
14

Exploiting Selective Placement for Low-cost
Memory Protection

MOJTABA MEHRARA and TODD AUSTIN

Advanced Computer Architecture Lab, University of Michigan, Ann Arbor

Many embedded processing applications, such as those found in the automotive or medical field,
require hardware designs that are at the same time low cost and reliable. Traditionally, reliable
memory systems have been implemented using coded storage techniques, such as ECC. While these
designs can effectively detect and correct memory faults such as transient errors and single-bit de-
fects, their use bears a significant cost overhead. In this article, we propose a novel partial memory
protection scheme that provides high-coverage fault protection for program code and data, but with
much lower cost than traditional approaches. Our approach profiles program code and data usage to
assess which program elements are most critical to maintaining program correctness. Critical code
and variables are then placed into a limited protected storage resources. To ensure high coverage
of program elements, our placement technique considers all program components simultaneously,
including code, global variables, stack frames, and heap variables. The fault coverage of our ap-
proach is gauged using Monte Carlo fault-injection experiments, which confirm that our technique
provides high levels of fault protection (99% coverage) with limited memory protection resources
(36% protected area).

Categories and Subject Descriptors: B.8.1 [Hardware]: Performance and Reliability—Reliability,
testing and fault-tolerance

General Terms: Design, Reliability, Experimentation

Additional Key Words and Phrases: Partial memory protection, selective placement, transient
faults, fault-tolerant design, memory system design

ACM Reference Format:
Mehrara, M. and Austin, T. 2008. Exploiting selective placement for low-cost memory protection.
ACM Trans. Architec. Code Optim. 5, 3, Article 14 (November 2008), 24 pages. DOI = 10.1145/
1455650.1455653 http://doi.acm.org/10.1145/1455650.1455653

This article extends an earlier version that appeared in the 2006 ACM SIGPLAN Workshop on
Memory Systems Performance and Correction (MSPC’06), October 2006.
Contact author’s address: University of Michigan, Advanced Computer Architecture Lab, Ann Ar-
bor, MI 48109; email: {mehrara, austin}@umich.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/11-ART14 $5.00 DOI 10.1145/1455650.1455653 http://doi.acm.org/
10.1145/1455650.1455653

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:2 • M. Mehrara and T. Austin

1. INTRODUCTION

Providing protection from soft errors is a growing concern in nearly all comput-
ing markets, from high-end servers to embedded processors. This concern is un-
derscored by scaling trends which reduce transistor sizes and supply voltages.
These trends result in diminishingly small charge stored in transistor devices
and correspondingly higher exposure to soft error events [Baumann 2002].
While it is the case that both memory and logic are affected by these trends,
memory failures are still considered to be the dominant cause of soft error fail-
ures, because unlike logic, memory is continuously exposed to the effects of soft
errors. (In contrast, logic is only exposed to soft errors when it is actively com-
puting a result, a comparatively tiny fraction of time [Mukherjee et al. 2003].)
As a result, several widely adopted techniques have been developed for memory
protection [Bossen and Hsiao 1980; Cardarilli et al. 2003; Chen and Hsiao 1984;
Saleh et al. 1990; Vargas and Nicolaidis 1994]. In general, these techniques im-
pose moderate to high levels of power, area, and performance overhead on the
system. For example, some cell-hardening techniques increase the memory ac-
cess time by 6% to 8% and increase the area by 13% to 15% [Derhacobian et al.
2004]. Protecting memory by error correcting codes (ECC) is also expensive as
the area overhead could be as much as 31% to 50% for 16-bit and 8-bit systems
[Derhacobian et al. 2004]. Furthermore, generating the code bits and run-time
checking of data and codes consumes extra energy and without careful design
can increases cycle time. Unfortunately, the cost and power overheads often
become problematic for cost-sensitive embedded system designs, forcing em-
bedded designers to either sacrifice reliability or increase system cost.

Reliable memory can be provided for cost-sensitive embedded systems (and
other cost-sensitive reliable system design applications) with a significant cost
savings if only the critical fraction of the main memory is protected. The chal-
lenge in creating a partially protected memory design is (1) determining which
variables are most critical to program correctness, (2) orchestrating placement
of these variables into protected memory, and (3) implementing a memory sys-
tem that efficiently provides partial memory protection.

To motivate the possibility of a partially protected memory system, we ex-
amined the variables of the lex benchmark. A closer look at this application’s
variables reveals that not all variables need the same level of protection. For ex-
ample, we found two global variables with dramatically different vulnerability
to soft errors. The first variable is “ZCH” which is used in the parser section to
process the character set specifier. The second variable is “yychar” which is the
input token number. Both occupy 4 bytes in memory. To assess the vulnerability
level of these two variables, we injected a single fault to a random bit of each
variable at a random cycle during the program execution in two separate ex-
periments. We conducted each experiment 5,000 times. The results were quite
promising. In the experiment with fault injection to “yychar” variable, only
four runs out of 5,000 failed (i.e., produced incorrect output), whereas in the
experiment for “ZCH,” we noticed 4,753 failures. This result demonstrates that,
compared to “yychar,” “ZCH” is nearly 1,188 times more vulnerable to transient
faults. This observation underscores our assertion that different variables in

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:3

a program may exhibit various vulnerabilities to transient faults. Therefore,
in presence of tight constraints on area and power in embedded systems, it is
possible to add protection to only a fraction of the memory without significantly
sacrificing overall fault coverage, as long as the most critical program elements
are identified and put into protected storage.

