
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.

Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

Reducing Pipeline Energy Demands

with Local DVS and Dynamic Retiming

Seokwoo Lee, Shidhartha Das, Toan Pham, Todd Austin, David Blaauw, and Trevor Mudge
Advanced Computer Architecture Lab

The University of Michigan,1301 Beal Ave, Ann Arbor, MI 48109

razor@eecs.umich.edu

ABSTRACT
The quadratic relationship between voltage and energy has made

dynamic voltage scaling (DVS) one of the most powerful techniques to

reduce system power demands. Recently, techniques such as Razor

DVS, voltage overscaling, and Intelligent Energy Management have

emerged as approaches to further reduce voltage by eliminating costly

voltage margins inserted into traditional designs to ensure always-

correct operation. The degree to which a global voltage controller can

shave voltage margins is limited by imbalances in pipeline stage

latency. Since all pipeline stages share the same voltage, the stage

exercising the longest critical path will define the overall voltage of

the system, even if other stages could potentially run at lower voltages.

In this paper, we evaluate two local tuning mechanisms in the context

of Razor DVS, a local voltage controller scheme that allows each

pipeline stages it's own voltage level, and a lower cost dynamic

retiming scheme that incorporates per-stage clock delay elements to

allow longer-latency pipeline stages to “borrow” time from shorter-

latency stages.

Using simulation, we draw two key insights from our study. First,

mitigating pipeline stage imbalances renders additional DVS energy

savings. A Razor pipeline design with dynamic retiming finds an

additional 12% energy savings over global voltage control (resulting

in an overall energy savings of more than 28% compared to fully-

margined DVS). Second, we demonstrate that imbalances arise not

only from design factors, but also from run-time characteristics. As

the program (or program phase) changes, we see different logic paths

in multiple stages exercised frequently, necessitating a dynamic fine-

tuning of local control. This result suggests that even well-balanced

pipelines could benefit from dynamic retiming.

Categories and Subject Descriptors:
C.0 [Computer System Organization]: System Architecture

General Terms:
Design

Keywords:
Razor, Local DVS, Dynamic retiming with global DVS

1. INTRODUCTION
In recent years, portable electronic devices have endeavored to

deliver higher levels of performance within increasingly
constrained power budgets. While many techniques exist to lower

energy demands, many do so at the cost of reduced processing
throughput. The gap between high performance and low power
can be bridged through the use of dynamic voltage scaling
(DVS), where periods of low processor utilization can be
exploited by lowering the clock frequency to the minimum
required level [7]. Frequency reductions enable similar
reductions in supply voltage, which in turn renders a quadratic
decrease in circuit energy demands [8,9].

With traditional DVS, the voltage allowed at any frequency is
determined at design time using static timing analysis under a
combination of worst-case fabrication and environmental
factors, including process variation, temperature fluctuations,
supply voltage noise, among others. To accommodate these
uncertainties, designers add voltage margins to the critical
voltage to guarantee the correct operation in even with the worst
case scenario. However, previous studies have reported this
conservative approach overly constrains voltage, because the
worst case scenarios are rare [1].

Of particular focus in this work is the recently proposed
Razor DVS technique, a voltage scaling technology that utilizes
in-situ error detection and correct mechanisms to gauge voltage
margins at run-time [1]. The key idea behind Razor is to tune
supply voltage by monitoring circuit timing error rates at run-
time. A global voltage controller seeks out the optimal operating
voltage where the energy benefits of reduced voltage operation
are balanced with the energy cost of recovery due to circuit
timing violations. The approach eliminates all forms of voltage
margin, including those that accommodate design, fabrication
and run-time factors. Previously, a Razor prototype processor
demonstrated (through detailed simulation) that significant
energy savings are possible [1]. In a prototype design, the ALU
was shown to use 42% less energy with Razor DVS, while only
incurring at most a 2.5% performance impact due to circuit
timing error recovery.

As proposed, Razor DVS utilizes a global voltage controller
that adjusts the supply voltage by monitoring the error rate of
the entire pipeline. Voltage is reduced until the most frequently
executed critical logic path is exposed, at which point the
energy cost of recovering from timing errors begin to outweigh
the energy reductions of operating the entire pipeline at a lower
voltage. Because the technique uses a single global voltage, this
constraint is enforced even if other pipeline stages in the design
are not operating at the lowest voltage possible.

