyclone scheduler builds on these previous
efforts in a number of ways. First, our design demonstrates
that effective dynamic scheduling can be implemented
without complex broadcast structures. We build a high-
quality preschedule one time and then commit to this deci-
sion for the duration of an instruction’s lifetime. Broad-
cast-based schedulers, on the other hand, continually re-
evaluate their schedule. Second, our scheduling approach
incorporates memory scheduling as a first-class concern in
the design. It is, in fact, the great accuracy of the store set
predictor that allows our scheduler to make scheduling
decisions only once, thus eliminating the need for broad-
cast structures. Third, our scheduler design incorporates a
straightforward mechanism for selective replay of incor-
rectly scheduled instructions. And finally, our parallel pre-
scheduler design reduces logic complexity by recognizing
that a vast majority of instructions within fetch groups are
independent or form dependence chains of at most two
instructions. This observation allows us to efficiently
schedule dependent operations within the same cycle.

The use of decentralized dependence analysis (and
schedule recovery) is a the central idea of the counter-

Figure 6. Performance and area for the 4-wide
scheduler design space. The most optimal designs are

those above (higher performance) and to the left (lower
area use) of other designs.

1. For the purposes of our study, we assume that the scheduler critical
path is the limiting factor in determining the clock speed of the entire processor.
This may or may not be true for actual full implementations. Alternatively, if
another pipeline stage limits the clock speed gains that can be achieved, the perfor-
mance headroom afforded by a lower complexity scheduler can instead be used for
energy and power savings or to exploit more parallelism.

16-entry 4-issue

32-entry 4-issue

64-entry 4-issue

128-entry 4-issue

Cyclone 4-decode 4-
issue

0

1

2

3

4

5

6

7

0 10000 20000 30000 40000 50000 60000 70000 80000

Register Bit Equivalent (RBE) Area

S
ch

ed
u

le
r

T
hr

ou
g

h
p

ut
 (

IP
n

s)

Figure 7. Performance and area for the 8-wide
scheduler design space. The most optimal designs are

those above (higher performance) and to the left (lower
area use) of other designs.

16-entry 8-issue

32-entry 8-issue

64-entry 8-issue

128-entry 8-issue

Cyclone 8-decode 8-
issue

Cyclone 4-decode 8-
issue

0

1

2

3

4

5

6

7

8

0 50000 100000 150000 200000 250000 300000

Register Bit Equivalent (RBE) Area

S
ch

ed
u

le
r

T
h

ro
u

g
hp

u
t

(IP
ns

)

dataflow architecture [13][26]. In the counterflow pipe-
line, instructions and data flow in opposite directions on
circular queues. When instructions that are waiting to exe-
cute pass input operands, the data needed to execute is
captured by the dependent instruction. Once an instruction
has captured all its operands, it continues to cycle until it
locates an appropriate functional unit, at which time it
leaves the queue to begin execution. The approach is simi-
lar to our replay queue, which cycles instructions around
the replay loop until they meet their input operands. Our
design improves on counter-dataflow through the use of
pre-scheduling, which is an effective approach to orches-
trating the entry of instructions into decentralized depen-
dence queues. More accurate scheduling ensures that
when instructions have an opportunity to execute, their
operands will very likely be available.

A number of previous efforts have utilized the register
forwarding infrastructure to initiate selective instruction
re-execution. The sentinel scheduling technique [11] used
“poison bits” contained in the register file that were set
when load instructions faulted or did not complete. A
branch back to the start of the faulting code would then
selectively re-execute the faulting code sequence. As
instructions read their registers, only those instructions
with poison operands needed to re-execute. The approach
is quite similar to our replay queue approach, except
instead of redirecting program control, we redirect the
instructions themselves back into the replay queue. Poison
bits were employed in a similar manner by Rogers [21].
The dynamic scheduler was used to identify long latency
operations in the WIB scheduler [10]. Using a tagged
“pretend ready” register tag broadcast, the design was
capable of waking up only the instruction dependent on
long latency cache misses.

