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Abstract

Energy efficient architecture research has flourished recently, in an attempt to address packaging
and cooling concerns of current microprocessor designs, as well as battery life for mobile computers.
Moreover, architects have become increasingly concerned with the complexity of their designs in the
face of scalability, verification, and manufacturing concerns.

In this paper, we propose and evaluate a high performance, energy and complexity efficient front-end
prefetch architecture. This design, called Serial Prefetching, combines a high fetch bandwidth branch
prediction and efficient instruction prefetching architecture with a low-energy instruction cache. Serial
Prefetching explores the benefit of decoupling the tag component of the cache from the data component.
Cache blocks are first verified by the tag component of the cache, and then the accesses are put into
a queue to be consumed by the data component of the instruction cache. Energy is saved by only
accessing the correct way of the data component specified by the tag lookup in a previous cycle. The
tag component does not stall on a I-cache miss, only the data component. The accesses that miss in the
tag component are speculatively brought in from lower levels of the memory hierarchy. This in effect
performs a prefetch, while the access migrates through the queue to be consumed by the data component.

1 Introduction

At a high-level, a modern high-performance processor is composed of two processing engines: the front-
end processor and the execution core. This producer and consumer relationship between the front-end and
execution core creates a fundamental bottleneck in computing, i.e., execution performance is strictly limited
by fetch performance.

An energy efficient fetch design that still achieves high performance is important because overall chip
energy consumption may limit not only what can be integrated onto a chip, but also how fast the chip can
be clocked [6]. Brooks et al. [2] report that instruction fetch and the branch target buffer are responsible for
22.2% and 4.7% respectively of power consumed by the Intel Pentium Pro. Brooks also reports that caches
comprise 16.1% of the power consumed by Alpha 21264. Montanaro et al. [5] found that the instruction
cache consumes 27% of power in their StrongARM 110 processor.

The goal of the research presented in this paper is to create a fetch engine that provides:

1. high fetch bandwidth for wide issue processors

2. a complexity effective design that will scale to future processor technologies
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3. efficient instruction prefetching to better tolerate memory latencies

4. a design that is as energy efficient as possible, while still achieving the above three goals

In [12, 13], we proposed a fetch architecture that provides high fetch bandwidth for wide issue archi-
tectures and can scale to future processor technologies by using a multi-level branch predictor decoupled
from the instruction cache. The decoupled branch predictor enabled a highly accurate instruction prefetch
architecture.

In this paper, we propose a new prefetch architecture that builds upon our prior design. We examine
integrating an energy efficient serial access instruction cache into a high performance instruction prefetch
architecture to achieve the above design goals. This design features an intelligent cache replacement and
consistency mechanism that reduces the complexity of our prior instruction prefetching scheme from [13].

2 An Energy Efficient Multi-Component Cache

Instruction cache performance is vital to the processor pipeline. Associativity is a useful technique to im-
prove cache performance by reducing conflict misses in the cache. The conventional set-associative cache
design probes the tag and data components of the cache in parallel to reduce the cache access time. We refer
to this design as the parallel cache. This approach wastes energy in the bitlines and sense amps of the cache
as it must drive all associative ways of the data component.

A serial cache design breaks up the instruction cache lookup into two components – the tag comparison
and the data lookup. The data component is responsible for the majority of the power consumed in the
access. If the way is known or predicted before the data component is accessed, we will avoid unnecessarily
driving the bitlines of other ways of the cache and decrease the number of necessary sense amps. This design
has been used for L2 caches, and recently for data caches on graphics cards [9, 7]. The Alpha 21264 [8]
splits the tag and data component of its direct-mapped second level cache, effectively creating a serial L2
cache design. Solomon et al. [17] examined the use of a serial cache along with their Micro-Operation
Cache.