In this paper, we investigate two local voltage tuning
techniques to mitigate the effects of imbalances that may arise
in the latency of pipeline stages. The first technique, local DVS,
simply provides each pipeline stage with its own voltage
controller, thus allowing each stage to choose its own optimized
voltage. While ideal for energy reduction, local DVS adds
significant complexity in the form of level converters and added
voltage regulation complexity. To achieve the benefits of local
DVS at lower cost, we propose a novel dynamic retiming
scheme. Dynamic retiming incorporates per-stage clock delay
elements that allow longer-latency stages to “borrow” time from
shorter-latency stages. Using simulation, we draw two key
insights from our analyses. First, we find that eliminating

voltage margins due to imbalances in pipeline stage latency
renders significant DVS energy savings. A Razor pipeline design
with local DVS improves energy saving by 38% on average,
while the reduced-cost dynamic retiming scheme finds a 28%
energy savings. Second, we see that imbalances arise not only
from design factors, but also from run-time characteristics. As
the program (or program phase) changes, the logic paths
exercised most frequently also changes, necessitating a fine-
tuning of local control. This result suggests that even well-
balanced pipeline designs could benefit from dynamic retiming.

The remainder of the paper is organized as follows. In Section
2, we detail Razor DVS and its global voltage control scheme. In
Section 3, we present the local DVS and dynamic retiming
techniques. In Section 4, we give detailed simulation results that
demonstrate the relative benefits of the approaches. Finally,
Section 5 presents related work, and we draw conclusions in
Section 6.

2. RAZOR SYSTEM OVERVIEW

2.1 In-situ Error Detection and Recovery

Razor supports a combination of circuit and architectural
techniques to implement low cost in-situ error detection and
correction of circuit delay failures. By monitoring global errors
rates, Razor’s global voltage controller is able to eliminate
voltage margins by seeking a voltage that minimizes pipeline
energy demands without incurring excessive circuit timing
failures. At the circuit level, the Razor pipeline flip-flops are
augmented with a shadow latch that takes a second sample of
stage values approximately 1/2 clock period into the following
clock cycle. Razor pipeline operating voltage is constrained such
that the worst-case stage delay is guaranteed to meet the shadow
latch setup time, even though the main flip-flop could fail.

By comparing the values latched by main flip-flop and shadow
latch, it is possible to detect timing errors in the main latch. In
this event, the known-correct value in the shadow latch is
forwarded to main latch. Since incorrect values may have been
forward to other pipeline stages at the moment the timing error
occurred, a microarchitectural recovery mechanism must be
invoked to flush potentially incorrect values out of the processor
pipeline. This process can be treated much in the same way as a
branch misprediction, in which all instructions behind the errant
instruction are invalidated, and the pipeline is restarted after the
errant instruction. A particularly important aspect of the Razor
design is that recovery guarantees forward progress for the erring
instruction, hence, it is possible to ensure that a program will
continue to make forward progress (albeit slowly) even if all
Razor latches are failing in all cycles. For additional information
on Razor, including details on metastability detection, Razor
latch design, and microarchitectural recovery techniques, the
reader is referred to a recent article on the subject [1].

2.2 Global Voltage Control

The role of the Razor global voltage controller is to
continually adjust voltage to the point where all voltage margins
have been eliminated. Figure 1 illustrates the Razor global
voltage control system. The controller samples at regular
intervals the pipeline error rate, Esample, to determine the extent
of margins that exist. By maintaining a small but non-zero error
rate Eref, the controller can ensure that system is operating with
minimal voltage margins and minimal performance impacts (due
to timing error recoveries). The controller computes the error
differential, Ediff, which is the input to a simple proportional
voltage controller. The controller operates continuously because
environmental conditions such as temperature or supply noise
may change sufficiently to warrant fine-tuning of global voltage.

2.3 Razor Prototype design

The Razor prototype implementation details, as well as a die
picture, are shown in Figure 2. The entire processor was
specified in Verilog and synthesized using Synopsys Design
Analyzer (version 2003.03-2). The design was taped out in
December 2003, and silicon is expected to be available by the
end of February 2004. The prototype design was implemented in
the TSMC 0.18um process, and it is validated to operate at 180
Mhz. The design implements a 64-bit Alpha pipeline with 4
pipeline stages and 8k-bytes of I-cache and D-cache. Of the 2408
flip-flops in the design, only 192 were on logic paths sufficiently
critical to require Razor flip-flops. (If a logic path is guaranteed
to never fail at the worst-case conditions and voltage, it does not
require a Razor latch.) The delayed Razor clock is delayed by 1/2
the clock cycle from the system clock, generated locally within
the Razor flip-flop by inverting the main clock.