There have been several other efforts to reduce the
complexity of dynamic schedulers. Many current designs
bank their selection logic by having separate groups of res-

ervation stations for each functional units [7]. Each of
these groups has its own, smaller, selection network.
While result tag broadcasts still need to be sent to all of the
reservation stations, the latency of selecting instructions
for execution is reduced. Stark, Brown, and Patt have pro-
posed two methods for pipelining wakeup and selection
logic, allowing for a faster clock. For their first method
[27], each reservation station entry carries its own input
tags along with its parent instructions’ input tags in order
to allow back-to-back dependent instructions to execute
consecutively. They also propose speculating on which
parent instruction will finish last, reducing the number of
“grandparent” tags that must be stored. Their second
method, select-free logic [3], enables pipelining by allow-
ing all instructions that wakeup to broadcast back into the
window the following cycle, even though some of them
may not be selected for execution. We observed in our pre-
vious work [5] that many instructions have one or more
ready operands when scheduled, thus specialized windows
can be used to reduce the number of tag comparisons nec-
essary for dynamic scheduling. Tag comparisons were
reduced further with a last-tag predictor, which uses reser-
vation stations that ignore all but the tag predicted to be
delivered last to the instruction.

6 Conclusions
Traditionally, there have been two primary instruction

scheduling mechanisms, both of which have their respec-
tive problems. Compile-time scheduling suffers from less
than ideal schedules due to lack of information about run-
time events. Dynamic schedulers, while able to generate
higher quality schedules, utilize very complex issue logic
that can become a bottleneck in the instruction pipeline.

We have introduced the Cyclone scheduler, which
draws techniques from both these approaches to achieve
schedules that rival that of other dynamic schedulers with-

Figure 8. Performance and area overview. Designs shown are for issue widths of 4 and 8 and include register file
area. The most optimal designs are those above (higher performance) and to the left (lower area use) of other designs.

32-entry 4 -is s ue

64-ent ry 4-is s ue

16-e ntry 8-is s ue

32-e ntry 8-is s ue

64 -ent ry 8-is s ue

16-ent ry 4 -is s ue

128 -ent ry 4-is s u e

Cy c lon e 4-dec ode 4-
is s ue

128-entry 8 -is s ue

Cy c lone 4-d ec ode 8-
is s ue

Cy c lone 8-dec ode 8-
is s ue

0

1

2

3

4

5

6

7

8

0 100 000 20 0000 300 000 40000 0 5 00000 600000 7 00000

Re g iste r B i t Eq u iva le n t (R BE) A re a

S
ch

ed
u

le
r

T
h

ro
ug

hp
u

t (
IP

ns
)

out the need for complex wakeup and selection logic. The
Cyclone scheduler relies on a simple one-pass scheduling
algorithm to predict the time when instructions should
execute. Once decided, this schedule is implemented with
a timed queue structure that additionally supports efficient
selective replay in the event of an incorrect schedule. Even
though the Cyclone scheduler design possesses no global
communication to slow clock speeds, it rivals the instruc-
tion throughput of similarly wide monolithic dynamic
schedulers.

7 Future Work
Looking forward, there are a number of additional

refinements that could be made to the Cyclone scheduler.
Because instruction decisions are made far in advance of
actual execution, there exists opportunities to leverage this
advanced knowledge of instruction execution patterns. For
example, register dependency information could be used
to prefetch into a register cache, or instruction opcodes
could be use to power-up unused function units. Although
not the focus of this work, many optimizations could be
implemented to further reduce Cyclone scheduler power.
For example, portions of each queue entry could be turned
off unless required by execution demands, or dynamic
power could be reduced by shifting the issue point rather
than the instructions themselves. Finally, because the
Cyclone scheduler structure can more easily scale with
issue width, it may be applied to some schemes which try
to fill up wider pipelines, such as simultaneous multi-
threading.

 Acknowledgements
We would like to thank all of our reviewers and colle-

gues for their insights and suggestions for strengthening
our paper. Specifically, we’d like to thank Mark Brehob
for his logic design expertise.

This work was supported the National Science Foun-
dation CADRE program, grant no. EIA-9975286, and by a
National Science Foundation CAREER award, grant no.
CCR-0093044.

 References
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D.

Burger. Clock Rate Versus IPC: The End of the Road for Conven-
tional Microarchitectures, In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA-27), June 2000.

[2] Todd Austin, Eric Larson, Dan Ernst. SimpleScalar: an
Infrastructure for Computer System Modeling, IEEE Computer, Vol-
ume 35, Issue 2, Feb 2002.

[3] Mary D. Brown, Jared Stark, Yale N. Patt. Select-Free
Instruction Scheduling Logic, In Proceedings of the International
Symposium on Microarchitecture (MICRO-34), December 2001.

[4] George Z. Chrysos and Joel S. Emer. Memory Dependence
Prediction Using Store Sets. In Proceedings of the 25th International
Symposium on Computer Architecture (ISCA-25), June 1998.

[5] Dan Ernst and Todd Austin. Efficient Dynamic Scheduling
through Tag Elimination, In Proceedings of the 29th International
Symposium on Computer Architecture (ISCA-29), May 2002.