The energy efficient cache architecture we use in this paper is the multi-component cache (MC). This
cache has the same tag component arrangement as a regular set-associative instruction cache, but rather than
a single set-associative data component, there are a number of direct mapped data components. The 16KB 2-
way associative configuration shown in Figure 1 has two direct mapped data components, each only 8KB in
size. A 16KB 4-way set associative MC cache would have four 4KB direct mapped data components. Each
direct mapped data component has its own decoder, sense amps, and other auxiliary structures. At most
one data component is enabled at each access, depending on tag information. In this paper, we examine
incorporating the MC cache design into our high bandwidth fetch directed prefetching architecture.

3 High Bandwidth Fetch Architecture

In our prior work (shown in Figure 2), we explored an architecture that decoupled the branch prediction
architecture from the instruction fetch unit (including the instruction cache) to provide latency tolerance
and fetch stream look-ahead. The branch predictor and instruction fetch unit are separated by a queue of
fetch addresses (branch predictions) called the Fetch Target Queue (FTQ) [14]. The FTQ has two primary
functions, it provides latency tolerance between the branch prediction architecture and the instruction fetch
unit, and it provides a glimpse at the future fetch stream of the processor.

The ability of the FTQ to tolerate latency between the branch prediction architecture and instruction
cache enables a multilevel branch predictor hierarchy called the fetch target buffer (FTB) [12]. The FTB



3 HIGH BANDWIDTH FETCH ARCHITECTURE 3

Output Drivers

D
ec

o
d

er

D
at

a 
A

rr
ay

Data Output

Col mux
& sense amps

Way 1Way 0
Way 0

D
ec

o
d

er

D
at

a 
A

rr
ay

Way 1

T
ag

 A
rr

ay

16K-2way Tag Component
8K direct mapped 
Data Component

  Block 
Address

Col mux
& sense amps

Output Drivers

8K direct mapped 
Data Component

Col mux
& sense amps

Comparators

Mux

D
ec

o
d

er

Mux

  Block 
Address

  Block 
Address

Figure 1: A 16KB 2-way set-associative multi-component (MC) cache. This has the same tag component as
the instruction cache, but with multiple data components. Each data component is a direct mapped cache.
For a cache of size C that is A-way set associative, there are A direct mapped caches of sizeC
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Figure 2: The fetch directed prefetching architecture.
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combines a small first level predictor that scales well to future technology sizes with a larger, pipelined
second level structure, which provides the capacity needed for accurate branch prediction. With sufficient
branch predictions stored in the FTQ, the architecture is able to tolerate the latency of the second level
branch predictor access while the instruction fetch unit continues consuming predictions already stored in
the FTQ.

The fetch stream look-ahead provided by the FTQ provides a set of addresses that can be used to perform
other optimizations, such as Fetch-Directed Prefetching (FDP) [13]. The stream of fetch PCs stored in the
FTQ represents the path of execution that the execution core will be following. In that study, we used the
stream of fetch PCs in the FTQ to guide instruction cache prefetching.

To increase the accuracy of the prefetches, we examined using a variety of filtering techniques to reduce
the number of instruction cache prefetches performed. We used what we call Cache Probe Filtering, which
uses the instruction cache tag array to verify potential instruction cache prefetch requests. Prefetches are
only performed if the cache block is not already in the instruction cache. As it is relatively inexpensive to
replicate ports on the instruction cache tag array, a separate port on the tag array can be used to verify FTQ
entries for prefetching.

These techniques provide a significant boost to performance, and in this paper, we examine a new
architecture that improves the energy efficiency and reduces the complexity of the fetch directed prefetching
architecture.

3.1 Complexity Concerns

In Figure 2, the branch predictor feeds fetch blocks into the FTQ where they are consumed by the instruction
fetch unit, which contains the instruction cache. Each FTQ entry contains a fetch block PC, a fetch distance,
and a branch target. The fetch block prediction stored in a given FTQ entry may span up to five instruction
cache blocks.