1.1 Contributions of This Article

In this article, we study the behavior of various embedded applications and eval-
uate the potential for application-based selective memory protection against
soft errors. In considering partial memory protection, we examine the efficacy
of selectively placing both program code and data. In particular, we make the
following contributions:

� We propose the first reliability-aware placement scheme for selective placement
of code and variables in the main memory. With this approach, we utilize a
profile-based criticality analysis to determine the most vulnerable program
components, which are then placed into a small protected storage region. Our
technique employs a global placement strategy in which program code, global
variables, stack storage, and heap variables all compete for limited protected
storage resources.

� We develop profile-based criticality metrics based on the liveness of code and
data, such that code and variables which are frequently used are placed first
into limited protected storage resources.

� We introduce a simulator evaluation framework that accurately emulates the
placement functionality of the compiler, linker, and dynamic run-time system.
This allows us to carefully analyze the behavior of the program and explore
the full potential of varied partial memory protection schemes without the
undue burden of implementation details.

� We develop an accelerated fault injection simulation technique that can reduce
the overall analysis time by up to an order of magnitude. In this framework
we inject multiple faults in a single simulation pass and in case of failure
we perform several single fault injection experiments using the same fault
information as the multiple injection pass.

� We describe an architecture for integrating partial protection support in tra-
ditional memory protection systems. The extra hardware incurs minimal
amount of area, power, and performance overhead. Furthermore, we propose
a solution to hide the extra performance penalty.

The remainder of the article is organized as follows. In Section 2, we present
an in-depth analysis of memory behavior in embedded applications to jus-
tify the applicability of our method in this area. In addition, we describe our
reliability-aware placement technique. The proposed architectural support for
partial memory protection is presented in Section 3. Section 4 details the eval-
uation methodology and simulation framework, and experimental results and
discussions are presented in Section 5. Section 6 explores some related works
in memory protection area, and finally, Section 7 concludes the article.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:4 • M. Mehrara and T. Austin

Fig. 1. Memory object lifespan. The object is live only during the shaded intervals.

2. SELECTIVE RELIABILITY-AWARE PLACEMENT SCHEME

In this section, we describe our selective profile-driven approach for placing
memory objects in a partially protected memory system. Throughout the fol-
lowing sections, we use the term object to refer to various memory elements.

In general, a data object’s life span during the program execution is parti-
tioned into several phases, which are allocation-to-write, write-to-read, read-
to-write, write-to-write, read-to-read, read-to-free, and write-to-free intervals.
Traditional memory protection schemes consider memory elements to be vul-
nerable to transient faults during all these phases. Therefore, they tend to
protect the entire memory in the system. However, soft errors can only lead
to system failure if element’s stored value is live at the time of fault strike.
Among the above intervals, the data object value is only live during write-to-
read and read-to-read. Furthermore, the code and constant objects’ liveness
interval would be only from the start of the program to the last read (if any).
Figure 1 shows a data object’s lifespan where liveness intervals are highlighted
in shaded regions.

Considering these facts, we can identify memory object’s level of vulnerability
to transient faults after performing a liveness analysis for the whole memory
system during the program execution. Subsequently, we would be able to protect
only the objects with longer lifetimes.

Figure 2 shows the cumulative distribution function of lifetime versus object
size for three sample benchmarks to depict various possible memory behaviors
in actual programs. Clearly, many of the program variables found in these
applications have short lifetimes, showing the potential for partial memory
protection in a wide range of applications. Our technique is especially useful in
programs that have a similar distribution to the bitcount benchmark. As can
be seen, the CDF value for this benchmark starts from 82%, which means that
most of the program’s global variables were not used at all for the analyzed
execution. In fact, our studies on several benchmarks from MiBench [Guthaus
et al. 2001] and MediaBench [Lee et al. 1997] suites reveal the fact that a
considerable amount of global storage in these benchmarks has very low or
even zero lifetime (Figure 3). Therefore, there would be no need to protect the
entire allocated memory during program execution.

Figure 4 illustrates the analysis flow for selective memory object placement.
In this article, we have categorized the memory objects into global, heap, stack,
and text segments. To achieve a better understanding of the effects of soft errors
on each category, we have done a separate profiling and coverage analysis for

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:5

Fig. 2. Cumulative distribution function of average lifetime versus size for global variables in three
benchmarks. The average slope of the curves over each section shows the concentration of storage
at the corresponding life span (e.g., in 026.compress, a large fraction of storage has a normalized
lifetime value between 0.5 and 0.6). Objects’ size and lifetime values are normalized to total global
section size and total program duration respectively.

Fig. 3. Normalized total size of global variables that have a nonzero lifetime. On average, only
30.4% of the total global objects become live at least once during program execution.

each segment. Subsequently, we derived the total coverage using individual size
and coverage data. Furthermore, a mixed analysis of global and text segments
has also been done to give a more in-depth insight for sharing protected storage
between these two types.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:6 • M. Mehrara and T. Austin

Fig. 4. Analysis flow for creating lifetime profile and performing data placement. Stage 0.5 is done
outside simulator for global and text segments. Stage 1.b. is only executed for dynamic storage and
stage 1.c. is only executed for stack segment.

2.1 Global and Text Segment Selective Placement

The compiler and linker assign the starting address and size of each structure in
global and text segments, and they do not change with different inputs. There-
fore, using the profile information, these objects can be reordered statically at
compile time.