Power analysis was performed on the prototype Razor design,
using both gate level power simulations and SPICE to evaluate
the overhead of the error correction and detection circuits. The
total power consumption during error free operation is expected
to be 425 mW at 1.8 V at a clock frequency of 180 MHz. The
energy consumption of the standard and Razor flip-flops during
error free operation is listed in Figure 2. Two values are shown
for each flip-flop, reflecting the cases when the latched data is
changing (switching) and is not changing (static). The total
power overhead due to the presence of the Razor error detection
and correction circuitry in error-free operation is 3.1% of total
power. The final three rows of the table show the Razor flip-flop
power overheads due to error detection and recovery. The energy
required to detect an error and restore the correct shadow latch
data into the main flip-flop was 210 fJ per error event for each
Razor flip-flop. The total energy to perform a single error
detection and correction event in the Alpha pipeline was 189 pJ,
resulting in an additional Razor flip-flop power overhead of
approximately 1% of total power when operating at a 10% error
rate. Note that additional power overheads (not shown in the
table) are incurred when instructions are flushed out of the
pipeline to recover program state. Simulation based analysis of
pipeline recovery estimated the energy cost of pipeline recovery
to be about 18 times greater than the execution of a single
instruction (details of this analysis can be found in [1]).

3. LOCAL CONTROL SYSTEM

The Razor global voltage control system performs best when
each stage exhibits equal evaluation latency. In this case, the
global control system will tune the voltage just to the point where
each stage continues to operate correctly for most cycles. With
good pipeline balance each stage will run at its own optimal
voltage, i.e., the voltage where all design- and run-time margins
are eliminated. If imbalances occur in the latency of the pipeline
stages, the effectiveness of global DVS decreases, as one (or a
few) stages will set an operating voltage that leaves additional
headroom to lower voltage in shorter-latency stages.

Experimental analysis of the prototype Razor design with
global voltage control indicated that over 90% of timing failures

Figure 1: Razor global voltage control

Eref

Voltage

Control

Function

.

.

.

Pipeline

reset

Vdd

Ediff = Eref - Esample

-

EsampleVoltage

Regulator

Ediff

e
rro

r

s
ig

n
a
lsEref

Voltage

Control

Function

.

.

.

Pipeline

reset

Vdd

Ediff = Eref - Esample

-

EsampleVoltage

Regulator

Ediff

e
rro

r

s
ig

n
a
ls

were confined to the decode (ID) and execute (EX) stages of the
pipeline. This result is in part due to the fact that the ID and EX
stages have high worst-case latency (as measured by the static
timing analyzer). However, additional factors, such as the
frequency of logic path evaluations, also factor into the
effectiveness of global voltage control. For example in the
prototype Razor design, the MEM stage has the longest latency,
yet it rarely constrained global voltage because it generated very
few errors (i.e., its frequently executed circuit paths exhibited
much shorter latency). In the following subsections, we develop
two local control techniques, designed to allow individual stages
to minimize their individual energy requirements.

3.1 Local DVS
The local DVS voltage controller optimization is quite simple

in concept. Instead of constraining pipeline voltage to single
global voltage, local DVS provides each pipeline stage with its
own locally adjustable voltage. The local voltage controller
monitors the local error rate of each pipeline stage, tuning
voltage to maintain a small but non-zero local error rate.
Consequently, each pipeline stage will individually minimize its
energy demands. Each local voltage controller is implemented
using a proportional control function identical to the Razor
global voltage controller.

Local DVS control will certainly perform better than the more
constrained global DVS control, but this added energy savings
comes with an increased implementation cost. In a design with
local DVS, each stage will require its own voltage regulator.
Additionally, logic that interfaces between stages will require
voltage level conversion circuitry. While some early evidence
suggests that multiple level voltage regulation may be possible
without excessive cost [10], we largely consider local DVS to be
a benchmark design - ideal in capability but too costly at this
point in time for a real implementation.