With FDP, any entry in the FTQ can potentially initiate a prefetch. This would require a connection from
each FTQ entry to the prefetch engine via a multiplexor. This could have substantial design and performance
implications. Rather than allowing a prediction to proceed from any entry in the FTQ, we could restrict the
number of FTQ entries the architecture is allowed to initiate prefetches from. However, we found that
having those restrictions resulted in a significant performance loss. If we restrict prefetching to only the
entries at the head of the FTQ, the prefetcher is not able to look far enough ahead to provide a timely
prefetch. Restricting prefetching to FTQ entries towards the tail of the FTQ (near the branch predictor)
results in reduced coverage, since those FTQ entries are not occupied with fetch blocks a sufficient fraction
of the time to provide maximum benefit. Therefore, it is beneficial to have a large window of cache blocks
to prefetch from in the FTQ in order to achieve the maximum performance.

For each potential prefetch address, the fetch-directed prefetch architecture in [13] uses a tag port in the
instruction cache, to first see if the cache block is in the cache. This is called Cache Probe Filtering, and
significantly increases the accuracy of the prefetcher. It filters L2 prefetch requests, thereby reducing energy
dissipation and saving bus bandwidth. Therefore, the FDP architecture can require a given instance of a
cache block to access the instruction cache tag array twice (first for prefetch filtering, and secondly for the
actual cache access).

The complexity of processing any FTQ entry to perform a prefetch, and the fact that the FDP architecture
requires two tag lookups for every cache block motivated us to examine a design where we effectively
move part of the FTQ between the tag and data components of the instruction cache lookup. We call this
architecture the Serial Prefetch architecture, and describe it in detail in the next section.
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4 Serial Prefetch Architecture

To address the issues described in the previous section, we start by decoupling the tag component from
the data components of the instruction cache. Figure 3 shows the Serial Prefetch (SP) architecture. There
are three pipeline stages: branch prediction, tag check, and data lookup. An MC instruction cache is used,
and split into tag and data components separated by a queue of cache block requests called the cache block
queue (CBQ). The tag component does not block, but the data component blocks on a lookup if the data is
not ready, as explained below.

The tag component of the instruction cache consumes fetch block addresses from the FTQ and verifies
whether or not the cache blocks within the fetch block are already in the instruction cache. If a cache block
is not found by the tag lookup, the prefetch engine can speculatively fetch the block from the L2 cache.
The tag component inserts an entry into the CBQ that corresponds to a single cache block request. The data
component then consumes this entry and if the block was found to be in the cache (i.e. a known cache hit),
it uses the additional state in the CBQ entry to drive the appropriate associative way. We can also use the
entries stored in the CBQ to guide cache replacement.

The FTB can provide up to five cache blocks in a single fetch block, but it is expensive (both in terms
of power and access time) to add additional ports to the data component of the instruction cache to handle
multiple cache blocks. Simply adding extra ports to the tag component of the instruction cache is cheaper
than multiporting the data component. This allows the tag component to run ahead of the data component
to examine the future cache block request stream of the processor. With the CBQ, the tag component can
also run ahead of the data component if the data component has stalled due to a full instruction window or
if it is waiting on data from a cache miss.

However, there is a serious consistency issue which must be addressed. If the tag component is allowed
to run ahead of the data component, it is possible that a cache data block may be in contention for replace-
ment after the tag component has already verified that it is in a particular way of the instruction cache. When
the cache block address is sitting in the CBQ waiting to be consumed, its corresponding data block must not
be evicted to ensure correctness. To provide for this, we propose the use of a cache consistency mechanism
called the Cache Consistency Table (CCT), which will be explained in Section 4.3.

We will now examine the structures of the serial prefetch architecture in more detail.

4.1 Prefetch Buffer and Cache Misses

As branch mispredictions do occur, it is not always desirable to bring cache blocks directly into the instruc-
tion cache, as they may be on a mispredicted path and could potentially replace a useful block. Therefore,
we make use of a separate fully associative structure to hold cache blocks, the Prefetch Buffer (PB), which
holds cache blocks (analogous to the prefetch buffer from [13]).

