
Testudo: Heavyweight Security Analysis via Statistical Sampling

Joseph L. Greathouse Ilya Wagner David A. Ramos Gautam Bhatnagar
Todd Austin Valeria Bertacco Seth Pettie

Advanced Computer Architecture Lab
University of Michigan

Ann Arbor, MI
{jlgreath, iwagner, david.ramos, gautamb, austin, valeria, pettie}@umich.edu

Abstract

Heavyweight security analysis systems, such as taint analy-
sis and dynamic type checking, are powerful technologies
used to detect security vulnerabilities and software bugs.
Traditional software implementations of these systems have
high instrumentation overhead and suffer from significant
performance impacts. To mitigate these slowdowns, a few
hardware-assisted techniques have been recently proposed.
However, these solutions incur a large memory overhead and
require hardware platform support in the form of tagged
memory systems and extended bus designs. Due to these
costs and limitations, the deployment of heavyweight security
analysis solutions is, as of today, limited to the research lab.

In this paper, we describe Testudo, a novel hardware
approach to heavyweight security analysis that is based on
statistical sampling of a program’s dataflow. Our dynamic
distributed debugging reduces the memory overhead to a
small storage space by selectively sampling only a few tagged
variables to analyze during any particular execution of the
program. Our system requires only small hardware modifi-
cations: it adds a small sample cache to the main processor
and extends the pipeline registers to propagate analysis tags.
To gain high analysis coverage, we rely on a population of
users to run the program, sampling a different random set
of variables during each new run. We show that we can
achieve high coverage analysis at virtually no performance
impact, even with a reasonably-sized population of users. In
addition, our approach even scales to heavyweight debugging
techniques by keeping per-user runtime overheads low despite
performing traditionally costly analyses. Moreover, the low
hardware cost of our implementation allows it to be easily
distributed across large user populations, leading to a higher
level of security analysis coverage than previously.

1. Introduction

The computer industry bears a significant cost from soft-
ware bugs, primarily because they are the basis for most
security vulnerabilities. A recent survey of CERT advisories
found that 67% of these vulnerabilities were caused by
software bugs, which attackers could utilize to remotely gain
control of a program [2]. Many techniques that enable an

external attacker to take advantage of a software bug require
the manipulation of external inputs (e.g., network, file I/O) to
force the program into performing an unintended operation.
A classic example of this type of security vulnerability is
the buffer overflow attack, where an array access bug is
used to overwrite a function’s return address on the stack,
causing a jump to malicious code. An SQL injection attack
is another example of a security vulnerability whereby an
attacker injects SQL code into a server-generated query,
thereby gaining unauthorized access to a back-end database.

A variety of technologies have been developed to detect
and prevent security vulnerabilities. Array bounds checking
is a popular technique that prevents the often-exploited buffer
overflow attack [29]. Researchers have recently proposed
dynamic information flow tracking (DIFT) techniques in an
effort to preemptively curtail vulnerabilities [28]. The goal
of DIFT techniques is to detect exploitable bugs by adding
instrumentation to a software application to identify dataflows
resulting from insufficiently validated external inputs. Exam-
ples of DIFT techniques include taint checking [23] and input
bounds checking [11]. DIFT techniques are more powerful
than prevention techniques, such as array bounds checking,
because they can detect security vulnerabilities without need-
ing an active attack on the program, allowing developers to
protect their programs before any attack is attempted.

DIFT works by tagging external data values entering the
system at the application’s I/O interface (e.g., user inputs, disk
accesses, etc.) with tag values specific to the analysis under
study. Tags are then propagated during program execution to
other variables derived from the external data. Finally, tag
values are used to determine the presence of bugs that could
lead to security vulnerabilities when a program’s variables
are used in potentially dangerous operations. For example
in taint checking, a taint bit (tag) is attached to all external
input values. As the program runs, all computations check
whether any of their inputs are tainted, and if so, the result
is also marked tainted. A datum remains tainted until it is an
operand in a relational operation, after which it is considered
“checked” and safe to use. A security vulnerability is exposed
when a tainted data value is used to access memory (e.g., as a
base register in a memory access) or redirect program control
(e.g., as an input to an indirect jump).



Taint analysis techniques assume that checks in the pro-
gram (implemented as relational tests on data values) are
always sufficient to ensure that values are correct; however,
escaped-bug analyses have not always shown this to be the
case [4, 11]. Many security vulnerabilities are the result of
input checks that are insufficiently constrained or outright
incorrect. Consequently, more powerful DIFT techniques,
such as input bounds checking, can be used to validate the
bounds checks applied to external inputs [11]. This approach
works by attaching symbolic expressions to all externally
derived data. These expressions specify the possible range
of input data, which is inferred from predicates applied to
each externally derived input during program execution. For
example, if the program flow passes a branch instruction
in which an external value x was tested to be less than 5,
then it is reasonable to infer that, for all program executions,
the external datum x satisfies the constraint x < 5 at that
point in the program. When potentially dangerous operations
are executed, the symbolic expression is checked to verify
that derived constraints are sufficiently tight to prevent buffer
overruns and incorrect control transfers. The approach is
very powerful in ensuring that externally derived inputs are
correctly bounded and validated by the program.

DIFT techniques in general are extremely powerful and
can expose many security vulnerabilities, but their use incurs
a high cost. Software implementations suffer performance
slowdowns of 2-3x in the best case for taint checking
[28] and 13-220x slowdown for very heavyweight analysis.
These slowdowns are the result of the significant software
instrumentation needed to record, propagate and check value
properties. To mitigate this overhead, researchers have pro-
posed hardware techniques that improve the performance of
security analysis [5, 6, 32, 33]. In general, these techniques
add storage space in the memory system for the tag bits
and extend the processor pipeline to compute, propagate and
check tagged values [28]. Unfortunately, these extensions lead
to notable memory overheads, in many cases approximately
one bit per byte [6]. Even more dramatic are their design
costs: a large number of components must be modified
and enhanced to support this technology, including memory
systems, buses, pipelines, and I/O devices. Finally, hardware
support to date has only been proposed for taint checking, and
it is unlikely that it could be extended to more heavyweight
analyses, such as input bounds checking, without incurring
significant cost burdens.