To extract the lifetime information for global variables and text objects, we
initially add up individual liveness intervals for each memory address in these
segments during the program execution. These intervals are the total cycles
of write-to-read and read-to-read periods for global variables and the number
of cycles from the start of the program to the last read access for the text ob-
jects. After matching addresses to their corresponding object (which might be a
single element or an array), we compute the average lifetime of each object by
summing up lifetimes of its individual elements and dividing the result by the
number of elements that have had a nonzero lifetime. Subsequently, we sort
them based on their average lifetimes as a metric for determining an object’s
exposure to transient faults. This technique has been applied to both individual
global and text placement and a mixed analysis of the two types. Finally, con-
sidering the availability of protected storage and the exposure priority (which

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:7

is determined according to the ranking in the lifetime-based sorted list of all
variables), we place the objects into either protected or nonprotected storage.

2.2 Heap Segment Selective Placement

Unlike global variables and text objects, the size and address of each heap
variable is determined by dynamic memory management functions (e.g., mal-
loc) throughout the program execution and may change with various inputs.
Therefore, the profiling process for heap is more complicated and challenging
than global and text segments. In fact, it is difficult and sometimes impossi-
ble to keep track of dynamic variables between the initial profile run and the
actual program execution. Seidl and Zorn [1998], proposed several approaches
for characterizing heap variables behavior in the profile run as a guide for pre-
dicting the behavior in the actual run of the program. Using that prediction,
they tried to decrease the usage of virtual memory pages in programs by placing
dynamic objects into different areas of the heap segment to improve the spatial
locality of their references. These approaches are mainly based on the return
address stack pointer value, the call path leading to the allocation function and
the return address stack contents at the time of variable allocation. The follow-
ing is an overview of these mechanisms and how they can be employed in this
work for predicting heap variables’ exposure priority:

� Stack Pointer. The value of the stack pointer at the time of function call
to malloc (or other allocation functions) can be used as a reference to the
allocated heap object. For instance, during the profile run, we can identify
the required level of protection for a heap variable and store it along with
the corresponding stack pointer in the profile table. Subsequently, during the
actual run, we assign the same level of protection to all dynamic variables
with the same stack pointer reference.

� Path Point. The basic motivation for this technique is the fairly high correla-
tion between the behavior of the heap objects and their respective call sites.
The implication of this approach in our context would be to initially assign
the protection level of each dynamic variable to all call sites that precede the
call to the corresponding dynamic allocation function. At the end of the pro-
gram execution, gathered information is explored to find similar protection
level patterns in each call site. If any protection level is dominant, we mark it
as the call site’s protection priority predictor. During the actual program run,
we assign call site’s protection priority to all variables that are dynamically
allocated inside that site.

� Return Address Stack Contents. Utilizing the address stack contents at the
time of allocation as the reference to dynamic variables is another approach
for behavior prediction. When the dynamic allocation function is called, sev-
eral return address stack entries which represent a subset of the call chain
are combined to be used as the reference for the corresponding heap object.
Seidl and Zorn [1997] have shown that using three or four stack entries is
reasonably accurate for this purpose.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:8 • M. Mehrara and T. Austin

As Seidl and Zorn [1998] suggested, using the call chain information from
RAS is more accurate than the other two techniques in assigning references
to dynamic variables. A similar approach has also been used by Calder et al.
[1998] for generating names for dynamic variables.

In this article, we use the third mechanism and assign references to dynamic
variables by XOR-folding the last three stack entries. During the profile cre-
ation, we keep track of heap allocation by identifying calls to dynamic allocation
functions (i.e., malloc, calloc, and realloc). After each call, we add the allocated
object along with its reference to the list of heap variables, and using its size
and starting address, we identify the corresponding memory transactions. Sub-
sequently, we update each object’s lifetime in the same way as we do for global
variables. Finally, we mark heap objects as protected or nonprotected based
on the overall liveness analysis and available protected storage. During the ac-
tual execution of the program, each heap object’s reference is again computed by
XOR-folding the last three stack entries. If it matches any previous entry in the
profile information, we use the profile prediction for placing data in protected
or nonprotected memory. Otherwise, the object is placed in the nonprotected
area.

However, during profile creation, the computed reference for two or more
different objects might become the same. In these cases, we conservatively use
the prediction for the object with a longer lifetime (i.e., with higher protection
priority).

2.3 Stack Segment Selective Placement

The dedicated size of the stack frame for various functions in a program is
determined during compilation and subsequently the function’s local variables
can be accessed using the stack pointer during program execution. Our notion
of local variable lifetime is slightly different from other types of the memory
objects. We choose not to profile each local variable lifetime independently. In-
stead, we treat each stack frame as a single variable, and the lifetime of each
frame would be from the time of function call to function return. Our results
show that, by using this abstraction, we are still able to predict fault exposures
with high accuracy.

Therefore, the profiling process for stack frames works as follows. Initially,
during the profile run, we name each stack frame by the starting address of the
corresponding function in the code segment. At the same time, we compute the
lifetime of the frame by measuring the function call duration. If the function
had been called before, the new lifetime would be added to the previous value.
Otherwise, we insert a new entry into the profile table. Finally, our metric
for transient fault exposure of the stack frame is calculated by adding up the
lifetimes of all calls to the corresponding function and dividing the value by the
total number of calls.