The PB works in parallel with the instruction cache for both tag checks and data lookups. The tag
components of the instruction cache and PB consume an entry from the FTQ and check each cache block
address in the fetch block to determine whether it is a hit in the instruction cache or PB — or if it missed
in both and must be retrieved from the lower levels of the memory hierarchy. A new entry is inserted in
the CBQ for each cache block that is verified from the FTQ. Then, when the entry is consumed from the
CBQ, extra bits contained in the entry will indicate which directed mapped data component (to save energy)
should be accessed, and if that component is part of the instruction cache or PB. Note that the PB only has
32 entries (1 KB) and is not drawn to scale with respect to the instruction cache in Figure 3.

If a cache block is not found in the instruction cache or PB during the tag check, then it is prefetched
from the lower levels of the memory hierarchy and brought into the PB. When the miss is detected, a PB tag
entry is allocated using the consistency mechanism described below. If a PB tag entry cannot be allocated,
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Figure 3: The pipeline for the serial prefetch architecture.

then the tag lookup pipeline stage stalls until an entry in the PB is allocated. The CBQ entry of the block
that misses will be marked as cache miss, and it will specify the entry in the PB where the cache block is to
be found. When the CBQ entry is consumed by the data lookup, the PB cache block is used and potentially
brought into the instruction cache depending upon the cache consistency table, which specifies if a given
block can be replaced or not.

This approach does not allocate blocks into the instruction cache until they are used by the data compo-
nent. This reduces cache pollution caused by branch mispredictions. We found this to perform better than
allocating the cache block during the tag component pipeline stage when the initial miss occurs.

4.2 Cache Block Queue

The CBQ holds a cache block address, block location bits, instruction cache way bits, and PB index bits.
The block location bits represent whether the cache block that the entry represents is in the instruction cache,
in the PB, or is to be brought into the PB from another level of the memory hierarchy. The way bits are
fed into the data component of the instruction cache on an instruction cache hit. These bits indicate which
direct mapped component should be activated (i.e. what data way the tag component found the data in – the
output from the comparators of the tag array). When the cache block hits in the PB, the PB index is used to
keep track of the location of the cache block in the PB. If the cache block is prefetched from lower levels of
the memory hierarchy, the PB index holds the location where the prefetched cache block will be stored.

The size of the CBQ can be used to control the amount of prefetching that occurs. The larger the queue,
the more the tag comparator can be allowed to run ahead of the data output components, and the more cache
blocks (not found in the instruction cache by the tag component) that can potentially be brought into the PB.
The further ahead the tag component runs of the data components, the earlier the prefetch can occur and
the more memory latency that can be hidden. However, there is also a greater chance of speculating down
a mispredicted control path. Therefore the size of the CBQ trades the benefit obtainable from prefetching
with the amount of power potentially wasted on mispredicted control paths (similar to the tradeoffs inherent
in FTQ size). The CBQ is flushed on a branch misprediction.
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4.3 Consistency Mechanism

Because the tag component can verify cache blocks far in advance of the data component and we perform
replacement in the data lookup pipeline stage, we need some consistency mechanism to guarantee that cache
blocks verified by the tag component are not evicted during cache replacements before they can be accessed
in the data lookup stage. We maintain an extra table, called the cache consistency table (CCT), to guarantee
this. The CCT is a tagless buffer, with one entry for every cache block in the instruction cache, but with
much smaller blocks – each CCT block only holds an N-bit counter. For example, assuming the use of a
3-bit counter, a 16KB 2-way associative instruction cache would only need a 320 byte table (a structure
roughly 1% of the size of the instruction cache).

The counter stored in each CCT entry represents the number of outstanding verified cache block requests
sitting in the CBQ for the corresponding data block in the instruction cache. When the tag component
verifies a cache block in the tag check stage, the N-bit counter in the CCT corresponding to that cache block
is incremented. When a data component accesses an instruction cache block, the N-bit counter in the CCT
corresponding to that cache block is decremented. On a misprediction or misfetch, the CCT is flushed (set
to zero), just as the CBQ is also flushed. The mapping from instruction cache to CCT is implicit and does
not require tags – since both structures have the same number of entries and associativity, they have identical
decoders.