3.2 Dynamic Retiming
Dynamic retiming is an optimization that gives much of the

benefit of local DVS, but without the need for costly local
voltage regulation. The optimization is based on the observation
that with global DVS pipeline stages that have low error rates are
not fully utilizing the clock period. Consequently, an opportunity
exists to use standard FSM retiming techniques [4,5] to allow
stages with high error rates to “borrow” evaluation time from

stages with low error rates. This redistribution of evaluation time
is accomplished by carefully skewing the clock boundaries
between pipeline stages. After retiming is performed, stages with
high error rates will have more than a clock cycle to evaluate,
which will in turn reduce their timing error rates and afford
additional reductions in global voltage levels.

Figure 3 illustrates the concept of dynamic pipeline retiming.
In the example, the clock cycle time of each stage is initially set
to the global clock period. The errors at the initial voltage level
are concentrated in the EX stage of the pipeline (with a 0.3%
error rate). The dynamic retiming control will recognize this
imbalance in error rates and adjust pipeline clock boundaries to
borrow time from stages with lower error rates, in this case the IF
stage (with a 0.001% error rate). The retiming is implemented by
skewing all clock edges between the “borrowing” stage (EX) and
the “lending” stage (IF). The retimed pipeline is illustrated in the
bottom pipeline of Figure 3. The period of time for EX stage
processing is increased to 6.1ns by skewing clock edge at the
ID/EX and IF/ID stage boundaries 1.1ns earlier. Consequently,
the clock period of IF stage will decrease to 3.9ns. The
throughput of the pipeline as a whole is unchanged, as the entire
pipeline is still capable of completing one instruction every clock
period, with an average stage cycle time equal to the global clock
period.

Figure 4 illustrates the global voltage control and dynamic
retiming support added to the pipeline to implement dynamic
retiming. At a regular interval, the global voltage controller
samples individual stage error rates. Like the Razor global

Figure 2: Razor prototype implementation details and layout

Technology node 0.18 m

Voltage range 1.8 V to 1.2 V

Total number of logic gates 45,661

D-cache size 8 KBytes

I-cache size 8 KBytes

Die size 3 x 3.3 mm

Clock frequency 180 MHz

Clock delay 2.5 nS

Total number of flip-flops 2408

Number of Razor flip-flops 192

Error free operation

 Total power 425 mW

 Standard FF energy (switching/static) 49 fJ / 95 fJ

 Razor FF energy (switching/static) 60 fJ / 160 fJ

% total power overhead 3.1%

Error correction and recovery overhead

 Energy per Razor FF per error event 210 fJ

 Total energy per error event 189 pJ

 Razor FF recovery overhead at 10% error rate 1%

D-Cache

IF ID EX

M
E

M

WB

Register FileI-Cache

3.3 mm

3 mm

D-Cache

IF ID EX

M
E

M

WB

Register FileI-Cache

3.3 mm

3 mm

Figure 3: Dynamic retiming example

IF ID EX M EM W B

IF ID EX M EM W B

0.003%0.006% 0.3% 0.005%0.001%

0.003% 0.006% 0.024% 0.005% 0.003%

5ns 5ns 5ns 5ns 5ns

3.9ns 5ns 6.1ns 5ns 5ns

V dd = 1.4V

1.3V

cycle time

error rate

IF ID EX M EM W B

IF ID EX M EM W B

0.003%0.006% 0.3% 0.005%0.001%

0.003% 0.006% 0.024% 0.005% 0.003%

5ns 5ns 5ns 5ns 5ns

3.9ns 5ns 6.1ns 5ns 5ns

V dd = 1.4V

1.3V

cycle time

error rate

voltage controller, if the total error rate of the pipeline deviates
substantially from the reference error rate, Eref, the voltage of the
system is changed in proportion to the difference. (If the error
rate is too low, voltage is dropped, if the error rate is too high
voltage is raised.) In addition, if the error rates of individual
stages differ significantly, the pipeline is retimed to allow the
stage with the highest error rate to borrow time from the stage
with the lowest error rate. Ultimately, the pipeline retiming
works to balance the error rate of all stages, which in turn
provides opportunity to achieve the lowest possible global
voltage.