To employ selective stack placement, we propose using a noncontiguous stack
[Iwamoto 2006], which is composed of protected and nonprotected sections.
Using the profile data, the compiler would be able to assign the proper protection
to the each stack frame in various functions based on the level of transient fault

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:9

Fig. 5. Partial Memory Protection Architecture. The address comparator identifies the addresses
that belong to the protected area of the memory and activates ECC generation and correction
circuits accordingly.

exposure. A noncontiguous stack has a straightforward implementation if the
compiler enforces allocation of the stack frame pointer (often eliminated during
optimization). The stack frame pointer indicates the location of the previous
stack frame and as a result, there is no need for individual stack frames to be
stored contiguously in memory.

3. ARCHITECTURAL SUPPORT FOR PARTIAL MEMORY PROTECTION

Our placement approach can be used with both cell-hardening [Derhacobian
et al. 2004; Vargas and Nicolaidis 1994] and ECC protection [Chen and Hsiao
1984; Derhacobian et al. 2004] techniques. In cases of cell-hardening, there is
no need for any extra hardware to maintain partial protection. The only obvious
requirement is notifying the compiler about the percentage and address ranges
of the protected parts of the memory. However, to add partial ECC protection
support, we need to make some changes to the traditional hardware.

In a traditional ECC memory system, ECC bits are computed as parities of
different subsets of data bits such that each data bit contributes to the com-
putation of more than a single ECC bit. Therefore, by keeping track of all the
data bits that contribute to each ECC bit, single error can be detected, and its
location can also be identified. In fact, these codes are usually designed so that
single-bit errors can be corrected and double-bit errors can be detected without
correction (SEC-DED ECC).

At the time of writes into ECC-protected memory, the ECC bits are computed
by a set of XOR trees (the ECC generator in Figure 5). When the word is read

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:10 • M. Mehrara and T. Austin

back, the XOR trees recompute the ECC using the data from memory and
compare it to the ECC bits read from the memory. Any discrepancy indicates
an error. By checking the discrepancies in the ECC bits, the error in data or ECC
bits can be identified. These checks are performed by an XOR of the recomputed
ECC bits and the ones read from memory. The result of these checks is called the
syndrome (output of the syndrome generator in Figure 5). A syndrome of zero
shows that no error has occurred. However, a nonzero syndrome indicates an
error and can be used in the error detection and correction block to determine
which bits are in error, or suggest that the error is uncorrectable.

Figure 5 shows our proposed architecture for a partially protected memory
system. The shaded parts highlight the additional components compared to
the traditional hardware. In this architecture, the address comparator checks
whether the incoming read or write addresses belong to the protected sec-
tion of the memory or not. In that case, the protected signal goes high and
enables the ECC generator for write operations and syndrome generator and
correction circuit for read operations. To make the partially protected mem-
ory hardware less complicated, we propose having protected and unprotected
space as two distinctive chunks in the memory. In this way, the address com-
parator just needs to check the incoming address with one value. If it is more
than that value, that memory address is protected. Otherwise, it is unpro-
tected. This address is loaded from the memory modules at the system start-up
and the address comparator just needs a single register to keep it. In this
way, the storage costs in the address comparator would be minimal.
Furthermore, the comparator adds just one cycle to the memory access time
(which is typically tens to hundreds of cycles) for the compare operation. This
single register is also protected using ECC.

Using this architecture, protection support circuits are kept inactive when
they are not needed and as a result, their power consumption is minimized. If
the target processor has a mechanism for checkpointing and recovery, we can
put the syndrome generation and error correction blocks out of the main data
path [Dupont et al. 2002]. Therefore, the only performance penalty would be the
extra roll back and recovery period in case of a failure compared to the constant
clock cycle degradation due to the error detection and correction circuits in
conventional systems.

4. EVALUATION METHODOLOGY

In this section, we introduce our novel accelerated fault injection mechanism.
The main pitfall of previous evaluation mechanism in Mehrara and Austin
[2006] that we strive to overcome is the long duration of simulation time for fault
injection experiments. Furthermore, since we noticed a fairly high derating
factor for most of the benchmarks in Mehrara and Austin [2006], we had to
run a large number of experiments to see actual failures and reach statistical
confidence for the results. On the other hand, we could not use techniques
similar to architectural vulnerability factor analysis (AVF) [Mukherjee et al.
2003] to speed up our evaluation because, according to the AVF definition, these
factors for memory elements should be computed using variable lifetime values.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:11

Since these values are the key factor in our selective placement process, we
would have got potentially misleading results if we had evaluated our technique
by measuring the same parameter that we are directly trying to minimize (i.e.,
variable lifetime).

Therefore, we designed an accelerated fault injection system in which we
inject multiple random faults to a single instance of program execution. Sub-
sequently, if we notice a failure, we rerun the experiment multiple times, and
during each run, we inject one fault out of the same previous multiple fault set.
As a result, we can readily determine which fault from the multiple fault set
originally caused the failure.

There is a possibility that the program fails in the execution pass with mul-
tiple fault injections and does not fail with any of the single fault injection runs.
In this case, we conclude that two or more faults caused the problem, and since a
single fault model is employed for modeling transient faults here, we can ignore
the failure in this particular fault scenario. Another possibility is that multiple
injected faults mask each other, and while no failure is noticed in the multi-
ple fault injection, each individual transient error could have caused a failure.
However, in our framework, we inject only 10 faults per execution, and they are
uniformly distributed in both execution time and memory location. Therefore,
due to the relatively long execution time and large memory usage in the bench-
marks, we assume that the probability of this masking effect is extremely low
and negligible. The fact that our results using accelerated framework for global
and dynamic sections follows the results in Mehrara and Austin [2006], shows
that this assumption is valid.

