
Dynamic Hammock Predication
for Non-predicated Instruction Set Architectures

Artur Klauserx Todd Austiny Dirk Grunwaldx Brad Calderz

x University of Colorado at Boulder
Department of Computer Science

y Intel
Microcomputer Research Lab

z University of California, San Diego
Department of Computer Science and Engineering

to appear in Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT) 1998

Abstract

Conventional speculative architectures use branch prediction to
evaluate the most likely execution path during program execution.
However, certain branches are difficult to predict. One solution
to this problem is to evaluate both paths following such a condi-
tional branch. Predicated execution can be used to implement this
form of multi-path execution. Predicated architectures fetch and is-
sue instructions that have associated predicates. These predicates
indicate if the instruction should commit its result. Predicating a
branch reduces the number of branches executed, eliminating the
chance of branch misprediction at the cost of executing additional
instructions.

In this paper, we propose a restricted form of multi-path exe-
cution called Dynamic Predication for architectures with little or
no support for predicated instructions in their instruction set. Dy-
namic predication dynamically predicates instruction sequences in
the form of a branch hammock, concurrently executing both paths
of the branch. A branch hammock is a short forward branch
that spans a few instructions in the form of an if-then or
if-then-else construct. We mark these and other constructs
in the executable. When the decode stage detects such a sequence,
it passes a predicated instruction sequence to a dynamically sched-
uled execution core. Our results show that dynamic predication can
accrue speedups of up to 13%.

1 Introduction

Current processors already issue 4 instructions per cycle, and fu-
ture designs will be able to issue 8 or more instructions per cycle.
However, increasing the issue width of the processor beyond 4 in-
structions will have decreasing benefits unless the compiler and ar-
chitecture technology is improved. Studies on current processors,
which can issue 4 instructions per cycle, show that on average only
1 to 2 instructions are issued per cycle [6, 21]. Therefore, 50% to
75% of the processor’s potential performance is not being utilized.
A main contributor to this performance degradation is the small size
of basic blocks and high branch misprediction penalties. Even with
new branch prediction architectures, some branches are still very
hard to predict. For example, the SPECint95 program go has only
80% branch prediction accuracy using the latest branch prediction
architectures [19].

Predicated execution is an important part of future architecture
design. Predication allows the removal of conditional branches
from the instruction stream through conditional execution of in-
structions. Predicated architectures fetch and issue instructions that
have predicates indicating if the instruction should commit its re-
sult.

This paper describes a mechanism for removing branch penal-
ties by implementing a restricted form of multi-path execution on
dynamically scheduled architectures. We call this Dynamic Pred-
ication (DP) because we do not assume support for predication in
the instruction set architecture (ISA). Instead, we identify branches
that can benefit from predicated execution using information pro-
vided by compiler or link-time transformations. During execution,
dynamic predication converts the instruction sequences for both
paths of these branches into predicated form. Internally, the pro-
cessor instructions use full predication (i.e., all instructions can be
predicated). The branch is then eliminated from the instruction
stream and instructions from both paths are concurrently executed.
The conversion to predicated form occurs while the program exe-
cutes; hence the name Dynamic Predication.

In this paper, we concentrate on dynamic predication for simple
branch hammocks [7], or branches that have a clear fork-join form
with no nested hammocks. Adding the ability to predicate ham-
mocks to a dynamically scheduled architecture helps (1) eliminate
mispredicted branches, (2) reduce capacity demands on resources
for branch prediction, and (3) improve instruction fetching by in-
creasing the number of instructions between branches.

1.1 Dynamic Predication for Branch Hammocks

Figure 1 shows a code fragment corresponding to an “if-then-else”
statement. The example has a single conditional branch at instruc-
tion (e) and a join point at (k). As shown in Figure 1, we break
a branch hammock into four “contexts” that we use to discuss dy-
namic predication throughout this paper. The fork-context occurs
up to the point of the original conditional branch. The then-context
and optional else-context each contain half of the branch hammock.
The join-context is the code following the branch hammock.

Since dynamic predication only converts branch hammocks
into predicated form, it is more restrictive than a fully predicated
ISA with an aggressive predicated compiler. In addition, if the
hammock code is not laid-out as one consecutive block of in-
structions, dynamic predication is not applied, since the advan-
tage of consecutive fetch is lost. Despite these limitations, we
show that dynamic predication can improve the performance of a
dynamically-scheduled architecture with a conventional ISA.

There are three problems to be solved in dynamic predication:
identifying eligible branch hammocks, deciding whether to use
predication to execute the branch hammock, and maintaining the
processor state in the face of dynamic predication.

In this work, we assume the conditional branch starting a predi-
catable hammock (i.e. instruction (e) in Figure 1) would be marked
by a compiler or binary instrumentation tool.

(a) R1 := …
(b) R2 := …
(c) R3 := …
(d) R4 := …
(e) Bcc (i)

(i) R2 := R1 - R2
(j) R3 := R2 * 2

(f) R1 := R1 + R2
(g) R3 := R1 * 2
(h) BRA (k)

(k) RA := R1
(l) RB := R2
(m) RC := R3
(n) RD := R4

Then context
(CC is false)

Else context
(CC is true)

Fork Context

Join
Context

Figure 1. Branch Hammocks

(a) R1.a := …
(b) R2.b := …
(c) R3.c := …
(d) R4.d := …
(e) P1.e := CC

(i) R2.i := R1.a - R2.b
(j) R3.j := R2.i * 2

(f) R1.f := R1.a + R2.b
(g) R3.g := R1.f * 2
(h) BRA (k)