Figure 4(b) shows the implementation of the local clock
controllers. The local clock controllers are programmable delay
elements, able to insert positive or negative skew into the arrival
time of the clock at pipeline boundaries. The programmable
delay elements are implemented with simple inverter chains of
varied length fed into a MUX that selects the appropriate delay.
In our simulated implementation, the clock controller has 10
delay chains capable of skewing the clock boundary from
-1.375ns to +1.375ns in steps of 0.275ns. Clock skew control can
be invoked in any clock cycle via memory mapped I/O, however,
changes are limited to at most one skew step (0.275ns) each
subsequent clock cycle. With this limitation, the programmable
clock delay elements can reconfigure in less than one clock cycle
and prevent any clock glitches. To simplify the design, both the
main flip-flip and Razor shadow latch clocks are skewed in
tandem with the same clock delay element. SPICE measurements
of the clock control circuits indicate that they add little to overall
processor energy. In our test design, the clock delay elements
consume less than 0.1% of total chip energy.

3.3 Retiming Design Constraints
The introduction of clock delay elements adds uncertainty (at

design time) into main flip-flop and Razor shadow latch clock
arrival times. Consequently, this uncertainty must be factored
into the Razor design to ensure that a worst-case clock skew
scenario does not violate latch setup and hold times. Note that
the clock skew of the main and shadow latches are controlled
independently, allowing for a better ability to meet the setup and
hold constraints. Figure 5 illustrates the timing paths that must
be considered when making a guarantee that retiming does not
violate the main flip-flip or Razor shadow latch setup and hold
times. Note that the skew of the main and shadow latches are
controlled and constrained individually, as shown in Table 1.
The main flip-flop has a two sided timing constraint. Its skew Mi
must be small enough to ensure that the shortpath delay Tshort(j,i)
from flip-flop j to flip-flop i exceeds the hold time (Thold). On the
other hand, its skew must be large enough relative to the shadow
latch skew SHi such that there is sufficient time for the restore

operation (Trestore) from shadow latch to main flip-flop to
complete. Similarly, the shadow latch has a two sided timing
constraint. Again, its skew must be small enough to ensure that
the short path delay Tshort(j,i) exceeds the hold time constraint.
Note that in this case, a half clock cycle is introduced in the
constraint, due to the delayed clock of the shadow latch. Also,
the skew must be large enough to ensure that the long path delay
Tlong(j,i) from flip-flop j to flip-flop i meets the setup time of the
shadow latch (Tsetup).

We used PrimeTime [6] to extract the relevant logic path
delays from a physical design description of the Razor prototype
pipeline. PrimeTime performs static timing analysis to compute
worst case delay for any input vector. The maximum skew
constraints are maintained by the global voltage controller during
run-time, to ensure that main flip-flop and Razor shadow latch
setup and hold constraints are never violated.

4. EXPERIMENTAL EVALUATION

4.1 Simulator Framework and Benchmarks
A detailed evaluation of our DVS optimizations requires

intimate knowledge of circuit evaluation characteristics, since
Razor timing errors are a direct function of circuit-evaluation

(a) (b)

Figure 4: Dynamic retiming implementation

Eref

Voltage

Control

Function

Vdd
Voltage

Regulator

Error signals

IF F
F

ID EX MEM WBP
C

F
F

F
F

F
F

Local clk

control

Local clk

control
Local clk

control

Local clk

control

Local clk

control

Global clock generator

Eref

Voltage

Control

Function

Vdd
Voltage

Regulator

Error signals

IF F
F

ID EX MEM WBP
C

F
F

F
F

F
F

Local clk

control

Local clk

control
Local clk

control

Local clk

control

Local clk

control

Global clock generator

IF F
F

ID EX MEM WBP
C

F
F

F
F

F
F

Local clk

control

Local clk

control
Local clk

control

Local clk

control

Local clk

control

Global clock generator

IF F
F

F
F

ID EX MEM WBP
C

P
C

F
F

F
F

F
F

F
F

F
F

F
F

Local clk

control

Local clk

control
Local clk

control

Local clk

control

Local clk

control

Global clock generator

global clock

Local clock controller

Delay chain

Skew register

Razor

FF
global clock

Local clock controller

Delay chain

Skew register

Razor

FF

Figure 5: Retiming constraint paths

The dotted line represents the timing constraints on the shadow latch,

while the solid line denotes the constraints on the main flip-flop.