This consistency mechanism also extends to the prefetch buffer. The PB has its own dedicated CCT as
shown in Figure 3. If the desired cache block is not found in the instruction cache, but is in the PB, a N-bit
counter associated with this block in the PB is incremented each time that block is placed in the CBQ. This
is necessary to preserve cache consistency so that a cache block in the PB that a CBQ entry points to is not
replaced.

The CBQ provides a means to look ahead at the behavior of the instruction cache. In addition to reducing
energy by only accessing the data component known to contain the desired cache block, the CBQ can also
help guide instruction cache or PB replacement, with the help of the CCT. When a cache block is brought
into the instruction cache from the PB, a block is chosen for replacement from the set that has a zero CCT
entry. This ensures that a cache block, which a later CBQ entry wants to use, does not get removed from
the cache. This policy overrides the standard LRU replacement policy of the instruction cache. If all cache
blocks in a particular cache set are marked in the CCT (meaning no replacement for the new cache block
exists), then the block is not put into the instruction cache, and instead just stays in the PB until used again
or is replaced. Similarly, the replacement policy ensures that entries in the PB with non-zero N-bit counters
are not replaced by new prefetches until they are have been using by the CBQ entry that incremented their
N-bit counter. In this manner, the PB acts as a flexible depository of instruction cache blocks for contended
cache sets – directed by the CBQ and CCT.

On a branch misprediction, all entries in the PB have their CCT entries cleared (i.e. set to zero) – but the
PB is not flushed. New PB entries are allocated based on a LRU replacement policy of the entries that have
cleared N-bit counters. If an entry in the PB with a cleared N-bit counter matches a desired cache block in
the tag check stage, the N-bit counter is incremented, and any second level cache access is avoided. This
way, when a mispredicted short forward jump or other wrong-path prefetch is encountered, the prefetching
performed on the mispredicted path can be reused. When the processor encounters a miss in both the PB and
instruction cache, and there are no entries in the PB with cleared N-bit counters, the tag components of both
the PB and instruction cache stall until the N-bit counter of a PB entry has been decremented to provide a
space for the desired cache block. This will happen either once the CBQ drains far enough to clear an N-bit
counter or if a branch misprediction is detected.

In this paper, we use 5-bit CCT counters when using a 32 entry CBQ, and 3-bit CCT counters when
using a 12 entry CBQ.
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5 Methodology

The simulator used in this study was derived from the SimpleScalar/Alpha 3.0 tool set [3], a suite of func-
tional and timing simulation tools for the Alpha AXP ISA. The timing simulator executes only user-level
instructions, performing a detailed timing simulation of an aggressive 8-way dynamically scheduled micro-
processor with two levels of instruction and data cache memory. Simulation is execution-driven, including
execution down any speculative path until the detection of a fault, TLB miss, or branch misprediction.

To perform our evaluation, we collected results for 5 of the SPEC95 C benchmarks plus 2 of the
SPEC2000 C benchmarks. We only selected benchmarks that exhibited adequate instruction cache miss be-
havior in presenting our results – but there was no performance degradation for benchmarks without instruc-
tion cache pressure. The programs were compiled on a DEC Alpha AXP-21164 processor using the DEC
C and C++ compilers under OSF/1 V4.0 operating system using full compiler optimization (-O4 -ifo).
Each benchmark was fast forwarded before actual simulation as described by Sherwood et. al. [16]. Their
approach uses basic block fingerprinting to determine how far to fast forward in order to have accurate
simulation points.

5.1 Baseline Architecture

Our baseline simulation configuration models a next generation out-of-order processor microarchitecture.
We’ve selected parameters to capture underlying trends in microarchitectural design. The processor has a
large window of execution; it can fetch up to 8 instructions per cycle. It has a 128 entry re-order buffer with a
32 entry load/store buffer. We simulated perfect memory disambiguation (perfect Store Sets [4]). Therefore,
a load only waits on a store it is really data dependent upon. To compensate for the added complexity of
disambiguating loads and stores in a large execution window, we increased the store forward latency to 3
cycles.