The accelerated fault injection approach is particularly beneficial in bench-
marks with high derating factors.1 Since a high derating factor corresponds to
less vulnerability to transient faults, using the accelerated fault injection frame-
work, we can reach statistical confidence with a much less number of experi-
ments. Figure 6 shows our profiling and accelerated fault injection framework.

As stated previously, a separate profiling analysis has been done for different
memory segments. For the global and code segments, we extract the size and
address of each object after linkage. Then, we create a run-time profile of ob-
ject lifetime behavior in the program and feed back the protection information
to the fault-exposed instance of the simulation. For heap storage, the address,
size, and lifetime information are gathered dynamically during the profile run.
Finally, for the stack, we extract the lifetime of each stack frame for different
functions during the profile execution. To achieve statistical confidence for the
results, we run each accelerated fault injection simulation in a Monte Carlo
framework for 600 times. This will add up to a total of 6,000 injected faults
per experiment. Since the number of failures in stack fault injection experi-
ments were quite high in most of the benchmark, we decided to use the single
fault injection framework for stack analysis. For the same reason (low derat-
ing factor), less number of fault injections were required to achieve statistical
confidence. Therefore, we injected 2,000 faults per benchmark in stack analysis
experiments.

1Derating factor metric is explained in more depth in Section 5.1.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:12 • M. Mehrara and T. Austin

Fig. 6. Accelerated Fault Injection framework. Profile creation and fault free runs are executed
once. In each multiple fault injection run, arbitrary number of faults (10 in this work) are injected
into the program memory. If the program fails, the faults are injected again one by one. Single
fault injection passes are classified into one of the five categories based on the outcome of result
comparison phase.

We have instrumented the sim-safe simulator in the SimpleScalar
toolset [Austin et al. 2002] to perform our experiments. Sim-safe is a functional
simulator in the toolset, and while providing an acceptable level of accuracy, it
is fast enough to make the Monte Carlo experiments feasible in terms of total
simulation time. Since we are injecting fault to the memory space rather than
the underlying processor microarchitectural elements, using a high-level archi-
tectural simulation gives a good approximation of the actual effects of soft error
propagation and effects of memory-level transient faults in the final program
outcome [Wang and Patel 2005].

Using fully protected caches is the only architectural improvement that may
affect our results. We have not considered this effect in this work, since it only
serves to reduce the protection requirements in the memory. It should be noted
that a fully protected cache can hardly provide high levels of protection when
there is no protection in the main memory. Because we noticed that there are
many critical memory elements that are not frequently accessed and would
incur cache misses most of the time. Therefore, if the main memory is not
protected at all, an already corrupted value may be fetched from the memory
and negatively affect reliability. Finally, if a fully protected cache is used in the
target system, our profiling analysis should be changed to accommodate the
cache effects by adding a cache simulator to the profiler and refine the lifetime
values according to cache hits and misses.

The compiler, linker, and dynamic allocation function (e.g., malloc) needed
to be changed to implement the proposed placement approach using profile

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:13

information in a real system. However, the purpose of this article is to ex-
plore the potential prospect for partial protection of the memory. Therefore,
we decided to perform our evaluations without changing address assignment
for memory objects and emulate the placement technique in the simulator. To
accomplish this for global and text storage, we mark each variable during the
profiling pass as protected or nonprotected based on the relative vulnerability
level and the available protected memory. For heap variables and stack frames,
since we do not know the allocated space a priori, the process of marking objects
as protected or nonprotected is accomplished throughout the fault injection ex-
periment, using the profile information as the placement prediction. To make
the best use of available protected memory, if a protection prediction could not
be found in the profile data (because the dynamic variable had never been al-
located or the function corresponding to a specific stack frame had never been
called in the profile run), our placement approach places the variable in the
nonprotected section of the memory. Due to this fact, the prediction quality
of our approach directly depends on how accurate the profile input represent
typical inputs of the given application.

For the rest of the evaluation process, we use the following approach in all
segments. During the fault injection experiments, we pick a random memory
location and identify the corresponding object to which it belongs and the pro-
tection prediction of that object according to the profile data. Subsequently, we
flip a single bit in that location in a random cycle during program execution.
The fault injection methodology is based on the assumptions that faults are
uniformly distributed in both time and memory space [Saggese et al. 2005].
Finally, we compare the outputs with the results of a fault-free instance of the
same program. Comparison for exact similarity is pessimistic for some bench-
marks such as audio or video applications. Because a slight inconsistency in
most parts of the output would not be even noticed by the user [Li and Yeung
2007]. However, to generalize the method for all types of programs, we conser-
vatively consider the worst-case scenario where the execution is sensitive to
any slight output discrepancy. Due to this worst-case analysis, we anticipate
that the actual protection requirements of many applications are even less
than what we report here. One could argue that if we make the error analysis
in these applications more realistic, the amount of required protected memory
could change a lot. Because many protected areas in the current configuration
may not lead to true errors. However, that will not happen even in a realis-
tic analysis due to the high number of fault injections. Because in the current
experiments, the number of injections is so high that most failure cases are
covered and a significant change in the required protected memory is quite
unlikely.

After the comparison, if the results match, we mark the simulation pass as
successful. Otherwise, based on the protection level of the faulty address, we
mark the experiment as fault-protected or fault-nonprotected. Fault-protected
means that if we had applied the selective placement strategy, the simulation
would not have failed. With the same analogy, fault-nonprotected means that
even if we had used this technique, the result would have been different com-
pared to the fault-free run.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:14 • M. Mehrara and T. Austin

There is a possibility that the program crashes after fault injection. We ad-
dress this issue by monitoring the simulation duration and marking the simula-
tion pass as crashed (which might be protected or nonprotected) if its execution
lasts four times longer than the program’s typical simulation time.