Main flip-flop

Trestore - (0.5 * Tcycle) + SHi < Mi < Mj + Tshort(j,i) - Thold

Shadow latch

Tsetup + Mj + Tlong(j,i) - (1.5 * Tcycle)

< SHi <

Mj + Tshort(j,i) - Thold - (0.5 * Tcycle)

Table 1: Razor flip-flop retiming constraints

Forw ard

Stage i

M i

SH i

M j

SH j

Stage j

Forw ard

Stage i

M i

SH i

M j

SH j

Stage j

latency. Typical architectural based simulation methodologies do
not have this level of detail. At most, architectural simulators
will vary the number of cycles an operation executes based on
some model of its circuit complexity, e.g., cache latency vs. size.
To support detailed evaluation of a Razor pipeline with local
voltage control, we embedded a circuit simulator into our
architectural simulator. Our architectural simulator is based on
SimpleScalar models [2]. The embedded circuit simulator
references a combinational logic description of each relevant
component of the architecture under evaluation, and interfaces
with the architectural simulator on a stage-by-stage basis.

At initialization, the circuit description of the various
components loaded from a structural Verilog netlist. The netlist
specifies standard cells and their interconnections with
capacitive loadings. Global routing capacitance was estimated by
performing global place and route using Cadence Silicon
Ensemble (version 5.4.126) and Mentor Graphics Xcalibre
(version 9.1 5.6). In addition, a technology model is loaded that
details the switching characteristics of the standard cell blocks
used in the physical instrumentation. During each simulation
cycle, each logic block is fed a new input vector from the
architectural simulator. With this information, the circuit
simulator can compute the relevant measures for the analysis.
A detailed description of our circuit-aware architectural
simulation methodology is available in a previous report [3].

To perform our evaluation, we analyze 8 spec2000
benchmarks. For each program, we simulated 10 million
instruction samples, selected using the SimPoint tool’s “early
multiple SimPoint” option [16].

4.2 Energy Savings

We simulated three design variants: original Razor Global
DVS, Local DVS, and Global DVS with Retiming. For each
design we measured the energy savings over the baseline and the
performance impact due to Razor timing error recovery. The
baseline pipeline design is the Razor prototype design without
Razor support (i.e., fully-margined DVS) running with a fixed
supply voltage of 1.8V. All energy measurements are based on
circuit-level analyses which include the cost of Razor error
recover and clock delay elements.

Figure 6 shows the relative energy savings for the simulated
benchmarks. Clearly, Local DVS out-performs all other
techniques. This is to be expected as this ideal approach to local
voltage tuning permits all stages to minimize their energy
requirements. Overall, it achieves nearly twice the energy
savings of the Razor global DVS, and it finds 38% total
reduction in energy compared to fully-margined DVS. Global
DVS with Retiming sees good gains as well. The approach found

a 28% energy savings over the baseline, and it rendered a 12%
improvement in energy savings compared to original Razor
global DVS. The reduced design cost of dynamicretiming
compared to local DVS does come at a reduction in energy
savings. Local DVS provides an additional 15% reduction in
energy compared to global DVS with retiming.

4.3 Dynamic Retiming Analysis
The graph in Figure 7 shows how dynamic retiming

redistributes stage latencies over time for the GCC benchmark.
Each line shows the amount of clock period increase (above
zero) or decrease (below zero) for each of the pipeline stages.
Initially, the cycle time of each stages is 5.5ns with 180Mhz
clock. Retiming logic monitors the error rate globally and
redistributes the available cycle time throughout the stages to
minimize local timing error rates. For our prototype design, the
clock skew increment is limited to 0.275ns. As shown in the
graph, the decode (ID), execute (EX), and memory (MEM)
stages all borrow cycle time from the fetch (IF) stage. For this
experiment, typically 1.5ns of clock period is taken from IF and
distributed to other stages, with the majority going to ID and EX
and a lesser amount to MEM.

An interesting characteristic of this trace is the swapping of
time between the ID and EX stages over the execution of the
program. This redistribution of stage latency is the result of
dynamic changes in program execution, which over time causes
different circuit paths to be exercised frequently. An implication
of this is result is that even perfect balancing of pipelines at
design time can lead to run-time imbalances. Thus, well-
balanced pipeline designs would likely benefit from some level
of support for dynamic retiming as well. Moreover, given the
effort and design time required to balance a complex design, it
may be prudent to forego this large effort in favor of inclusion of
a dynamic retiming capability that balances stage latency at run-
time. Finally, we should point out that design topology is not the
only source of stage latency imbalance. As silicon geometries
shrink, process variation has a greater effect on circuit evaluation
latency [17]. At the same time, architects are moving toward
longer pipelines, which reduces the amount of logic per stage
[15]. The end result of these trends is greater variance in stage
latency. Since this variance is introduced at fabrication time, it
cannot be mitigated at design time.