(k) R1.k := if P1.e then R1.a else R1.f
(l) R2.l := if P1.e then R2.i else R2.b
(m) R3.m := if P1.e then R3.j else R3.g
(n) RA.n := R1.k
(o) RB.o := R2.l
(p) RC.p := R3.m
(q) RD.q := R4.d

Else Context
(CC is true)

Then Context
(CC is false)

Fork Context

Join Context

Figure 2. Translated Branch Hammocks. Rx.y: logical
register x, physical register y

The decision to evaluate both paths can be done using off-line
profiles or an on-line dynamic confidence estimator. If an off-line
profile is used, the branch is always executed using predication. In
the dynamic method, the branch is executed using predication only
if a confidence estimator reports a low confidence in the branch pre-
diction. We use a dynamic confidence estimator similar to the de-
sign of Jacobsen et al. [10]. Clearly, dynamic predication will have
the largest influence for branches with little predictability and few
instructions. If a branch can be easily predicted, then speculation
is more efficient than predication. However, wide-issue processors
are likely to have fetched the instructions on both branch paths, and
predication can be useful even for highly predictable branches.

Dynamic predication evaluates both sides of a branch, and
places additional pressure on execution resources. In Figure 1, reg-
isters R1 and R2 are each modified on only one half of the ham-
mock, whereas R3 is modified on both halves. Register R4 is not
modified by either path. Since each path redefines some portion of
the register name space, and instructions from both paths are issued
to the same processor, some mechanism must be used to distinguish
the state for each path. We inject instructions from both predicated
paths into the same pipeline. We use a labeling mechanism, de-
scribed later, to identify the instructions and registers from the dif-
ferent paths. We remove the conditional branch and replace it with
a predicate definition instruction, rename the registers on each path
of the branch to maintain independent execution semantics and in-
ject conditional move (cmove) operations to reconcile predicated
definitions into a single context following the join point.

Figure 2 shows the code that is actually dispatched by our pro-
cessor front-end. The conditional branch has been replaced by an
assignment to a predicate register (P1). Registers defined by either
path have been renamed. Cmoves, instructions (k), (l) and (m),
have been dispatched prior to the join point. The cmoves merge the
results from each branch path, providing a unique physical register
for subsequent instructions. For example, (l) renames R2 to phys-
ical register l, using either the original value of R2 from (b) or the
value computed at (i).

Alternatively, rather than using conditional moves, the proces-
sor front-end could cease issuing instructions when it reaches a join
point and wait for the outstanding predicate computation (e) to re-
solve. Cmoves consume additional instruction window slots and
register names. However, using cmoves does not stall the decoder,
and instructions not dependent on the predicate can continue to is-
sue - e.g., (q) depends on the value of R4, which is not redefined in
the branch hammock, and can be issued once (d) completes.

2 Implementation of Dynamic Predication

To support dynamic predication, the pipeline must be extended to
identify hammocks, predicate the instructions within hammocks,
and support the correct execution of instructions within the created
fork, then, and else contexts. In addition, this support must coex-
ist harmoniously with general branch speculation. In the following
text, we detail the enhancements we made to our baseline out-of-
order issue processor pipeline. An overview of the pipeline exten-
sions and instruction re-order buffer additions is shown in Figure 3.

2.1 Decoder Support

2.1.1 Dynamic Hammock Predication

Once the decoder determines that a hammock should be predicated,
it indicates this in the re-order buffer entries for the predicated in-
structions. In addition, a predication context tag (described in Sec-
tion 2.4) is assigned to the hammock instructions along with a pred-
icate value. The predicate value for the predicate region, i.e., true or
false, is compared against the resulting predicate in the context tag
when committing the instructions. If the value of the context tag
is equal to the predicate value then the instruction is committed,
otherwise it is squashed.

The decoder uses the branch target of a hammock branch to
determine when the then, else, and join points are encountered, as
previously described. When the else point is encountered, the pred-
icate value stored with the instructions is inverted. Also, note that
the unconditional branch terminating the then-path is not inserted
into the instruction window, since its effect is subsumed by predica-
tion. When the join point is encountered, predication of instructions
is terminated until the next hammock.

2.2 Renamer Support

The renamer must be extended to correctly implement register
communication in the presence of multiple predicated execution
contexts. A predicated definition of a register must only be vis-
ible in the same predicated context, or in later contexts after the
join point, after the predicate has resolved to be true. The renamer
must be able to accomplish this task without the knowledge of the
predicate value, since stalling would be tantamount to stopping in-
struction fetch until the branch resolves.

 fork
 fork

 then

Decode

confidence
m

echanism

predicate ?

IR

P
C

Rename
rename
tables

 fork

 then

 else

predication
contexts

speculation

checkpoints CMOV rk,p,ri,rj

from fork/then/else
contexts

to fork
context

Schedule

CMOV rk,p,ri,rj

early predicate
value can

shunt input

fork context

then context

else context

fork context

load

store

OK

store
load OK

store
load OK

not
OK

OK
when

predicate
resolves

Commit

re-order buffer

architected
state

commit result
only if attached

tag is live

PC IR

result faults

context tag predicate value

Reorder Buffer Entry:

pred?

(optional)
dynam

ic

hammock branch?

then
context

CMOVE Injection Rules:

ri

CMOV rk,p, ri, rj

rj
else

context

defined defined

defined

defined

undefined

undefined

undefined undefined

then
context

then
context

else
context

else
context

fork
context

fork
context

no cmove inserted

Figure 3. Pipeline Overview. Shown are the additions made to the baseline pipeline to support dynamic predication. The fields shown in gray
are added to the instruction re-order buffer entries.