[6] Masahiro Goshima et al. A High-Speed Dynamic Instruc-
tion Scheduling Scheme for Superscalar Processors, In Proceedings
of the 34th annual ACM/IEEE International Symposium on Microar-
chitecture (MICRO-34), December 2001.

[7] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach, 3rd edition, Morgan Kaufmann Publishers,
2002.

[8] Intel Itanium Architecture Reference Manual, http://
www.intel.com/design/itanium/manuals.htm.

[9] Ho-Seop Kim and James E. Smith. An Instruction Set
Architecture and Microarchitecture for Instruction Level Distributed
Processing, In Proceedings of the International Symposium on Com-
puter Architecture (ISCA-29), May 2002.

[10] Alvin R. Lebeck, Jinson Koppanalil, Tong Li, Jaidev Pat-
wardhan, and Eric Rotenberg. A Large, Fast Instruction Window for
Tolerating Cache Misses, In Proceedings of the International Sym-
posium on Computer Architecture (ISCA-29), May 2002.

[11] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank,
W.M. W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel scheduling
for VLIW and superscalar processors, ACM Transactions on Com-
puter Systems, 11(4):376--408, 1993.

[12] Pierre Michaud and André Seznec. Data-flow Preschedul-
ing for Large Instruction Windows in Out-of-order processors. In
Proceedings of the 7th International Symposium on High-Perfor-
mance Computer Architecture (HPCA-6), January 2001.

[13] Michael F. Miller, Kennneth J. Janik, and Shih-Lien Lu.
Non-stalling Counterflow Architecture, In Proceedings of the Con-
ference on High Performance Computer Architecture (HPCA-4),
May 1998.

[14] E. Morancho, J.M. Llaberia, A. Olive. Recovery Mecha-
nism for Latency Misprediction, In Proceedings of the 2001 Interna-
tional Symposiom on Parallel Architectures and Compilation
Techniques (PACT-2001), September 2001.

[15] The MOSIS Service, http://www.mosis.com
[16] Steven S. Muchnick. Advanced Compiler Design &

Implementation, Morgan Kaufmann Publishers, 1997.
[17] J.M. Mulder, N.T. Quach, and M.J. Flynn. An Area Model

for On-chip Memories and its Application, In IEEE Journal of Solid-
State Circuits, Volume 26 Issue 2, Feb 1991.

[18] Alexandru Nicolau. Run-Time Disambiguation: Coming
with Statically Unpredictable Dependencies, IEEE Transactions
Computers, Volume 38 No. 5, May 1989.

[19] S. Palacharla, N. P. Jouppi, and J. Smith. Complexity-
effective Superscalar Processors, In Proceedings of the 24th Annual
International Symposium on Computer Archtecture (ISCA-24), June
1997.

[20] S. Raasch, N. Binkert, and S. Reinhardt. A Scalable
Instruction Queue Design Using Dependence Chains, In Proceed-
ings of the 29th Annual International Symposium on Computer
Architecture (ISCA-29), May 2002.

[21] Anne Rogers and Kai Li, Software Support for Specula-
tive Loads, In Proceedings of the Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS
‘92), 1992.

[22] A. Seznec, E. Toullec, O. Rochecouste. Register Write
Specialization Register Read Specialization: A Path to Complexity
Effective Wide Issue Superscalar Processors, In Proceedings of the
35th International Symposium on Microarchitecture (MICRO-35),
November 2002.

[23] Timothy Sherwood, Erez Perelman, Greg Hamerly and
Brad Calder. Automatically Characterizing Large Scale Program
Behavior, In Proceedings of the Tenth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2002), October 2002.

[24] Michael D. Smith, Mark Horowitz and Monica S. Lam.
Efficient Superscalar Performance Through Boosting, In Proceed-
ings of the Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ‘92), 1992.

[25] Standard Performance Evaluation Corporation, http://
www.specbench.org.

[26] R.F. Sproull, I.E. Sutherland and C.E. Molnar. The Coun-
terflow Pipeline Processor Architecture, IEEE Design and Test of
Computers, Vol. 11 No. 3, Fall 1994.

[27] J. Stark, M. D. Brown, Y. N. Patt. On Pipelining Dynamic
Instruction Scheduling Logic, In Proceedings of the International
Symposium on Microarchitecture (MICRO-33), December 2000.

[28] John F. Wakerly. Digital Design Principles and Practices,
3rd edition, Prentice Hall, 2001.

[29] K.C. Yeager. The MIPS R10000 Superscalar Micropro-
cessor, IEEE Micro, Volume 16, Issue 2, April 1996.