4.4 IPC analysis
Fundamental to the Razor technology is a trade-off between

energy reduction and error rate. Given this trade-off, it is
important to be cognizant of potential performance impacts due

Figure 6: Energy savings over baseline

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

bzip crafty gcc gzip swim twolf vortex vpr average

Global DVS Global DVS w/ retiming Local DVS

Figure 7: Retiming trace

Each line shows the amount of time borrowed from the other stages. For

instance, the EX stage borrows up to 0.545ns from the other stages due to a

high local error rate, while the IF stage lends up to 1.5ns to other stages,

due to a low local error rate.

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

Time

R
e
d

is
tr

ib
u

te
d

 c
y
c
le

 t
im

e
 d

if
fe

re
n

c
e
s
 f

ro
m

 5
n

s
 (

n
s
)

IF ID EX MEM

to Razor timing errors, which incur a pipeline flush that reduces
pipeline throughput. The original Razor global voltage control
algorithm was designed with this concern in mind. The algorithm
works to limit the error rate of the pipeline, which is directly
proportional to both the energy savings and the pipeline
throughput (IPC) impacts. As shown following Table 2, the
performance impact of all of the explored control optimization
are very close to the performance impact of original Razor global
DVS. Although local DVS provides a greater energy reduction, it
does come at a slightly greater performance impact. Hence, the
choice between local DVS and global DVS with retiming bears a
slight dependance on performance demands.

5. RELATED WORK
Njølstad proposed a local DVS technique for the globally-

asynchronous and locally-synchronous system (GALS) [12].
They presented a socket interface which permits local dynamic
voltage scaling adapted to the processing rate requirement for
each module. The module speed is propositional to device speed
with the same dependence on local power supply level, process
parameters and the temperature variations. Magklis used similar
techniques to reduce power in a complex microarchitecture
adapted to GALS design [13].

Our timing constraint analysis borrows from Sakallah’s work
[11]. Sakallah presented a detail timing model to calculate
optimal pipeline cycle time. They extensively studied pipeline
timing constraints to optimize short and long path propagation.
They implement their algorithm by solving a linear program with
respect to given timing model.

6. CONCLUSIONS
The quadratic relationship between voltage and energy has

made dynamic voltage scaling (DVS) one of the most powerful
techniques to reduce system power demands. Razor utilizes in-
situ timing error detection and correction mechanisms that
eliminate both design- and run-time voltage margins. Razor DVS
incorporates a global voltage controller that reduces voltage until
error recovery costs outweigh the energy savings of circuit
operation at reduced voltage.

The ability of a global voltage controller to shave voltage
margins is limited by imbalances in circuit latency within the
pipeline design. Since all pipeline stages share the same voltage,
the stage exercising the longest critical path will define the
overall voltage of the system, even if other stages could
potentially run at lower voltages. In this paper, we evaluate two
local tuning mechanisms in the context of Razor DVS. A local
voltage controller scheme is evaluated that allows each pipeline
stages to run at its own voltage level. While an ideal technique to
minimize energy, local voltage control suffers from high design
costs, including level converters and complex voltage regulation.
To achieve the benefits of local DVS with lower cost, we
propose a novel dynamic retiming scheme. Dynamic retiming

incorporates per-stage clock delay elements that allow longer-
latency stages to “borrow” time from shorter-latency stages.

Using simulation, we draw two key insights from our analysis.
First, eliminating voltage margins due to imbalances in pipeline
stage latency renders additional energy savings. A Razor pipeline
design with dynamic retiming finds an additional 12% energy
savings over global voltage control (resulting in an overall
energy savings of more than 28% compared to traditional fully-
margined DVS). Second, we see that imbalances arise not only
from design factors, but also from run-time characteristics. As
the program (or program phase) changes, we see logic paths in
different stages exercised frequently, necessitating a dynamic
fine-tuning of local control. This result suggests that even well-
balanced pipelines could benefit from dynamic retiming.
Alternatively, the costly phase of design to balance pipelines
could be mitigated with a dynamic retiming capability.