Since most parts of the reserved memory space in the simulator are not allo-
cated to anything, we avoid injecting faults to the whole memory space. Instead,
for global variables, text segments, and mixed global/text experiments, we only
inject faults to the memory locations that were allocated in each benchmark
after linkage. For heap and stack experiments, we inject faults to the area allo-
cated until the randomly picked fault injection cycle for each run. In this way,
due to the higher number of failed instances, we would need fewer simulations
to reach statistical confidence.

5. EXPERIMENTAL RESULTS

We perform two sets of experiments for each type of memory object in each
benchmark. In one set, the same input is used for profile creation and fault
injection to get a better understanding of the benchmark’s characteristics. The
results of this set show the optimal efficiency of the placement approach and our
lifetime-based criticality metric. In the second set, the profile is created with
the first input and the selective placement and fault injection are performed
on the benchmark with the second input. The latter set reveals the actual po-
tential for protecting memories partially. We use 12 benchmarks from MiBench
benchmark suite [Guthaus et al. 2001] as representatives of real-world embed-
ded applications. In addition, we add 026.compress benchmark from SPECint92
and grep, which is a general utility, to our benchmark set. Since we need to run
each fault injection experiment for many times, simulation time is one of the
most important factors in selecting the target benchmarks for evaluation.

5.1 Protection Ratio vs. Fault Coverage

To assess the relative intrinsic exposure level in various segments of a given
benchmark, we refine the definition of derating factor [Constantinides et al.
2005] by introducing a new metric, the normalized memory derating factor
(NMDF). The original derating factor was defined to be the inverse of total
error rate, representing the application’s resilience against transient faults in
memory. For instance, a derating factor of 10 shows that one out of every 10
transient faults in the memory would lead to system failure. However, since
different segments have different sizes in the program and the the probability
of transient fault strike is directly proportional to the target area, the original
derating factor definition does not give a fair estimate of the relative intrinsic
resiliency of various segments. Therefore, we define the new NMDF metric to
be the inverse of total error rate divided by the total segment size for global
data and text segments and average allocated size for heap and stack segments.
This factor gives a measure of actual vulnerability of each segment regardless
of its size and represents the possibility of a fault in any single unprotected
byte leading to program failure. The main reason that we use average active
size for heap and stack is related to our fault injection method. As mentioned

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:15

Fig. 7. Normalized memory derating factor of text, global, heap and stack segments for each
benchmark. This factor is the inverse of error rate divided by average segment size and shows the
benchmark’s intrinsic resilience to soft errors in memory. Lower factors indicate more exposure to
transient faults. The Y axis is in logarithmic scale.

in the previous section, for these two segments, the target memory location for
fault injection is randomly selected from all allocated memory locations until
the fault injection cycle, which is, in general, smaller than the total segment
size. Therefore, if we had used total heap and stack segment size in our metric,
we would have overestimated the effect of soft errors on these segments.

Figure 7 shows NMDF values for the four segments of the memory in each
benchmark. According to this analysis, various memory segments show quite
different behaviors based on the benchmark characteristics. However, the text
segment is, in general, the most vulnerable segment in memory, because even
a single change in the code can lead to inexecutable applications or wrong path
of execution. In addition, the values in text segment, unlike data segment, are
constants and the corrupted location has absolutely no chance of getting over-
written. Among the four segments of the memory, the heap segment generally
has the least exposure to transient faults. One thing to note here is that in some
of the benchmarks (026.compress, bitcount, grep, rawcaudio, and rawdaudio)
we did not observe any heap storage vulnerability to transient faults during
our fault injection experiments. This is due to the heap storage usage pattern
in these programs and the fact that most of their allocated dynamic variables
are not critical in determining the result or they are live only for a very short in-
terval compared to the total program duration. Having no failures would lead
to a NMDF of infinity, which translates to no vulnerability to soft errors in
heap storage for the corresponding benchmarks. To avoid underestimating the
overall effect of soft errors in heap and keep the results statistically sound, we
assume a single failure for these benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:16 • M. Mehrara and T. Austin

Figure 8 shows the minimum amount of necessary protection for coverage
of more than 95% and 99% for each benchmark. These results imply that, on
average, by protecting 28.6% and 30.3% of the text segment, 25.7% and 31.4%
of the global data, 22.1% and 23.9% of the dynamic storage, and 28.7% and
34.3% of the stack, we can achieve transient fault coverage of more than 95%
and 99%, respectively, in these areas.

As stated previously, two sets of experiments are performed for each type
of memory object in each benchmark. We call the first set P1F2, which means
that we use the first input for profiling and the second input for fault injection
experiments. Likewise, P2F2 means that second input is used for both profiling
and fault injection. It is interesting to note that in most of the benchmarks, the
predicted protection levels are quite close for for P1F2 and P2F2 experiments,
which shows the high accuracy of the profile-based analysis in general and the
return-address-stack-based naming convention for heap variables in particular.

Figure 9 shows the required memory in the combined analysis of global data
and text segments for achieving more than 99% coverage. This figure also shows
the relative amount of protected storage of these segments for a given pro-
tected memory. According to this analysis (and the 95%+ analysis, which is
not shown here), nearly 32.5% and 35% of the combined global and text seg-
ments should be protected to achieve more than 95% and 99% coverage in these
areas.