The rename table is extended to include three physical register
definitions per logical register, as shown in the rename stage of Fig-
ure 3. The fork entry represents the definition before encountering
the hammock branch. The then and else entries represent the defini-
tions on the then- and else-paths of the hammock, and are only used
while predicating a hammock. Each access to the register mapping
table produces mappings for all three contexts. The context of the
instruction determines which mapping is actually used. If the reg-
ister is defined under the current predicate, the predicate entry is
used. If not, the previous definition from the fork context is used.
The predicated definitions are all cleared at the beginning of a pred-
icate region. At the end of the predicate region, all predicated def-
initions are combined into a single physical storage location using
physical cmove operations. Note that physical cmoves are different
from logical cmoves which are found in some ISAs. A physical
cmove addresses three physical registers, 2 source and 1 destina-
tion, which all correspond to the same logical register but were
generated to accomodate predicated multi-path execution. The re-
namer injects a cmove for each logical register that was defined in
a predicated context, according to the rules stated in Figure 3. Each
injected cmove takes up one dispatch slot when it is put into the in-
struction window, which delays the dispatch of operations fetched
after the join point. Dynamic expansion of ISA instructions into
micro-operations is a proven technique used e.g. in the PentiumPro
and K6 processor [4] implementations. Our technique is much sim-
pler than this full translation of each instruction.

2.3 Scheduler Support

The register scheduling logic, for the most part, is unchanged. Us-
ing the renaming mechanism described in the previous section, in-
structions may begin execution as soon as their operands are ready.
Predicated instructions do not have to wait for their predicates to
be resolved, since unneeded results will be discarded by the cmove
operation injected by the renamer. If the predicate arrives before
both of the use values for a cmove instruction are calculated, the
cmove can complete as soon as the value corresponding to the cor-
rect predicate context is produced.

The memory scheduler must be extended to operate correctly
in the presence of multiple predicated and un-predicated contexts
as shown in Figure 3. Data flow, through memory, cannot occur
between disjoint predicate regions, and predicated definitions com-
municated through memory must be gated by their predicate values.
To enforce this restriction, we added context tags to each entry of
the load/store queue (context tags are detailed in Section 2.4). A
reserved context identifier is assigned to loads and stores executed
in un-predicated regions of code. Accordingly, a store in the un-
predicated context may forward to any following load, and a store
in a predicated context may forward to a load in its own context
or in the un-predicated context once the store’s predicate value has
been verified to be true.

It is interesting to note that dynamic scheduling becomes much
more challenging in the presence of generalized compiler-based
predication (e.g., as in [18]). If individual instructions can be deco-
rated with arbitrary predicates, the dynamic scheduler must assume
that any two instructions that share a definition are dependent un-
less it can “prove” that their unresolved predicate definitions do not
imply each other.

Our predication support greatly simplifies the dynamic sched-
uler’s task by restricting predicates to sequential blocks of logically
disjoint code. Thus the dynamic scheduler can trivially determine
that instructions outside of the predicate region will always execute
independent of the predicate values, instructions within the same
predicate region will execute together independent of the predi-
cates, and instructions in the “then” and “else” contexts never exe-
cute together and thus are independent.

2.4 Pipeline Recovery Support

Support for predicated execution requires a more selective pipeline
recovery mechanism than those typically found in modern micro-
processors. Most modern processors employ an N-level specula-
tion recovery support, where a processor checkpoints the archi-
tected state of the machine at up to N precise instruction points,
typically at speculated branches. Recovery is initiated by rolling
back the state of the machine to a checkpoint. This discards all

instructions that were fetched after the restored checkpoint. In the
presence of hammock predication, it is desirable to become more
selective when killing instructions. Instead of a mechanism that
squashes all instructions past a certain point, we use a mechanism
that deactivates a range of instructions. This allows incorrect pred-
icate regions that are embedded within un-predicated code to be
“killed” without throwing away useful work in later instructions.

To implement this instruction deactivation support, we use an
instruction tagging mechanism, where a unique tag is assigned to
each predicated region of code. This tag is stored with the in-
structions within the predicate region in the instruction re-order
buffer entry, as show in Figure 3. The tags are held in a queue,
and are assigned to hammocks by the decoder as they are encoun-
tered and predicated. The instructions themselves hold the tag un-
der which they execute, and the predicate value of their context,
i.e., predicate-true or -false. Tags are recovered for reuse when the
last instruction in the predicate region assigned to that tag has re-
tired. When a predicated branch condition is evaluated, instructions
on the incorrect path associated with the tag are deactivated. The
tag value, and its predicate result, are broadcast to all instructions
in the re-order buffer. All instructions with a matching tag and op-
posite predicate value are marked as inactive. Once deactivated,
an instruction will not commit its results to the architected state at
retirement, nor will it declare any fault conditions it has detected,
as shown in the commit stage of Figure 3. The scheduler does not
issue inactive instructions; hence, once deactivated they do not use
execution bandwidth. Since they have to be retired (but not com-
mitted), however, they still do consume retirement bandwidth.

In addition to the instruction tagging mechanism, the pipeline
also supports the normal branch speculation recovery mechanism
for branch speculation. There is a fine distinction between predi-
cation and speculation recovery support. With speculation support,
the recovery mechanism checkpoints the state of the machine, and
rolls back to the checkpoint when it recovers from mis-speculation.
With predication, however, there is no need to roll back the state of
the machine. The data flow accommodates the control conditions
through the use of cmoves and it is only necessary for the recovery
mechanism to omit committing results from predicated instructions
on the incorrect path. Since there is no rollback, there is no need
to checkpoint state for predicated branches. Since additional spec-
ulation is not allowed within predicated regions, the speculation
checkpoints do not contain any predicated state; the predication
state is cleared when a speculation checkpoint is restored.