1.1. Contributions of This Paper

To date, the high overhead of DIFT techniques have limited
their use to, at best, debugging in the software develop-
ment lab, where developers and test engineers exercise a
software application under development to expose security
vulnerabilities. Unfortunately, the low performance of DIFT
analysis and the testers’ inability to accurately predict how
users will exercise programs has led to a myopic search

for software vulnerabilities, as evident by the high number
of bugs that escape the testing process. To overcome this
critical limitation, the industry must adopt a much more
scalable approach to security vulnerability analysis, ideally
one in which actual users perform analyses in their day-to-
day activities. Users constitute a large population of potential
testers whose activities and test environments best represent
how a program is used, and thus how it could be exploited.
The largest challenge, addressed with this work, is to deliver
high-coverage heavyweight security vulnerability analysis
solutions to a user base that cannot tolerate slowdowns of
more than a few percent.

In this paper, we propose a dynamic distributed debugging
technique, capable of continuous in-field security vulnerabil-
ity analysis of programs. Our goal is to leverage a large
user population to find those vulnerabilities which have
slipped through in-house testing. Our solution, called Testudo,
employs a “sample and conquer” approach to provide high-
coverage analysis with very low performance overhead for
individual users. To limit overheads, the approach periodically
samples potentially vulnerable program dataflows and ana-
lyzes only a small, randomly-selected subset of the externally
derived variables. Our solution incorporates into the hardware
architecture a small sample cache (whose size can be designer
selected) that tracks the dataflow of a single external variable
from its inception and through its descendants. Externally
derived values enter the sample cache using a feedback-
controlled lottery system, which limits both the performance
and memory overheads associated with the specific DIFT
analysis. To gain the high coverage necessary to eliminate
security flaws, the statistical selection process is designed to
track (with high probability) different variables for each pro-
gram execution. Consequently, multiple runs of the program
(or many single runs on multiple machines) will eventually
combine to provide a complete program analysis. By tuning
the number of external values tracked during each execution
(possibly down to a small fraction of a single dataflow), we
can arbitrarily limit memory and performance overhead, at
the expense of needing more cumulative runs to achieve full-
coverage analysis. Fortunately, programs that are common
targets of security attacks (e.g., Apache, SSH, Windows)
typically have a large user base. Thus, we can incur minimal
overhead and still achieve very high analysis coverage.

Figure 1 compares Testudo to traditional DIFT techniques.
Testudo has the advantage of having very low hardware
cost and run-time overhead compared to traditional software-
or hardware-based checking technologies. Additionally, the
design impact of our approach is limited to the inclusion of
a sample cache and DIFT analysis logic into the processor
pipeline. No other modifications to the hardware are required.
Unlike traditional DIFT analysis, which could only be run
on a few machines in the test lab, our dataflow sampling
approach scales the analysis to many users’ machines. Tes-
tudo utilizes a statistical sampling solution when tracking
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Figure 1: Traditional DIFT analysis vs. Testudo. Traditional DIFT analysis is carried out at the software development site and incurs high
performance / memory overhead and hardware costs. Developers rely on it to identify and resolve security bugs before an application is released.
In contrast, Testudo is based on on a statistical dataflow sampling approach; it combines the results of many individual-user partial analyses and
achieve high coverage. Hardware and performance overheads are minimal, allowing Testudo to be deployed at the user site. Each user collects
partial security vulnerability analysis results during each use of a program; when and if a potential exploit is found, the relevant information is sent
back to the software developer for patch development.

externally derived dataflows. Doing so ensures that memory
and performance overhead remains much lower than that
of traditional DIFT techniques, and enables a large user
base to provide unprecedented levels of security vulnerability
coverage. With Testudo, any vulnerability detected in the field
is transmitted back to the software warehouse (using system-
software channels), where a patch is developed and distrib-
uted back to customers. Over time, our high-quality security
vulnerability analysis will excise all security vulnerabilities
with virtually no performance impact perceived by the user.

The remainder of this paper introduces our dataflow sam-
pling technology and analyzes its cost, performance and
analysis coverage. Section 2 introduces the technology and
shows how it can be applied to security analysis. Section
3 details our experimental framework and provides analytical
and empirical coverage results for various sample cache sizes,
applications and user populations. Section 4 covers related
work in the area, and Section 5 concludes and outlines future
research directions. Finally, an appendix at the end of the
paper presents an analytical model that relates population size
with analysis coverage.

2. Hardware for Dynamic Distributed Debug
The overall goal of DIFT analysis is to tag externally

derived inputs, track their progression through the system, and
finally, validate their use in potentially dangerous operations.
In this section, we detail our hardware support for dynamic
distributed debugging.

2.1. Baseline Support for DIFT Analysis

To implement DIFT analysis, program execution semantics
must be extended to support the capability to i) tag program
values that originate from external inputs, ii) monitor the
dataflows of externally derived values in order to propagate
tags, iii) detect checks on externally derived values for the
purpose of validating external inputs, and iv) detect when a

tagged variable is used to perform a potentially dangerous
operation such as a memory access or control transfer. An
example of our DIFT approach is shown in Figure 2.