There is an 8 cycle minimum branch misprediction penalty. The processor has 8 integer ALU units,
4-load/store units, 2-FP adders, 2-integer MULT/DIV, and 2-FP MULT/DIV. The latencies are: Int ALU 1
cycle, Int MULT 7 cycles, Int DIV 12 cycles, FP ALU 4 cycles, FP MULT 4 cycles, and FP DIV 12 cycles.
All functional units are fully pipelined allowing a new instruction to initiate execution each cycle.

We use a 128 entry 4-way associative FTB with a 2K entry 4-way associative second level FTB. Each
fetch block stored in the FTB can span up to five sequential cache blocks. We use the McFarling bi-modal
gshare predictor [10], with an 8K entry gshare table and a 64 entry return address stack in combination with
the FTB. We use a 32 entry FTQ in conjunction with the FTB.

5.2 Memory Hierarchy

We rewrote the memory hierarchy in SimpleScalar to model bus occupancy, bandwidth, and pipelining of
the second level cache and main memory. We provide results for instruction caches with a single ported data
component and dual ported tag component. We found that this port configuration provides the best tradeoff
between performance and energy dissipation. Additional tag or data ports impacted energy dissipation more
than they helped performance. The data cache for each configuration is a 4-way set associative 32KB cache
with 32 byte lines. Results are gathered using a 16KB 2-way associative instruction cache.

The second level cache is a unified 1 MB 4-way set associative pipelined L2 cache with 64-byte lines.
The L2 hit latency is 12 cycles, and the round-trip cost to memory is 100 cycles. The L2 cache has only a
single port. The L2 cache is pipelined to allow a new request every 4 cycles, so the L2 bus can transfer 8
bytes/cycle. The L2 bus is shared between instruction cache block requests and data cache block requests.
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Figure 4: IPC and Energy results

5.3 Energy Model

The amount of energy consumed by a circuit influences layout issues, power-supply requirements, thermal
considerations, and even reliability [11]. We are interested in building an architecture that combines high
performance with energy efficiency.

The energy data we need to generate results is gathered using the new CACTI cache model version 2.0
developed by Reinman and Jouppi [15]. CACTI 2.0 contains a detailed model of the wire and transistor
structure of on-chip memories, verified by hspice. We modified CACTI 2.0 to model the timing and energy
consumption of the front-end structures of our architecture. CACTI 2.0 uses data from 0.80�m process
technology and can then scale timing data by a constant factor to generate timings for other process tech-
nology sizes. We examine timings for the 0.10�m process technology size, which makes use of a 1:1V

Vdd.
CACTI 2.0 reports energy data for successful cache accesses. We modified CACTI 2.0 to report en-

ergy data for successful accesses, misses, tag probes, and writes. Since we are concerned with instruction
caches, we only examine cache writes as replacements from lower levels of the memory hierarchy. Also, we
modified CACTI 2.0 to support extra ports on just the tag array of the cache.

We further modified CACTI 2.0 to estimate the power consumption of all front-end structures, including
the FTB, FTQ, instruction cache, L2 cache (a unified cache – but we only counted power from front-end
requests, not from data cache misses), and other auxiliary structures that have been introduced (CBQ, CCT,
and PB). For each, we modified the BITOUT, ADDRESS BITS, and block size parameters appropriately.
When we report energy dissipation results in Joules, this includes the power dissipated by all the above listed
front-end structures.

6 Results

Figures 4(a) and (b) present IPC and Energy results for five architectures. The first two bars represent the
pipelined parallel instruction cache from prior work – with and without FDP using cache probe filtering:
Pipelined (no prefetch) and Pipelined-FDP. The remaining three bars represent the serial prefetch architec-
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Figure 5: Energy breakdown for 16KB 2-way set associative cache.

ture with the MC cache. SP (no prefetch) is the serial prefetch architecture with a 0 entry CBQ. The other
two bars represent the serial prefetch architecture with a 12-entry CBQ (SP-12) and a 32-entry CBQ (SP-
32). All instruction caches are 16KB 2-way set associative, with two tag array ports and a single data array
port. Instruction cache miss rates are shown under each benchmark in (a).