Our architecture uses precise exceptions. If an instruction in-
curs an exception during execution, the exception condition is
stored instead of the result. The exception is handled at instruction
commit. Exceptions of instructions in predicated paths can be han-
dled in the normal way. At the time when this exception is handled,
the architecture can restore the same state as would be restored af-
ter speculating the hammock fork branch. No extra predicated state
needs to be considered by exception handlers. Also, when the exe-
cution is restarted after exception handling, it is always restarted in
non-predicated and non-speculative mode, exactly like in a normal
speculative architecture.

3 Prior Work

In order to increase instruction level parallelism and reduce the
number of branches in a program, predicated execution has
been proposed as an alternative for conditional code sequences.
Full predication was used in the Cydra 5 [18] architecture.
Mahlke et al. [15] proposed hyperblocks, or superblock schedul-
ing extended to support predicated architectures. Tyson [23] and
Mahlke et al [13] studied the potential benefits of predication on

branch prediction accuracy. Pnevmatikatos and Sohi [16] proposed
guarded execution, where a single instruction specified the predi-
cation information for subsequent instructions using a bit-mask.

Tyson studied both partial predication, where an architecture
supports only a few, limited predicated instructions such as condi-
tional moves, and full predication where all instructions are labeled
with a predicate, including support for speculative loads and stores.
That study attempted to predicate short forward branches, which
correspond to a “one-sided branch hammock” that only has a then-
context. Both Tyson and Mahlke found that �30% of the dynamic
branch count could be removed using full predication. Tyson also
found that only 5% of the branches could be predicated using par-
tial predication. Half of this difference was due to load and store
instructions, and the other half was due to the presence of other
branch instructions. Our architectural model addresses a more gen-
eral control structure (two-sided branch hammocks) and support
for speculative loads and stores within the dynamically predicated
region. Mahlke et al. [14] provide more comparison of fully vs.
partially predicated execution, and provide a detailed explanation
of scheduling partial predicated code. Mahlke makes the point that
simple predication schemes, such as conditional moves, increase
the processor instruction count. Our model reduces the impact on
the I-cache by dynamically inserting the conditional moves.

There is very little work on what we would term “dynamic pred-
ication”. Sprangle and Patt [20] show that with predication, the re-
namer can reuse storage if it knows that the storage is predicated
under complimentary conditions. Chang et al. [3] studied a fully
predicated ISA on a speculative architecture with register renam-
ing. They use an additional source input to each instruction to al-
low copying of the old logical destination register value to the new
physical destination register if the predicate is false. This reintro-
duces output dependencies (write-after-write) between instructions
that produce the same logical destination register. Our solution
avoids these artificial dependencies by using conditional moves to
reconcile data dependencies.

Heil and Smith [9] and Tyson, Lick and Farrens [22] also dis-
cuss “dual path” execution. The paper by Tyson does not de-
scribe an implementation. The paper by Heil mentions duplicat-
ing the processor pipeline resources. By comparison, our method
can pipeline multiple branch hammocks, meaning that more than
two paths can be under evaluation at any one time. Furthermore,
our modifications to the decoder, renamer and scheduler are much
simpler than the proposal in [9]. In [24] Uht et al. describe Dis-
joint Eager Execution and minimal control dependencies, which
allow execution of control and data independent instructions after
the join, concurrently with instructions before the fork branch. Our
approach has the same property but comes with a much smaller
hardware overhead. Klauser et al. [12] describe multipath execu-
tion, which uses a path naming scheme that has similarities to our
context tagging. However, their work only considers fork opera-
tions without rejoining paths.

Rau [17] proposed a mechanism to implement dynamically
scheduled VLIW architectures that is similar to our injection of
conditional move operations used to reconcile contexts. Our model
is similar in that we insert a conditional move to “rename” pred-
icated computation should the predicate be true, but we use dy-
namic dependence information to control the scheduling of the con-
ditional move rather than using a fixed-delay queue.

Some current architectures implement limited support for pred-
icated execution, e.g. the Alpha ISA [1] supports conditional move
instructions and the HP-PA 2.0 ISA [11] supports conditional nul-
lification of one instruction after most computational instructions.
In comparison, our approach uses full predication in the microar-
chitecture without requiring additional instruction set support.

L1 Icache 64 kB, 32 byte lines, 2-way set-associative, 2 cycles hit latency
L1 Dcache 64 kB, 32 byte lines, 2-way set-associative, 2 cycles hit latency
L2 Cache Combined 512 kB, 64 byte lines, direct mapped, 6 cycles hit latency
Memory 128 bit wide, 26 cycles access latency
Branch Predictor McFarling combined, gshare + bimodal 2k entry each
BTB 1024 entry, 4-way set-associative; 32 entry return address stack
TLB 64 entry (I), 128 entry (D), fully associative
Functional Units and 8 Int.ALU (1/1), 2 Int Mult (3/1) / Div (20/19), 4 Ld./St. (2/1),
Latency (total/issue) 8 FP Add (2/1), 2 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

Table 1. Machine configuration parameters.

 compress gcc perl go m88ksim lisp vortex jpeg
train ** amptjp test *** 2stone9 dhry train train * specmun*

(M) 80.4 250.9 227.9 548.2 416.5 183.3 180.9 252.0
(M) 38.3 197.7 174.1 507.0 197.5 96.4 53.7 84.7
(M) 14.4 50.4 43.7 80.3 89.8 41.8 29.1 20.0

9.9% 11.9% 11.2% 24.1% 4.3% 7.0% 1.7% 10.4%
5.6 5.0 5.2 6.8 4.6 4.4 6.2 12.6

56.7 41.9 46.7 28.3 106.9 63.1 365.8 121.1
2.1 1.3 1.3 1.1 2.1 1.9 3.4 3.0

1450 33568 7215 6765 3727 2022 11756 4992
403 6128 1319 1743 857 420 1423 1248
77 1640 380 321 218 101 343 202