Variables are tagged by the DIFT analysis system when an
external input is loaded into a memory location or register.
We utilize a special “tagged load” instruction in our design,
which device drivers can employ to mark incoming data
from an I/O device or DMA buffer. Use of the tagged load
indicates to the system that the input value is from an external
source and that it should undergo DIFT analysis. All storage
locations conceptually support a tag bit, indicating that the
value is being tracked for DIFT analysis. As shown in Figure
3, Testudo enhances each entry of the register file with an
extra tag bit; tagged load instructions and memory loads of
tagged data set this bit in the corresponding register file entry.
Tag bits in the register file are propagated down the pipeline
so that instruction results can also be tagged. In previously
proposed hardware tagging schemes, cache lines and memory
locations were also extended to accommodate the extra tag
information. However, as we detail in Section 2.2, Testudo
consolidates all tag information into a single sample cache
located within the processor pipeline.

If a tagged value is used in a potentially dangerous op-
eration (e.g., as the base register of a load or store) or as
the destination address for an indirect jump, Testudo will by
default declare a security violation trap. Once the security
trap handler is invoked, it has great flexibility: it can validate
the action based on its input, send error-report information to
the software development warehouse, or even terminate the
program to prevent malicious operations.

The baseline DIFT analysis semantics simply propagate
value tags to the results of instructions. To adapt to a
broad range of security analyses, Testudo offers a policy
enhancement mechanism that can be tailored to many DIFT
analysis semantics. Different DIFT analyses can be imple-
mented through the use of the policy map, shown in Figure 3.
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Figure 2: The life of a tracked variable. Data brought in from an external source is tagged as potentially unsafe. Subsequent operations on that
data remove the tag or propagate it to other variables based on security analysis-specific rules. When a variable is overwritten by an operation’s
result, it inherits the tag of the operation’s result. If potentially dangerous operations are performed on tagged data, a warning is flagged.

Using the policy map, system software can install pointers to
handler routines that are invoked upon relevant events such
as loading or storing tagged data, overwriting tagged data,
executing specific operations on tagged data, etc. Within a
security handler, it is possible to set or clear tags, inspect
arbitrary program state, and access private bookkeeping data
in a non-invasive manner. Through these policy handlers, it
becomes possible to implement a variety of DIFT policies.

For example, to implement a taint analysis system [6],
one only needs to install handlers to reset tag (taint) bits
when a tagged value is an input to a relational operator,
since after this operation the value is considered untainted.
In addition, a security trap handler must be called when
values are loaded with a tagged base register or when an
indirect jump has a tagged operand. The security trap records
the occurrence of the bug, and it could be used to transmit
debugging information back to the developers.

Another example of a DIFT analysis that can be imple-
mented using Testudo is input bounds checking [11]. This
heavyweight analysis requires the creation of a symbolic
interval constraint expression for each externally derived vari-
able, to indicate its valid value bounds. By installing service
handlers when tagged values are loaded, stored, operated
upon and overwritten, it is possible to accurately compute the
constraints as detailed in the original software-based solution.
An additional handler calls a constraint solver on potentially
dangerous operations to determine if the tagged value belongs
to an interval that could allow an illegal operation (even
if the actual tagged value is legal). Using this approach, it
becomes possible to fully validate bound checks applied to
the externally derived values. However, with this additional
power, input bound checking analysis becomes expensive,
approximately 50 instructions of service handler code for each
instruction accessing a tagged value. The original software-
based implementation of this approach resulted in a 200x
slowdown for programs with frequent externally derived
dataflows. To tackle these situations, Testudo is equipped
to carefully control the slowdown experienced by a user
through the use of a dataflow sampling technique that reduces
performance and memory overheads.

2.2. Limiting Performance and Memory Overheads

Our overarching goal is to build a system that can achieve
high coverage DIFT analysis at extremely low hardware and
performance costs by distributing the analysis workload over
a large population of machines. To minimize the impact to

users and thus encourage widespread use of the analysis
mechanism, we must devise techniques to limit both memory
and performance overheads of the analysis. It is important to
note that the hardware modifications that Testudo requires are
limited to the processor pipeline. Thus, no changes or costs
are incurred in caches, the memory system, or buses.

Sample cache design. Traditional hardware-based DIFT
techniques (e.g., taint checking) add one tag bit per memory
byte to track externally derived variables through memory.
This memory overhead also results in considerable design
cost as caches, memory interfaces and interconnect buses
must be extended to support tag bits. However, we observe
that DIFT analysis for a single path in a dataflow can be
implemented with a single entry of address-configurable tag
storage. It follows from this observation that, if we execute a
program many times, each time selecting a different path in a
dataflow and/or selecting different dataflows in the program,
we eventually analyze the full program while strictly limiting
memory and design costs. If additional tag storage entries are
available, we can examine multiple paths and dataflows in a
single run of the program. Thus, fewer executions will be
required to explore all potential security vulnerabilities. Sim-
ilarly, we can limit the performance impact of DIFT analysis
code by limiting the rate at which we analyze new dataflows
and paths, again at the cost of more executions necessary to
analyze the program. Thus, there exists a convenient trade-
off between DIFT analysis cost (performance and memory
overheads) and the number of executions required to achieve
full-coverage DIFT analysis.

As shown in Figure 3, we limit the cost of tag storage
using a small physically tagged cache, which we call the
sample cache. The sample cache holds the physical addresses
of currently tracked memory variables. For the most part, the
sample cache behaves as any other cache, except that i) it
does not contain data storage, since valid bits and physical
tags are sufficient to denote that a memory variable is being
tracked, and ii) it uses randomized replacement and insertion
policies to ensure good coverage of dataflows and to limit the
DIFT analysis’s performance impact. To ensure that we visit
as much of each tracked dataflow as possible, we only insert
one dataflow into the sample cache at a time. By employing
this policy, it becomes possible to see all of a large, long-
lived dataflow, which would otherwise be quickly displaced
by newly tagged nodes from other dataflows. It is trivial to
implement this single dataflow management policy by i) only
inserting into the sample cache tagged memory addresses
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that are derived from tagged values currently in the sample
cache, and ii) flushing the entire contents of the sample cache
when a tagged memory address from another tainted dataflow
is introduced into the sample cache. In addition, Testudo
implements sample cache replacement policies within a single
dataflow (intra-flow policy) and between different dataflows
occurring within a program execution (inter-flow policy).