5.2 Storage Requirements

Figure 10 depicts the relative sizes of various segments in each benchmark.
Using these values and previous data about the coverage in individual types of
variables, the total percentage of necessary protected memory is derived and
is shown in Figure 11. According to these results, the total required amount of
protected memory to achieve 95% and 99% transient fault coverage is 32.6%
and 35.8%, respectively. As a result, by using this technique, the area overhead
of memory protection can be lowered to nearly one third of typical protection
mechanisms to achieve nearly complete coverage. Furthermore, protection re-
quirements of all applications except 026.compress2—which is not an embedded
application—is between 10% and 60% and shows a moderate deviation around
the mean. Since most embedded platforms run a limited number of applica-
tions, the final amount of protected storage in any particular embedded system
can be tuned by the manufacturer—or ordered by the user—based on the re-
quirements of typical target applications.

Since our scheme tends to protect the most critical variables with high ac-
cess counts, we do not expect it to make a notable contribution to the dynamic
power reduction. However, due to the considerable area savings, the leakage
power, which tends to increase by shrinking feature sizes, would be reduced
significantly.

The final results in Figure 11 show great promise for partial protection tech-
niques. It is interesting to note that the code section has been the dominant

2026.compress from SPECint92 has been added to the benchmark suite to describe an unusual case
in the global data segment and does not represent a normal behavior of embedded applications.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:17

Fig. 8. Minimum amount of protected memory to satisfy more than 95% and 99% transient fault
coverage in (a) text segment, (b) global data segment, (c) heap segment, and (d) stack segment.
PxFy indicates that the profile is created with input x and the data placement and fault injection
experiments are done with input y.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:18 • M. Mehrara and T. Austin

Fig. 9. Combined analysis of global data and text segment. This figure shows required amount of
memory for achieving a coverage of more than 99% in P1F2 experiments with mixed global/text
analysis.

Fig. 10. Relative storage usage. Each segment size is normalized to the total amount of memory

contributor to the protected storage demand. Since the code size in these pro-
grams is comparatively larger than the data size, partially protecting this
amount increases the total absolute protected storage to a greater extent. An-
other important fact is that the code is intrinsically more vulnerable to soft
errors than data. Data has the opportunity to be corrupted without affecting

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:19

Fig. 11. Overall required protected memory to achieve the coverage of more than 95% and 99%.
The average values are 35.8% for 99+% and 32.6% for 95+% coverage.

program correctness. For example, a data value can be corrupted and still be
not equal to zero. Furthermore, the corrupted data value might get overwritten
without being ever read. The code, on the other hand, is much more fragile.
If a bit is flipped in an instruction, it becomes another instruction altogether,
unless the flipped bit is unused.

As shown in Figure 11, 026.compress and FFT require relatively high
amounts of protected memory. In 026.compress, more than 96% of global storage
is live on average for nearly half of the program duration. Therefore, there is
no good way of getting acceptable coverage without protecting nearly all global
storage area. Also, global storage accounts for 65% of total memory space in
this benchmark. Therefore, we have to protect 70% of the storage to achieve
high coverage values.

FFT, on the other hand, has four dynamic array structures for storing the real
and imaginary parts of the input and output vectors. These arrays occupy more
than 90% of the heap storage, and since heap is nearly 40% of total storage in
this benchmark, the overall required protected storage goes up to around 60%.

However, in most of the other benchmarks, since the code segment is the
dominant part in terms of storage capacity and it does not have much deviation
in protection requirements, adding it to the overall analysis caused the overall
deviation of the results between various benchmarks to become much less than
the analysis for data segments in [Mehrara and Austin 2006].

6. RELATED WORKS

Using error-correcting codes (ECC) is perhaps one of the most popular mem-
ory protection techniques [Chen and Hsiao 1984]. However, traditional ECC

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:20 • M. Mehrara and T. Austin

architectures impose a significant amount of overhead in terms of performance,
area and power. Several works have been done to address this issue. Dupont
et al. [2002] propose a method for concurrent ECC error detection to address
the performance issue. They also utilize some low-cost codes to deal with the
area and power penalties. Another technique is presented by Ghosh et al. [2004]
to reduce power in memory ECC checkers. They use simulated annealing and
genetic algorithm for selecting the parity check matrix in order to minimize the
switching activity of the checker. This would lead to a moderate reduction in
power, while incurring minimal extra overhead on delay and area.

In addition to ECC protection schemes, some works have focused on de-
signing fault tolerant memory cells. Vargas and Nicolaidis [1994] present a
fault-tolerant SRAM design that has a built-in current sensor circuit. This cir-
cuit detects the current spikes resulting from SEUs in memory power lines
and the correction is performed with the help of a single parity bit. Using
Deep N-well technology and increasing the capacitance of the critical nodes
are two cell-hardening approaches that have been explored and compared to
ECC in Derhacobian et al. [2004]. The Deep N-well collects a fraction of charges
resulting from particle strikes and reduces the amount of charge that reaches
critical nodes. Adding extra capacitance to cell layout increases the amount
of critical charge needed to flip a node and thereby makes the node more re-
silient to particle strikes. The authors showed that these two techniques reduce
the failure rate by a factor of 2 and 23 respectively. However, both of them in-
crease the manufacturing costs, and the latter incurs a significant performance
penalty as well.