282 3822 968 1176 660 316 1207 734
5 18 8 10 7 5 7 10

50 243 297 562 237 50 297 302
(M) 87.0 257.6 235.5 575.3 465.2 184.3 186.8 259.7
(M) 1.8 2.6 3.4 7.0 21.4 0.7 2.1 1.8
(M) 3.9 2.6 3.8 11.1 24.3 0.6 2.2 3.2
(M) 2.7 4.1 3.8 16.0 24.4 0.4 3.6 4.4
(M) 9.2 5.5 8.7 20.7 35.8 2.6 6.2 2.7
(M) 0.6 0.2 0.3 2.6 1.3 0.2 0.2 0.1

12.7% 5.2% 7.7% 8.7% 23.8% 1.6% 7.1% 8.8%
6.5 3.7 3.7 5.2 2.8 4.7 4.8 4.0
2.1 1.0 1.1 1.6 1.1 0.9 1.1 1.8
3.5 1.3 2.3 1.3 1.5 5.9 1.7 0.6

B
as

el
in

e

D
yn

am
ic

S
ta

tic

Instructions

Instructions
 Cycles

Max. Nesting
Max. Size (Inst.)

Branches

 Inst. Per Branch

Data-Set

Avg. Hammock Size

Killed Pred.Inst.
Committed Pred.Inst.

Inserted Cmoves

Removed Uncond. BR

Inst. Per Cycle

Fork Branches

Inst. Between Mispred.

Misprediction Rate

Avg. Committed / Killed
Avg. Cmoves Per Hmk.

S
im

pl
e

H
am

m
oc

k
P

re
di

ca
tio

n

D
yn

am
ic

Predicated Branches

Cond. Forward Branches

H
am

m
oc

ks

Single-sided
Double-sided

Simple

Table 2. Benchmark characteristics and baseline machine performance. The benchmark data sets (*) have reduced input sizes, (**) has
increased input size, and data set (***) are the test inputs from the source distribution. Baseline statistics represent the baseline speculative
architecture without predicated execution. Simple Hammock Predication statistics are taken from size-based hammock selection with a
threshold of 32 instructions. All instruction counts represent millions (M) of retired instructions.

Basic Enhanced
Hammock Size 6 10 16 24 32 32 32 predict + fetch predict + fetch
compress 8.72% 10.19% 10.19% 10.20% 10.20% 8.02% 8.84% 10.80% 10.93% 10.76% 11.76%
gcc 2.85% 3.04% 3.11% 3.08% 3.11% 3.07% 3.07% 3.06% 3.26% 6.60% 7.09%
perl 5.62% 5.73% 5.87% 5.82% 5.84% 6.16% 6.16% 5.88% 6.34% 8.70% 9.36%
go 5.95% 6.30% 6.45% 6.50% 6.50% 6.47% 6.45% 6.70% 7.14% 24.78% 25.97%
m88ksim 11.48% 10.92% 12.07% 12.28% 12.40% 12.58% 13.18% 12.91% 13.66% 21.96% 23.12%
xlisp 1.03% 1.05% 1.17% 1.17% 1.17% -0.01% -0.01% 0.94% 1.01% 0.86% 1.02%
vortex 0.22% 0.58% 0.50% 0.37% 0.21% 1.66% 1.65% 1.98% 2.03% 3.41% 3.80%
jpeg 3.33% 3.35% 3.37% 3.35% 3.35% 5.20% 5.23% 5.00% 5.83% 10.27% 12.11%
g-mean 4.84% 5.08% 5.27% 5.27% 5.27% 5.33% 5.50% 5.84% 6.20% 10.65% 11.49%

Size-Based Complex Hammock
Profile-Based Perfect Branches

Simple Hammock

Table 3. Percent speedup for hammock predication with static hammock selection methods (left hand side) and perfect hammock branch
execution (right hand side). Perfect prediction and fetch for simple hammock branches represents an upper bound model for hammock
predication.

0

20

40

60

80

100
Conditional Branch Misprediction Contribution

Hammock
Simple

Hammock
Complex

Non-Hammock

Non-Hammock

Branch Type

Backward

Forward

M
is

pr
ed

ic
ti

on
s

(%
)

lis
p

co
m

pr
es

s

gc
c

pe
rl

go m
88

ks
im

vo
rt

ex

jp
eg

m
ea

n

Figure 4. Conditional branch mispredictions.

4 Results

We have used the SimpleScalar tools [2] to build a pipeline-level
simulator of our proposed dynamic predication architecture. The
baseline machine architecture is a superscalar, out-of-order execu-
tion, in-order commit processor with architectural parameters as
detailed in Table 1. The architecture can fetch, issue, and commit
up to 8 instructions each cycle and has a 128-entry instruction win-
dow, a 64-entry load/store queue, and a 16 instruction fetch queue.
The architected misprediction penalty is 16 cycles.

For our performance evaluation, we use the SPECint95 bench-
mark suite with scaled down input data sets to reduce simulation
time. All benchmarks run to completion. Table 2 shows the bench-
mark characteristics and their performance.

4.1 Branch Misprediction Contributions

Tyson and Mahlke [23, 13] found that �30% of the dynamic
branches could be removed by predication. We have measured the
effect on performance if these branches were removed.

In Figure 4, we show the relative contribution of the following
subclasses of conditional branches to the misprediction rate of all
conditional branches:

� Simple hammocks are branches that start a hammock with a
single basic block in the then- and else-path, i.e. there are no
nested control instructions inside the hammock.