Intra-flow selection policy. While only one tagged dataflow
resides in the sample cache at a time, it still may be the case
that the currently tracked dataflow is larger than what can be
stored in the available sample cache resources. Consequently,
the intra-flow policy must implement a replacement scheme
that ensures high coverage analysis of large dataflows across
multiple executions. Note that any traditional deterministic
cache replacement mechanism, such as least-recently-used
(LRU), would not work for the sample cache: in fact, any
deterministic cache replacement policy would result in the
same tagged dataflow values being examined in subsequent
runs of the program (given the same program inputs). Con-
sequently, we have adopted a random replacement policy,
whereby for each candidate replacement, all the resident
cache entries as well as the newly arrived tagged address
have equal probability of being evicted from the cache.

Moreover, for DIFT analyses with high service handler
costs, the chance of entering the sample cache can be reduced
much more sharply. In these situations, instead of uniformly
random eviction, Testudo assigns higher probability of exclu-
sion from the cache to the incoming variable, since there is
a higher chance that the new variable has not been visited
before, thus triggering even more handler-serviced events.
This biasing is adjusted dynamically throughout a program’s
execution: Testudo monitors the frequency of analysis invo-
cations as well as the average analysis cost per invocation,
altering the eviction probabilities to keep the performance
penalty at a constant, user-acceptable level. Thus, if service
handlers begin to be triggered more often or begin to incur
higher penalty, newer variables are disregarded with higher
probability. In hardware, this dynamically adjusted random
selection is implemented with a weighted random number
generator [15], in as little as 2 ∗ log(cache size) LFSR bits
and log(cache size)+1 weight bits. In Section 3, we start to
explore the impact of specialized fine-tuned biasing of intra-
flow random replacement policies as a means to achieve high
coverage with even fewer executions.

Inter-flow selection policy. The last component of Testudo’s
cache replacement policy is how to select which newly
created external input variables (dataflow roots) to track in the
sample cache. This inter-flow policy is dynamically adjusted
based on the rate of arrival of new dataflows and the constraint
on perceived performance impact. Each new dataflow, created
when an input arrives or a load from I/O buffer occurs, polls
the interflow selection mechanism to determine whether it can
overwrite the dataflow currently being analyzed by the sample
cache. To ensure high coverage of the dataflow currently
in the sample cache, the probability of a flow replacement
is set quite low. We conceptually partition the execution
into epochs: for each epoch the number of challenges to
replace the dataflow under analysis is fixed (say, n). We then
enforce two rules: i) each challenger has a small probability
to overwrite the current flow (0.1× 1/n in our experiments),
and ii) at most one challenge can be won during an epoch.
The chance of entering the sample cache can further decrease
if the performance impact of the currently tracked dataflow
rises above the performance impact allowed by the application
developers (typically 5% or less). For very heavyweight
analyses, the tracked values may degrade to a single path
of a single dataflow, thus ensuring forward progress toward
the complete analysis of the program.
Example. Figure 4 shows the dataflow coverage achieved for
one of our experimental benchmarks, tiff.bad, by using the
replacement policies discussed above over multiple execu-
tions. In this example, we show Testudo performing simple
taint analysis while tracking only three of the dataflows of
this benchmark. Hence, the service handlers have virtually
no performance impact, and thus no back-off adjustment is
required in the replacement probabilities. The figure shows
the coverage attained after 10, 25, 100 and 250 executions
of the program. Each node in the dataflow is colored with a
different shade of gray, based on how many times it has been
covered cumulatively (0=white, 10+=black). In this example
the sample cache is a 4-entry fully associative cache and
Testudo could achieve full coverage after 231 executions.

3. Experimental Evaluation
In this section, we detail the framework and benchmarks

that we used for the experimental evaluation of Testudo.
We then detail our findings in using Testudo as a taint
analysis framework by reporting the performance of the
solution and user population required to achieve 99% program



Figure 4: Coverage of 3 dataflows from the tiff.bad benchmark. Node labels indicate the chronological order in which each tainted variable
arrives from the pipeline to the sample cache. Coverage results are shown after 10, 25, 100 and 250 runs on a system with a 4-entry fully-associative
sample cache, where different shades of gray indicate how many times each node has been covered cumulatively (0=white, 10+=black).

dataflow coverage. We compare these coverage results with
the analytical upper bound computed using the worst case
analysis technique described in the appendix. Finally, we
study applications beyond taint analysis and evaluate the
performance overhead of Testudo for a range of execution
overheads in the service handler routines. We conclude this
section by reporting the area, power and access time of the
sample cache sizes we used.

3.1. System Simulation Framework

To evaluate the performance of a taint analysis system
based on Testudo, we implemented a data tracking simula-
tor, which generates dataflows for each of the experimental
benchmarks, and a sample cache simulator, which analyzes
these dataflows for coverage. The data tracking simulator is
implemented on Virtutech Simics [16], a full-system func-
tional simulator able to run unmodified operating systems and
binaries for a number of target architectures. We targeted an
Intel Pentium 4 system running Fedora 5, and augmented
Simics with a module to track tagged memory addresses,
general purpose registers, status/control flags, and segment
registers. This module is implemented using code from the
Bochs IA-32 emulator [1], and uses tag propagation and
clearing techniques similar to [2, 28]. Tagged variables are
tracked with 32-bit word granularity, as in [6]. All external
data coming from disk, network and keyboard is tagged on
arrival. The simulator only tracks dataflows relevant to the
benchmark under study, by monitoring the Linux kernel and
the relevant Linux process IDs. The traces produced by the
tag tracker are then analyzed by the sample cache simulator.