Because both the pipelined parallel cache and the serial prefetch architecture feature instruction cache
accesses across 2 pipeline stages, the performance of these architectures without any form of prefetching
(i.e. without a CBQ) is identical. However, the use of the MC cache in the serial prefetch architecture
provides a 24% reduction in energy dissipation on average over the pipelined parallel cache. The use of a
32-entry CBQ provides a 31% improvement in IPC over the architecture with a 0-entry CBQ (no prefetch).

For all benchmarks, the serial prefetch architecture with a 12 or 32 entry CBQ is able to perform as well
or better than the pipelined parallel cache with fetch directed prefetching. The SP-32 architecture is able to
use 21% less energy on average than the parallel pipelined cache with FDP. The SP-12 architecture is able
to use 26% less energy.

The difference between the SP-12 and SP-32 architectures is relatively small for most benchmarks, with
the exception of vortex. This benchmark is plagued by a larger instruction cache miss rate than other
benchmarks and can therefore take full advantage of the intelligent replacement policy provided by the CCT
in the serial prefetch architecture.

Finally, we have traded complexity in the design of both the FTQ and the FDP prefetch mechanism for
the addition of the CBQ and CCT to the Serial Prefetch architecture. By consolidating prefetch verification
and enqueue to a single site (the tag component of the MC cache), we have reduced the amount of wire
needed around the FTQ. This could have a large impact at future technology sizes. Moreover, we have
reduced the number of accesses to the tag array of the instruction cache and the number of times that an
FTQ entry needs to access an address generator. The CBQ, CCT, and PB are all small structures which
will scale well to future technology sizes [1]. Also, by integrating prefetching into the regular operation
of the instruction cache, we have eliminated some of the scheduling complications that might arise from
having three distinct sources of memory requests (now the instruction cache demand misses and instruction
prefetching requests originate from the same source).

Figure 4(b) showed that the Pipelined cache architectures dissipate considerably more energy than the
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Serial Prefetch architectures. Figure 5 explores this more closely by breaking down the average energy
consumption of the 7 benchmarks by front-end component. The instruction cache, L2 cache, and first level
FTB dissipate the most energy of the front-end structures shown in this Figure. The FTQ, CBQ, and CCT
dissipate very little energy relative to these structures. Prefetching adds to the energy dissipation of the front-
end – but, the SP-32 technique in Figure 4(b) dissipate slightly less energy on average than the Pipelined
(no prefetch) architecture, which does not even include any form of prefetching. This is due to the energy
efficient MC cache design.

7 Summary

In this paper we examined integrating an energy efficient instruction cache into a high fetch bandwidth
architecture with prefetching. The goal was to not sacrifice any performance, but at the same time to reduce
the energy footprint and the complexity of the high fetch bandwidth architectures.

We examined the complexity inherent in the design of a fetch-directed prefetching architecture, and
proposed a novel serial prefetch architecture that decouples the tag and data components of the instruction
cache. This architecture reduces the complexity of the FTQ and energy dissipation over our prior fetch-
directed prefetching architecture. This is made possible by use of a new cache consistency mechanism
(called the CCT) that coordinates the tag and data components of the instruction cache and provides an
improved form of cache replacement.

The best performing serial prefetch architecture provides a 31% improvement in IPC over the parallel
cache with no form of prefetching, and can reduce energy dissipation by 21% over a parallel instruction
cache with fetch directed prefetching. This design is able to scale well to more highly associative caches.
The intelligent replacement mechanism can even provide high performance in applications with severe in-
struction cache thrashing. Finally, the serial prefetch architecture exhibits less complexity along the critical
timing path by reducing wire congestion around the FTQ, and only requiring one tag lookup for a cache
block when it is prefetched.
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