Finally, it is important to note that design topology is not the
only source of pipeline imbalance. As process geometries
decrease in size, there is significantly greater uncertainty in
circuit evaluation latency due to process variation [14]. At the
same time, architects are moving toward longer pipelines with
less logic per stage [15]. The end result of these trends is greater
variance in per-stage latency. Since much of this variance is
introduced at fabrication time, it cannot be “designed away”.
Hence, this trend will further reinforce the need for tuning
techniques like local DVS and dynamic retiming.

ACKNOWLEDGEMENTS
This work is supported by grants from ARM Ltd, NSF, and the
Gigascale System Research Center.

7. REFERENCES
[1] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

Austin, K. Flautner, and T. Mudge, “Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation”, MICRO-36, December 2003.

[2] T. Austin, E. Larson, D. Ernst. “SimpleScalar: an Infrastructure for Computer
System Modeling”, IEEE Computer, 35 (2), February 2002.

[3] Seokwoo Lee, Shidhartha Das,Valeria Bertacco, Todd Austin, David Blaauw,
and Trevor Mudge. “Circuit-Aware Architectural Simulation”, 41st Design
Automation Conference (DAC), June, 2004.

[4] D. Harris. “Skew-Tolerant Circuit Design”,Morgan Kaufman Publishers 2001.

[5] K. Bernstein, et al. “High Speed Cmos Design Styles”, Kluwer Academic
Publishers, 1999.

[6] Synopsis Corporation, “PrimeTime”, http://www.synopsys.com/products/anal-
ysis/analysis.html.

[7] T. Pering. et,al “The Simulation and Evaluation of Dynamic Voltage Scaling
Algorithms” Proceedings of Int’l Symposium on Low Power Electronics and
Design 1998, pp. 76-81, June 1998.

[8] T. Mudge. “Power: A first class design constraint”, Computer, vol. 34, no. 4,
April 2001, pp. 52-57.

[9] T. Burd. et, al “A Dynamic Voltage Scaled Microprocessor System”, IEEE
Journal of Solid-State Circuits, Vol 35, No. 11, November 2000.

[10] A. Dancy, R. Amirtharajah, and A. P. Chandrakasan, “High Efficiency Mul-
tiple Output DC-DC Conversion for Low-Voltage Systems”, IEEE Trans.on
Very Large Scale Integration (VLSI) Systems, pp. 252-263, June 2000.

[11] K. Sakallah, T. Mudge, and O. Olukotun. “checkTc and MinTc: Timing Veri-
fication and Optimal Clocking of Synchronous Digital Circuits”, 1990 IEEE.

[12] T. Njølstad. et.al “A Socket Interface For GALS Using Locally Dynamic
Voltage Scaling For Rate-Adaptive Energy Saving”, IEEE 2001.

[13] M. Semeraro. et, al “Dynamic Frequency and Voltage Scaling for a Multiple-
Clock-Domain Microprocessor”, IEEE Micro, Special Issue on Power-Aware
Issue on the Top Picks from Microarchitecture Conference, Vol 36, No.12.

[14] A. Agarwal, D. Blaauw, V. Zolotov, "Statistical Timing Analysis for Intra-
Die Process Variations with Spatial Correlations", ACM/IEEE International
Conference on Computer-Aided Design (ICCAD), November 2003.

[15] V. Agarwal, M.S. Hrishikesh, S. Keckler, D. Burger, "Clock Rate versus IPC:
The End of the Road for Conventional Microarchitectures”, ISCA-2000.

[16] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically Char-
acterizing Large Scale Program Behavior”, ASPLOS-X, October 2002.

[17] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and Threshold Voltage
Scaling for Low Power CMOS”, IEEE JSSC, 32 (8), August 1997.

Benchmark Global DVS Global DVS w/retiming Local DVS

Bzip2 2.80% 3.73% 4.58%

Crafty 3.75% 3.13% 5.23%

Gcc 2.83% 2.14% 5.44%

Gzip 1.56% 1.71% 2.64%

Swim 0.48% 0.47% 1.38%

Twolf 0.78% 0.54% 2.40%

Vortex 0.73% 0.73% 1.91%

Vpr 2.19% 2.04% 2.78%

Average 1.89% 1.82% 3.29%

Table 2: IPC degradation of benchmarks (%)