� Complex hammocks are branches that start the remain-
ing hammocks, i.e. the hammocks with arbitrary embedded
control-flow like function calls, loops, and nested hammocks.

� Non-hammock forward branches are all other forward
branches that do not start hammocks.

� Non-hammock backward are all backward branches.

Our dynamic predication architecture can predicate the subclass of
simple hammocks. On average, approximately 11% of all mispre-
dictions of conditional branches fall into this class.

To assess the performance impact of these mispredicted simple
hammock branches we simulated the performance of our bench-
marks when simple hammock branches are executed perfectly. Per-
fect execution of hammock branches in this context has two com-
ponents; avoiding misprediction penalties by perfect prediction and
avoiding instruction fetch-block breaks by perfect instruction fetch
across the branch. Table 3 shows the results for perfect prediction
and perfect prediction with perfect fetch. Perfect fetch can accrue
a small additional performance gain over perfect prediction.

Perfect prediction and fetch is useful as an upper bound model
for hammock predication. Predicated hammocks can not be mis-
predicted, since both paths are executed. Also, fetches across ham-
mock forks (former branches) do not break the fetch-block, since
these fetches are always consecutive.

The table also shows the speedup for perfectly executed com-
plex hammock branches. Note that for some benchmarks, like
compress, there is little difference since the fraction of mispre-
dicted complex hammocks is small. Other benchmarks, like go
have a significantly larger portion of mispredicted complex ham-
mock branches. However, our proposed dynamic predication ar-
chitecture does not predicate complex hammocks, since it would
require a much larger hardware investment than predicating only
simple hammocks. As Table 2 shows, complex hammocks in go
can reach a maximal depth of 10 nested hammocks and a size of
562 instructions, far beyond what could be efficiently predicated.

Note that this perfect branch execution model is sometimes
slightly outperformed by our real dynamic predication models.
This is an artifact of our perfect model, which does not include the
effects of eliminating then-path terminal unconditional branches.
Another uncertainty comes from our perfect branch prediction
model, which introduces minor timing perturbations in some cache
accesses. Also, mispredicted branches can in rare cases slightly in-
crease performance by prefetching instructions which will be used
in the near future. A case of this anomaly can be seen e.g. with
compress, where perfect prediction for simple hammocks slightly
outperforms perfect prediction of simple and complex hammocks.

4.2 Static Hammock Selection Methods

In the previous section, we have introduced an upper bound model
for hammock predication. In the following subsections, we show
the actual performance of our dynamic predication architecture
with several hammock selection methods.

4.2.1 Size-based Hammock Selection

The simplest static selection method that can be used is only based
on the hammock size, i.e. the number of instructions between the
fork and join. Table 3 shows the performance of size-based ham-
mock selection with varying hammock sizes. Each hammock with
a size up to the threshold size is marked for predication; larger ham-
mocks are executed with speculation instead. The intention behind
this heuristic is that small hammocks are efficient to predicate since
the whole hammock is fetched in one or two cycles. It would take
the same amount of time to speculate across this hammock, with
the potential for mis-speculation.

The results in Table 3 show that the performance increases up
to a hammock size of 16 instructions and stays almost constant
for larger sizes. Even with this simple selection mechanism, the
geometric mean of 5.27% speedup is already close to the 6.2%
speedup of perfect branch prediction and fetch for simple hammock
branches. Only two benchmarks, vortex and jpeg, fall significantly
short of their perfect execution performance. Lisp, on the other
hand, slightly outperforms our perfect model due to the reasons
outlined above.

Table 2 gives some insight into why this simple hammock se-
lection technique works surprisingly well. The rows labeled ”Sim-
ple Hammock Predication” correspond to the performance of size-
based hammock selection with a threshold size of 32 instructions.
The table shows that, although up to 32 instructions are allowed
in a hammock, the average hammock size is only 4 instructions or
half a fetch-block. Also, on average less than 2 cmoves are injected
to reconcile data dependencies. Due to these cmoves and predi-
cated wrong-path instructions, the number of retired instructions

for dynamic predication increases on the average by about 5%. It
is also interesting to note that for all but one benchmark (jpeg), the
number of correct-path instructions in hammocks is larger than the
number of wrong-path instructions. This program feature helps to
limit the resource requirements of wrong-path predicated instruc-
tions, which increases the performance of predicated execution.

The overall performance improvement of the different bench-
marks, as seen is Table 3, is roughly connected to the percent-
age of conditional branches that can be predicated (see Table 2).
The benchmarks with the largest fraction of predicated branches,
m88ksim and compress, show the highest performance improve-
ments. The benchmarks with the smallest fraction of predicated
branches, lisp, gcc, and vortex, show the lowest improvements.

4.2.2 Profile-based Hammock Selection

To enhance the quality of hammock selection, we have also con-
sidered profile-based hammock selection. We assume the binary
modification tool has access to branch prediction profiles. These
profiles contain information about correct predictions and mispre-
dictions for each branch, and can be gathered with tools like Pro-
fileMe [5]. We capture the predication and speculation effects by
comparing their wrong-path instruction costs:

ThenPathIncorrect = number of times the else-path should
have been executed

ElsePathIncorrect = number of times the then-path should
have been executed

PredicationCost = ThenPathIncorrect � ThenPathSize +
ElsePathIncorrect � ElsePathSize

SpeculationCost =Mispredictions � MispredictPenalty �
IssueWidth

PredicationCostRatio = PredicationCost = SpeculationCost

The parameters ThenPathIncorrect and ElsePathIncorrect for
each branch are extracted from the profile. This cost model esti-
mates the number of instructions from the incorrect path that would
enter the pipeline for predication or speculation. It does not capture
secondary effects such as cmove injection and data dependence re-
lated stalls. With this method, a branch is marked as hammock
branch if its predication cost-ratio is below a threshold.