3.2. Benchmarks

We chose a set of ten benchmarks consisting of popular
Linux applications with known exploits. Table 1 summarizes
the relevant statistics of these benchmarks, including program

execution length (in cycles), number of tainted dataflows (i.e.,
external variables from untrusted sources) and total number
of tagged words to be tracked. We also list the total number
of unique addresses spanned by the tracked variables (two
variables may share an address if they have non-intersecting
life spans, a common situation for stack variables). Finally,
the table reports the size of the largest dataflow. Note that
single node dataflows cannot occur, since a dataflow’s root
comes from I/O space. This value will be explicitly tainted
by the I/O driver.
• Libtiff - (tiff.good, tiff.bad). Library providing TIFF im-

age manipulation services. Versions 3.6.1 and earlier fail
to check bounds on RLE decoding [8]. The benchmarks
parse a valid and an invalid image.

• Xpdf - (xpdf.good, xpdf.bad). PDF document handling
library. Versions 3.0.0 and earlier are vulnerable to a PDF
format issue [30]: a malicious PDF file could contain
invalid tree node references that would never be checked.
The two variants parse a valid and an invalid PDF.

• Eggdrop IRC bot - (eggdrop.good, eggdrop.bad). Open
source IRC bot. Version 1.6.18 fails to check bounds on
data supplied by an IRC daemon, leaving it vulnerable
to buffer overflow attacks [27]. This benchmark receives
both benign and malicious data from an IRC daemon.

• Telnet - (telnet.server, telnet.client). A popular but in-
secure remote connection server. The benchmark client
connects to a benchmark server and logs in to a user
account.

• Lynx web browser - (lynx). Text-based web browser for
command line environments. Versions 2.8.6 and earlier
fail to properly check bounds on NNTP article headers
[26]. The benchmark sends a malicious article header
from a simulated NNTP server to the Lynx browser.

• Apache server with PHP - (httpd): The Apache web
server and PHP have experienced numerous public ex-



tiff.good tiff.bad xpdf.good xpdf.bad eggdrop.good

Total Cycles 2,600,000 3,500,000 15,000,000 15,000,000 114,000,000
Tracked Words / Unique Addresses 987 / 299 214 / 68 195,853 / 5,729 73,613 / 3,771 3,854 / 1,232
Largest Dataflow Words / Addresses 116 / 29 59 / 15 185,465 / 2,817 64,015 / 316 678 / 25
Number of Dataflows 71 17 540 960 150

eggdrop.bad telnet.server telnet.client lynx httpd

Total Cycles 245,000,000 90,000,000 50,000,000 30,000,000 14,000,000
Tracked Words / Unique Addresses 486 / 123 75,323 / 1,600 27,529 / 917 518 / 141 47,745 / 4,440
Largest Dataflow Words / Addresses 154 / 26 71,345 / 1,119 20,663 / 315 173 / 46 46,214 / 3,945
Number of Dataflows 10 29 50 10 46

Table 1. Experimental benchmarks. The table reports the number of execution cycles, tracked words and unique addresses, size of the largest
dataflow and total number of dataflows for each benchmark.

ploits in the past. This benchmark is a simulated SQL
injection attack where data from an HTTP request is used
unsafely to generate a would-be SQL query. It returns the
compromised query as an HTTP response.

3.3. Taint Analysis Coverage and Performance
We evaluated the performance impact of Testudo in a taint

analysis application. The sample cache simulator was used
to emulate the sampling of dataflows obtained from the data
tracking simulator and to record the average number of runs
required to achieve 99% dataflow coverage. We performed
the analysis using a broad set of sample cache configurations:
fully associative cache with 32, 64 and 128 entries, and 4-way
set associative caches with 256, 512 and 1024 entries. The
intra-flow eviction policy for the sample cache was uniformly
random, while the inter-flow policy used an epoch length
of 10 tainted dataflows and a 10% probability of winning
at each challenge (see Section 2.2). The results of these
experiments are shown in Figure 5. In each graph we plot
the average coverage achieved for the total number of tainted
words versus the number of runs required to achieve that
coverage. Most benchmarks have been evaluated with more
than one sample cache size (however, we show only a subset
of our results due to space limitations). In all cases, we
find that high coverage can be attained by Testudo with a
reasonable number of runs, even with very limited cache
sizes. As intuition suggests, increasing the size of the cache
increases the coverage for a given benchmark, or reduces
the number of runs required to reach a desired coverage
target (e.g., telnet.server in Figures 5.e and f). Once the cache
size is sufficiently large to fully store the largest dataflow in
a program, further increases do not provide any additional
benefit (e.g., tiff.good in Figures 5.b and c).

The access time for the sample caches used in our experi-
ments is smaller than the CPU clock cycle and L1 data-cache
access time of the systems that we emulated. Moreover, the
propagation and checking of taint bits can be implemented
efficiently within the pipeline, requiring no support from the
policy map and the service handlers. Therefore, Testudo can
perform taint analysis without incurring any performance
penalty and without affecting program runtime. Thus, for
this application, we provide a flexible trade-off between the
sample cache size and the number of executions required to
achieve high coverage.

3.4. Worst Case Analytical Bounds
To compare the actual performance of Testudo to the worst-

case analytical model outlined in the appendix, we computed
the analytical upper bound for a subset of the benchmarks
listed above. Note that to conduct this analysis we must
know the coverage probabilities for each tracked word in a
benchmark (as many as 200,000 words for xpdf.good). The
straightforward solution to computing the coverage probabil-
ity for each word is based on a Markov-chain analysis of the
dataflow. However, this approach becomes computationally
intractable very quickly with growing dataflows and sample
caches. To cope with this challenge we set up a Monte
Carlo simulation with each fixed cache configuration and
simulated our benchmarks until each tagged word in the
program’s dataflows was covered at least a few times. Each
coverage probability (i.e., p coveredi in the appendix) was
then obtained by dividing the number of times each word was
covered by the number of Monte Carlo runs.

Figure 6 shows the comparison between the experimental
dataflow coverage of Section 3.3 and the analytical model
derived in the appendix. The gray plots report the average
coverage achieved after 80 trials versus the number of runs,
while the black plots indicate the probability of achieving
full coverage in a given number of runs using the analytical
model. For example, full coverage of tiff.bad can be achieved
with 80% probability after 400 runs when using a 64-entry
sample cache. As Figure 6 demonstrates, Testudo can in
practice achieve 99% coverage up to 5x times faster than
the predicted worse-case number of executions. While the
worst case number of executions to achieve 99% coverage
may seem a conservative approximation, consider that Office
XP sold sixty million licenses in its first year on the market
[18]. Thus, assuming that each licensed user runs Microsoft
Word twice per week, there are more than 12,000 executions
every minute. Therefore, according to the worst case analysis
model, achieving a 99% confidence of observing an event that
occurs only once in ten thousand runs requires 46,000 runs,
which would be gathered in less than 4 minutes at that rate.
Apache, another popular program that runs on 82 million web
servers as of April 2008 [20], runs 570,000 times per minute,
assuming that each web site serves up to 10 pages per day.
Clearly, these popular applications provide more than enough
user executions to demonstrate the great benefit of a scalable
approach to taint or security vulnerability analysis.
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Figure 5: Dataflow coverage vs. program executions for various cache setups. The figures plot the number of runs required to achieve levels
of dataflow analysis coverage. Increasing sample cache sizes reduce the runs required to achieve full coverage, up to a cache size where the largest
dataflow can be fully stored (telnet.server in e and f). Beyond this threshold, no additional benefit is provided by larger caches (tiff.good in b and c).
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Figure 6: Comparison between experimental coverage and analytical upper bound. The plots report coverage vs. number of runs for both
our experimental results (over 80 trials) and the analytically computed upper bounds (see appendix). The analytical upper bound is the probability
of achieving full coverage after a particular number of runs. For instance, tiff.bad benchmark has an 80% probability of achieving full coverage in
400 runs. In practice, Testudo achieves 99% coverage in many fewer runs.

3.5. Beyond Taint Analysis
In this section we investigate performance overhead of con-

ducting heavyweight security vulnerability analysis. While we
showed in Section 3.3 that Testudo does not incur perfor-
mance overhead when applied to taint analysis, this may not
be the case for heavyweight vulnerability analyses, such as
input bounds checking. In this case, the size of the tag associ-
ated with each tracked variable is more than a single bit and
the analysis itself must be conducted in software by means
of service handler routines, incurring an overall performance
slowdown at each routine call. As a consequence, to retain
acceptable overall performance, we must limit the number
of tagged variables sampled by Testudo in each program
execution (see Section 2.2). This down-sampling, in turn,
increases the number of runs required to provide adequate
coverage of the program’s dataflows. To gauge the impact
of heavyweight DIFT semantics with many service handlers,
we plotted acceptable performance impact as a function of

runs required to achieve 95% coverage of tagged words in
Figure 7. The plots show the slowdown versus runs trade-
off for several handler overheads, ranging from 10 to 100
instructions executed for each call to a service handler. As
a point of reference, the heavyweight input bounds analysis
technique incurs approximately 50 instructions per instruction
accessing a tagged value. Even with fairly intensive service
handler routines, Testudo can maintain a tolerable to very
small level of performance degradation perceived by the user
by spreading the analysis over more executions.

3.6. Analysis of Sample Cache Overheads
In this section we analyze the performance, area and power

requirements of our sample cache hardware. We designed the
sample caches in our experiments using CACTI v5.0 [31] at
65nm/1.1V technology node. We evaluated fully associative
caches with 16 to 128 entries, and 4-way set associative
caches with 256 to 1024 entries. Each entry is five bytes
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wide, a typical physical address width in modern processors
[10]. We estimate the impact of including the sample caches
into a complex modern processor, a 2.5GHz AMD Phenom
[34], and into a simpler core (1.4GHz UltraSPARC T2 [19]).

Figure 8 plots access latency as a fraction of the CPU
clock cycle, area and power overheads for the sample cache
configurations we considered. The first seven bars in each
graph compare the sample cache against the L1 cache of the
AMD Phenom. In the Phenom processor, L1 cache accesses
are pipelined and take three cycles to return. We thus show
our cache statistics as if they were pipelined across multiple
cycles. The final bar shows our largest cache size, 1024
entries, versus the UltraSPARC T2. The L1 caches in the T2
cores are much smaller than those in the Phenom, but they
are also non-pipelined and accessed in a single cycle. Part a)
of the figure shows the access time to the sample cache as a
percentage of the respective processor’s clock cycle. Note that
in all cases, the access time to the sample cache is smaller
than the L1 cache access time. Thus, no performance impact
is experienced when the system is augmented with Testudo’s
sample cache hardware. We show in part b) that the area
impact of the sample caches is minimal, less than 1% in all
configurations. The graph compares the sample cache’s area
against the core and L1 cache area of the Phenom processor
(25.5mm2 as reported in [7]), and against the Niagara’s core
plus cache combination (12.5mm2) in the last bar. Finally,
part c) shows worst-case power requirements. To model a
worst case scenario for the sample cache, we assumed that
each instruction is a memory operation accessing the sample
cache. As indicated by the figure, even worst-case power
requirements are quite modest. In practice, one would expect
these power requirements to be much less than this value
since not all instructions access the sample cache, making
the total power overhead very small. Note that the Phenom
and UltraSPARC T2 dissipate 125W and 84W respectively.