Table 3, column Profile-Based/Basic shows the results for self
profiling and the best threshold of 5. The optimal threshold is above
1 since the hidden, not modeled costs of speculation are higher than
the hidden costs of predication. Comparing profile- and size-based
hammock selection shows that the performance increases for jpeg,
vortex, and perl, whereas it decreases for compress and lisp, result-
ing in only a small average performance gain for profile-based se-
lection. The reason for the performance losses of two benchmarks
can be attributed to the cost metric used for profile-based hammock
selection. Our basic cost metric only models costs related to perfect
prediction, not the costs related to fetch-block breaks. To alleviate
this problem, we have modified the hammock selection algorithm.

The speculation of double-sided hammocks always results in
a fetch-block break, either at the hammock branch to jump to the
else-path, or at the terminal then-path branch to jump across the
else-path. To avoid performance losses due to this fetch-block
break, it would be advantageous to predicate very small double-
sided hammocks, even if they are predicted with high accuracy.
Our enhanced profile-based selection algorithm always predicates
double-sided hammocks with then-path sizes up to 4 instructions
(half a fetch-block); other hammocks are predicated based on the
basic predication cost model as presented above. The results in Ta-
ble 3 show that the enhanced selection algorithm performs the best
hammock selections of all algorithms studies so far. It reaches a

history
none history & counters

Perfect Branches 6.20% 5.54% 5.02%
Size-Based 5.27% 5.13% 4.55%
Profile-Based / Basic 5.33% 5.44% 4.79%
Profile-Based / Enhanced 5.50% 5.54% 4.95%

Saturating Counters 4.88% 4.91% 1.96%
Miss-Distance Counters 5.10% 4.97% 3.36%

Branch Predictor Update

Table 4. Overall percent speedup for different hammock selec-
tion methods and branch predictor update strategies for ham-
mock branches.

speedup of up to 13% for m88ksim, and an average of 5.5% over
all benchmarks.

4.3 Branch Predictor Influence

Hammock branches do not depend on the branch predictor any-
more, since instruction fetch always follows the fall-through path
and fetches contiguously until the join is reached. This property can
be used to reduce the interference for other branches in the branch
predictor.

We have looked at three branch predictor update strategies that
differ in the amount of interaction between predicated hammock
branches and the branch predictor: (1) hammock branches do not
update the branch predictor at all, (2) they only update the global
history, and (3) they update history and counters. Table 4 shows
the results of this comparison for the different hammock selection
methods. For perfect branch execution, (1) outperforms the other
two approaches and we have shown the data for this case in Table 3.

Approach (2) eliminates destructive interference in the coun-
ters due to hammock branches, while still allowing other (non-
hammock) branches to benefit from history correlation to ham-
mock branches. Our results reveal that the performance of (1)
and (2) only shows minor differences. Some benchmarks like go
and vortex show a slight benefit from history correlation to ham-
mock branches, whereas other benchmarks like m88ksim and lisp
show a negative interference of hammock branch history with other
branches. Overall, history update has a negligible effect on perfor-
mance. In the data presented earlier, we have assumed no history
update, since it reduces the complexity of the micro-architecture.

Approach (3) consistently displays the lowest performance im-
provements, since it does not benefit from reduced branch predic-
tor interference. As seen for perfect hammock branch execution in
Table 4, eliminating the interference in the branch predictor con-
tributes approximately 1% to overall speedup.

4.4 Dynamic Hammock Selection Methods

We have also considered dynamic hammock selection methods that
use a branch confidence estimator [8, 10] to dynamically determine
if a hammock should be predicated. The two designs studied are
“Saturating Counters” and “Miss-Distance Counters”.

Saturating counters is a simple method that uses the state of the
branch predictor counters to derive the confidence estimation. If
both indexed counters in the McFarling branch predictor are satu-
rated in the same direction, the branch prediction is of high confi-
dence, otherwise it is low confidence. This scheme is called “Both-
Strong” in [8]. It does not require any additional storage for the
confidence estimator, since it uses the branch predictor counters.

The second scheme is more expensive and keeps a separate ta-
ble of miss-distance counters (MDC), which count the number of
correct predictions since the last misprediction for this index. The

MDC is incremented for each correct prediction, and reset to zero
for each incorrect prediction. If the MDC value is below a thresh-
old, the prediction is low confidence, otherwise it is high confi-
dence. As suggested in [8], we have adapted the indexing mecha-
nism of the MDC table to the McFarling predictor and keep a sep-
arate MDC table for each of the two component predictors. The
McFarling meta-predictor selects between the two.

The overall performance for dynamic hammock selection can
be seen at the bottom of Table 4. For MDC, we show the best
performance, which was reached for an MDC-threshold of 7. As
expected, the more expensive MDC outperforms the cheaper satu-
rating counter method. However, dynamic hammock selection does
not perform as well as static hammock selection. We believe that
the reason for this is found in the information that the branch confi-
dence estimator uses to derive its decisions. Confidence estimation
only considers the merit of correct branch predictions, but not the
advantage of contiguous fetch-blocks. It prevents well predictable
hammocks from being predicated. However, it is advantageous to
predicate small hammocks even if they are predicted with high ac-
curacy, since predication allows for more efficient instruction fetch.
This is supported by the fact that simple size-based hammock se-
lection already performs very well. Therefore, we believe that dy-
namic confidence estimation is not necessary for dynamic predica-
tion.