We did not analyze the overhead incurred due to the
pipeline modifications needed to include the tag bits in the
register file and propagate them through the pipeline. It is
unlikely that this hardware, which is operated in parallel to
the rest of the pipeline, would affect the core’s critical path.

4. Related Work
There have been many publications on both heavyweight

security analysis systems and statistical bug-testing methods;
our design takes inspiration from, and improves on, works
from both of these areas. In this section, we summarize
previous works and compare them against our technique.

4.1. Heavyweight Security Analysis Systems

We use the concept of heavyweight analysis as presented by
Nethercote and Seward [22] to describe the types of analysis
that Testudo can accelerate. Examples include taint analysis
[23], secrecy analysis [17], and array bounds checking [21].
Testudo can significantly reduces the amount of slowdown
that any individual user perceives while running heavyweight
analysis by performing distributed statistical heavyweight
analysis.

Taint analysis is an active area of research that focuses
on using shadow values to track untrusted data from I/O
and detect whether it is used in dangerous ways. Xu et al.
[35] and LIFT [25] show how taint analysis systems can be
used to detect many types of security vulnerabilities. The
largest issue with taint analysis in software is the tremendous
slowdown associated with it. Ho et al. [9] and Nightingale
et al. [24] show methods for speeding up taint analysis
in software. However, these and other software schemes
still have slowdowns that are unacceptable for widespread
deployment to end users.

Other researchers have worked on hardware methods to
accelerate taint tracking. RIFLE [32], Minos [5], Suh et al.
[28] and Chen et al. [2] all implemented hardware taint analy-
sis schemes that significantly reduce the runtime overhead of
taint tracking at the expense of increased system complexity
and memory overheads. Because taintedness must propagate
throughout the system (e.g., from cache to memory), buses,
caches, and memories must be expanded to accommodate
the extra bits. With intelligent compression of taintedness
information, memory overhead can be reduced from 12.5% to
only a few percent in the average case. However, hardware de-
signers may be wary of the potential memory overheads and
increased design complexities of these schemes. Additionally,
it is unlikely that these approaches could be extended to more
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Figure 8: Delay, area and power overhead of sample cache designs. From left to right, the charts show access latency, area, and worst-case
power estimates for several sizes and configurations of the sample cache. The first four bars in each graph are for fully-associative caches, while the
last four correspond to four-way set associative configurations. The first seven bars in each graph are compared against a 2.5GHz AMD Phenom,
while the last one is against a 1.4GHz Sun UltraSPARC T2.

heavyweight DIFT techniques without excessive overheads.
Dalton et al. proposed Raksha [6] as a solution to correctness
problems in existing hardware taint systems; it utilizes user-
level exception handlers to allow the taint analysis rules and
error-cases to be much more flexible. Similarly, flexibility
is one of the primary goals of FlexiTaint [33], another taint
system that focuses on making the hardware taint propagation
as programmable as possible.

Bounds checking is another useful heavyweight analysis
scheme. Nethercote and Fitzhardinge show how to use Val-
grind to bounds-check data and check that it is safely used
[21], but the overheads of this design are high (up to 80x).
Alternately, Larson et al. also present a method for checking
bounds on all inputs of a program [11] that has up to 200x
runtime overhead. Lam and Chiueh show a software method
for finding array bounds violations using features of the x86
instruction set [12]. This method has reasonable overhead,
but it is limited in its power and flexibility.

The primary advantage of Testudo over other hardware-
based analysis systems is its ability to do distributed heavy-
weight analysis with little extra hardware and minimal run-
time overhead. Given these capabilities, Testudo makes it
possible to widely distribute security vulnerability analysis
infrastructure to end users, with the promise of providing
unprecedented levels of analysis coverage.

4.2. Sampling Systems

Besides heavyweight analysis, there have been a number of
works on statistical sampling systems for software debugging.
Liblit et al. show a number of methods for using statistical
sampling to find bugs in software based on the sampled runs
of thousands of users [13, 14]. The idea of sampling over the
user population in order to find problems while maintaining
low runtime overhead is similar to what we propose, though
the goals of the two systems are different. Liblit’s system
performs data mining of dynamic invariants and violations
of those invariants that indicate a possible bug. Testudo, on
the other hand, performs distributed dataflow analysis for
the purpose of locating security vulnerabilities. In addition,
Testudo employs a novel feedback-controlled random selec-
tion policy which allows for the low-cost distributed analysis

of much more compute-intensive analysis schemes. Chilimbi
and Hauswirth implemented a sampling system for finding
memory leaks in software [3]. Their system finds objects that
have been leaked by an adaptive program profiling scheme.
This results in low overhead, but the requires a great deal of
binary information.

5. Conclusions

The challenge of excising bugs from software applica-
tions is quite critical, especially when considering that most
software security vulnerabilities exploit software bugs to
implement attacks. To protect programs, dynamic information
flow tracking (DIFT) techniques have emerged as a powerful
solution that identifies improperly used external inputs in
programs. Unfortunately, the high performance overheads
of DIFT techniques have limited their use to the research
laboratory. If very low-cost techniques could be deployed
widely to users, it would be possible to achieve levels of
security vulnerability analysis previously not possible.

To this end, we have proposed a hardware-based pro-
grammable DIFT analysis technique called Testudo. The ap-
proach is based on a dynamic distributed debugging technique
that spreads the analysis workload over many executions of
the program. A random selection mechanism picks external
inputs on occasion and follows their dataflow executions,
looking for dangerous uses of externally derived variables. We
can keep memory overheads low through the use of a sample
cache that holds the value tags of a few tracked variables.
The sample cache utilizes a random replacement strategy that
ensures that successive runs of the program are likely to see
different externally derived variables. Thus, multiple execu-
tions of the program analyze additional program computation.
To minimize the performance impact, the random selection
mechanism dynamically monitors performance overheads and
limits the introduction of new dataflows into the sample cache
if overheads encroach the budgeted performance slowdown.

To understand the nature of this approach, we analyzed
its performance empirically with full-system simulation as
well as by developing an analytical model that estimates the
number of program runs necessary to achieve high-coverage
analysis of the program. We find in our experimental results



that our approach is quite low cost, and it achieves high
program coverage often with a mere thousands of executions
in the worst case. For popular programs that are the most
frequent target of security attacks, their many users would
provide a level of security vulnerability analysis that is simply
not possible with solutions available today. Additionally,
we examined latency, area, and power costs of the sample
cache hardware and found that sample caches of up to 1024
entries provide exceptionally good coverage and only increase
system costs by a few percentage.

Looking forward, there are a number of improvements
possible to our initial design. First, we are working to refine
the sample cache replacement policy to further reduce the
number of executions required to analyze large dataflows
in the worst case. Second, we are working to implement
additional security vulnerability analysis techniques, in partic-
ular fully-symbolic input bounds analysis and dynamic type
checking. The flexibility of our DIFT analysis framework
should accommodate these new analyses with little or no
hardware changes. Finally, we are working on extending
the sample cache to provide caching benefits to traditional
non-sampled DIFT analyses. These extensions will allow
traditional non-sampled software-only DIFT techniques – that
developers currently run in the development laboratory –
to execute faster because tag values can be more quickly
accessed in the sample cache.
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Appendix: An Analytical Model of Coverage
Dataflow sampling is a decentralized statistical approach to

security vulnerability analysis. The small storage available in
the sample cache limits the likely coverage achieved during
a single program execution to only a few externally derived
dataflows, and only a portion of the larger dataflows. Since the
replacement policy encourages covering different dataflows
(and portions of dataflows) in subsequent executions, the
analysis will eventually achieve full coverage. Here we derive
an analytical model that delineates an upper bound for the
number of executions required to achieve full coverage. The
model is parameterized with the size of the sample cache
and the frequency at which tagged words are considered
and analyzed. This frequency is a function of the number
of dataflows in the program, the dataflows’ shapes and the
specific cache replacement policies selected in the analysis
(see Section 2.2). The analytical model that we derive in this
appendix is an upper bound on the number of executions
required to achieve full coverage with a given probability –
that is, to cover a user-specified fraction of all the tagged
words in a program. Section 3.4 compares the upper bound
derived with this analytical model against actual empirical
measurements gathered in our experimental evaluation and
shows that we perform much better in practice.

Overview of the Analytical Model. Our analytical model
computes the probability that a particular dataflow word has
not been covered after a program execution. Using probability
theory concepts, it is then possible to compute the probability
that there exists any word in all dataflows that has not yet
been covered after a program execution. We finally use this
expression to extend the model to estimate the probability of
having an uncovered tagged word after N executions. This
probability can be plotted as a function of N , such that it
is possible to see the probability that full coverage is not
reached after a given number of runs (see Figure 6).

Derivation of the Analytical Model. The first step of the
model requires characterization of the program’s dataflows

to compute the probability p covi that any given word i
resides in the sample cache configuration at the end of a
program execution or has been removed from it only after
the word’s last use in the program. While this value could
be computed analytically for small sample cache configu-
rations by fully enumerating all possible caching scenarios,
it is computationally infeasible to perform this step of the
analysis analytically for larger sample caches. Consequently,
we measure these probabilities empirically by running Monte
Carlo simulations on the externally derived dataflows of a
program for a given sample cache configuration. Once we
reach the desired confidence level, the p covi are computed
as the fraction of times each tagged word is covered during
the total number of simulated executions.

Given the probability p covi of an individual word being
covered in one program execution, we can compute the
probability that this word has not yet been covered after N
runs as (1 − p covi)N . From analytical calculus, this latter
expression is always less than or equal to e−p covi·N , for
p covi between 0 and 1. Hence, we can use the exponential as
a conservative approximation of the original expression. That
is, the probability that the tagged word i has not been covered
after N runs is always less than or equal to e−p covi·N .

Finally, we extend this inequality to include any tagged
word in all dataflows by using the union bound: the probabil-
ity that any tagged word in all dataflows has not yet been seen
after N program executions is less than or equal to the sum
of the individual events’ probabilities. Thus, the probability
ε of having any uncovered tagged word after N runs is:

ε =
∑

i

e−p covi·N

Thus, given the individual probability of covering each
tagged node i, we can compute the upper bound proba-
bility of having any uncovered tagged word after N runs.
By plotting this result for increasing values of N , we
can find the first value of N for which ε is less than
1 − desired confidence level. For example, if we want a
90% confidence of covering all tagged words in a program,
we sweep over N until we derive an ε ≤ 0.1. Note that
the union bound provides a very good approximation if the
events are independent; when the events are correlated, the
approximation becomes coarser, but is still conservative.

It is important to note that the model computes a worst-
case estimate to achieve the desired confidence. As shown
in Section 3.4, the empirical results often require fewer
executions to accomplish the same goal. Any significant
difference between the analytical model and the experiments
is due to dependencies between the events (that is, covering
tagged word i correlates with covering word j). The more
dependent the events, the fewer execution will be required in
practice to achieve full coverage. Nonetheless, the result of
the analytical model is valuable because it equips developers
with an approximation of how many executions will be
required, in the worst case, to achieve full program coverage.