5 Contributions

In this paper we have concentrated on developing the micro-
architectural mechanisms needed to implement dynamic hammock
predication. We developed an architectural mechanism called Dy-
namic Predication, that dynamically predicates and executes both
paths after a hammock branch. We describe a context tag archi-
tecture to allow multiple paths of execution to coexist on a single
threaded architecture, and modifications to the rename table allow-
ing contexts for the before-fork, then, and else paths for proper
register renaming in the presence of multiple path execution.

Dynamic predication provides robust speedups of up to 13%
over an existing architecture that already has aggressive support
for out-of-order speculative execution. On average, it can harness
about 90% of the performance improvement that could be achieved
through perfect execution of hammock branches.

Moreover, dynamic predication demonstrates consistent perfor-
mance improvements with only modest hardware costs, replication
of renamer hardware, and additional control logic. Dynamic predi-
cation exposes predication to the compiler without requiring condi-
tional moves and speculative instruction support in the instruction
set architecture. It is an effective measure to hide branch mispre-
diction latency while not creating unnecessary barriers to dynamic
scheduler performance.

Acknowledgements

We would like to thank Intel MRL for supporting Artur Klauser
during the summer of 1997, Digital Equipment Corporation for an
equipment grant that provided the simulation cycles, a grant from
Hewlett-Packard, and the anonymous referees for providing help-
ful comments. This work was partially supported by NSF grants
No. CCR-9401689 and No. MIP-9706286.

References

[1] D. P. Bhandarkar. Alpha Implementation and Architecture. Digital
Press, 1996.

[2] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future
Microprocessors: The SimpleScalar Tools Set. Technical Report
TR#1308, University of Wisconsin, July 1996.

[3] P.-Y. Chang, E. Hao, Y. Patt, and P. Chang. Using Predicated
Execution to Improve the Performance of a Dynamically Scheduled
Machine with Speculative Execution. In Intl. Conf. on Parallel Arch.
and Compilation Techniques, Limassol, Cyprus, June 1995.

[4] D. Draper et al. Circuit Techniques in a 266-MHz MMX-Enabled
Processor. IEEE Journal of Solid-State Circuits, 32(11), Nov. 1997.

[5] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos. ProfileMe: Hardware Support for Instruction-Level
Profiling on Out-of-Order Processors. In 30th Annual Intl. Symp. on
Microarchitecture, Dec. 1997.

[6] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. Memory-System
Design Considerations for Dynamically-Scheduled Processors. In
24th Annual Intl. Symp. on Comp. Architecture, June 1997.

[7] J. Ferrante, K. Ottenstein, and J. Warren. The Program Dependence
Graph and Its Use in Optimization. ACM Transactions on
Programming Languages and Systems, 9(3):319–349, July 1987.

[8] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence
Estimation for Speculation Control. In 25th Intl. Symp. on Computer
Architecture, Barcelona, Spain, June 1998.

[9] T. Heil and J. Smith. Selective Dual Path Execution, Nov. 1996.
University of Wisconsin-Madison,
http://www.ece.wisc.edu/ jes/papers/isca.sdpe.ps.

[10] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning Confidence to
Conditional Branch Predictions. In 29th Annual Intl. Symp. on
Microarchitecture, pages 142–152, Paris, France, Dec. 1996.

[11] G. Kane. PA-RISC 2.0 architecture. Prentice Hall PTR, 1996.
[12] A. Klauser, A. Paithankar, and D. Grunwald. Selective Eager

Execution on the PolyPath Architecture. In 25th Intl. Symp. on
Computer Architecture, Barcelona, Spain, June 1998.

[13] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M.
Gallagher, and W. mei W. Hwu. Characterizing the Impact of
Predicated Execution on Branch Prediction. In 27th Annual Intl.
Symp. on Microarchitecture, San Jose, CA, Dec. 1994.

[14] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W.
Hwu. A Comparison of Full and Partial Predicated Execution
Support for ILP Processors. In 22nd Intl. Symp. on Computer
Architecture, pages 138–149, June 1995.

[15] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective Compiler Support for Predicated Execution
Using the Hyperblock. In 25th Intl. Conf. on Microarchitecture,
pages 45–54, Dec. 1992.

[16] D. N. Pnevmatikatos and G. S. Sohi. Guarded Execution and Branch
Prediction in Dynamic ILP Processors. In 21st Intl. Symp. on
Computer Architecture, pages 120–129, June 1994.

[17] B. R. Rau. Dynamically scheduled VLIW processors. In 26th
Annual Intl. Symp. on Microarchitecture, Austin, Texas, Dec. 1993.

[18] R. Rau, D. Yen, W. Yen, and R. Towle. The Cydra 5 Departmental
Supercomputer. IEEE Computer, 22(1):12–35, Jan. 1989.

[19] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt. The Agree
Predictor: A Mechanism for Reducing Negative Branch History
Interference. In 24th Annual Intl. Symp. on Comp. Architecture,
pages 284–291, May 1997.

[20] E. Sprangle and Y. Patt. Facilitating Superscalar Processing via a
Combined Static/Dynamic Register Renaming Scheme. In 27th
Annual Intl. Symp. on Microarchitecture, San Jose, CA, Dec. 1994.

[21] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor. In 23nd Annual Intl. Symp.
on Comp. Architecture, May 1996.

[22] G. Tyson, K. Lick, and M. Farrens. Limited Dual Path Execution.
CSE-TR 346-97, University of Michigan, 1997.

[23] G. S. Tyson. The Effects of Predicated Execution on Branch
Prediction. In 27th Annual Intl. Symp. on Microarchitecture, pages
196–206, San Jose, CA, Dec. 1994.

[24] A. K. Uht, V. Sindagi, and K. Hall. Disjoint Eager Execution: An
Optimal Form of Speculative Execution. In 28th Intl. Conf. on
Microarchitecture, pages 313–325, Dec. 1995.