Saleh et al. [1990] introduce a scrubbing technique to increase reliability
in noisy environments and large memory systems. Scrubbing is performed by
reading the memory words and their parities, checking for errors and writing
back the correct data in case of any transient faults. The scrubbing interval can
be either probabilistic or deterministic. The probabilistic method checks each
memory location only when it is accessed. However, the deterministic approach
cycles through the whole memory and checks for correctness in all memory
locations. They show that scrubbing improves mean time to failure (MTTF) by
an order of 108 compared to an unprotected memory. In addition, the MTTF
for deterministic scrubbing is more than that of a probabilistic scrubbing by a
factor of two.

In an early study [Mehrara and Austin 2006], we proposed the idea of
reliability-aware data placement for partially protecting dynamic and global
storage. However, we did not take into account the vulnerability of text and
stack segment segments. In the present work, we develop a complete scheme
for all parts of the memory, and we show that partial protection is a promising
approach for text and stack segments as well as heap and global data storage.
It is interesting to note that according to our result, the text segment is main
factor in determining the amount of required protection in most embedded ap-
plications. The idea of protecting a fraction of the total memory and selective
compiler-directed data protection was introduced by Chen et al. [2005]. How-
ever, in their work, the programmer is considered to be responsible for selecting
appropriate variables for protection. Subsequently, the source code is modified

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:21

to fit the programmer’s decision. One of the problems with this approach is that
the programmer might not know a priori which variables are more exposed to
faults. Furthermore, our analysis shows that some of the most critical vari-
ables in the applications belong to the linked libraries rather than the main
program, and the programmer can hardly make changes or identify the level
of fault exposure for those variables. In addition, the selective protection of the
arrays has been done in a finer granularity than the complete array structure.
Therefore, some parts of the code have to be duplicated to perform the same
operation on both protected and nonprotected parts of the array. This may dra-
matically increase the code size which is generally considered to be a critical
bottleneck in embedded systems. Finally, no analysis has been done to examine
the effectiveness of the approach.

A clever idea for low-cost partial protection was proposed by Yan and Zhang
[2005] for protecting the register file. The authors define a metric called RVF
(register vulnerability factor) that is the probability that a soft error in the
register file propagates to other system elements. They introduce two compiler-
oriented techniques to reduce this factor. The first one is rescheduling instruc-
tions to decrease the registers’ liveness window, which leads to less susceptibil-
ity to soft errors. The second scheme is reliability-oriented register assignment
during compilation that selects the most vulnerable registers based on their
RVF value and puts them in the ECC protected parts of the register files. They
have shown that by protecting 16 registers out of 64, the average RVF value can
be lowered from 14% to 3%. Nevertheless, they have not done any experiments
to clarify the relation between their RVF metric and actual error coverage or
mean time to failure of the register file.

Lee et al. [2006], Kim and Somani [1999], Zhang et al. [2003], and Zhang
[2005] have focused on partial cache protection techniques. Kim and Somani
[1999] employ parity caching and selective checking for low-cost cache protec-
tion. In parity caching, they store the check codes only for most recently used
cache lines. Also, in selective checking, they compute and store check codes only
for some blocks in a set (e.g., they store check codes for one way in a 4-way set
associative cache). In Lee et al. [2006], all multimedia-related data in multi-
media applications is considered noncritical and is mapped to the nonprotected
cache blocks. The rest of data is assumed to be critical and is mapped to the
protected cache blocks. Zhang [2005] has proposed a small replication cache to
improve the reliability of data cache against transient faults. These approaches
can be used in conjunction with our methodology as well.

Several works have focused on lowering costs in redundant execution
schemes [Parashar et al. 2004; Gomaa and Vijaykumar 2005; Parashar et al.
2006; Reddy et al. 2006; Walcott et al. 2007; Reddy and Rotenberg 2007]. These
works assume complete protection in the main memory, and they are orthog-
onal to our techniques in this article. They can be used with partial memory
protection to provide a low-cost solution for designing a reliable system.

7. CONCLUSIONS

Recent trends of aggressive reduction in transistor feature sizes and supply
voltages, have made transient fault protection a critically important issue in

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:22 • M. Mehrara and T. Austin

embedded memories. However, not all embedded systems can tolerate the sig-
nificant amount of area and power overhead imposed by traditional memory
protection mechanisms. In such systems, the designer might be able to sacri-
fice a slight portion of transient fault tolerance to save power and area. In this
article, we presented the first profile-driven placement technique that focuses
on reliability and cost rather than performance. We identify the most critical
memory objects and place them in the protected area of a partially protected
memory. As a result, we would be able to avoid wasting power and area for
protecting unimportant variables.

We also introduce an evaluation framework to explore various heuristics
for exposure analysis of program variables and their resulting transient fault
coverage, without changing the actual address assignments in the compiler,
linker, and dynamic allocation function. After placing the variables according
to the profile, we ran the benchmarks in an accelerated Monte Carlo simulation
framework for 600 runs, each time flipping 10 bits in random places inside the
allocated memory space and at a random cycle. In case of failure, we reran the
experiment with the same fault set for 10 single fault injection experiments.
Subsequently, we monitored protected and nonprotected program failures and
crashes of single failures and using these data, we calculated the final coverage
of the partial protection scheme for each benchmark. We have shown that, on
average, by just protecting 32.6% of the total memory storage we can achieve
more than 95% transient fault coverage in the memory for embedded appli-
cations. We can increase this amount to more than 99% by adding protection
to another 3.2% of the memory. The actual amount of protected storage in a
target-embedded system can be tuned by the manufacturer based on a similar
analysis on the requirements of expected target applications.

Our results in this work show that except for some special cases, partial
protection along with selective data placement proves to be an effective way of
providing embedded memories with low-cost transient fault tolerance.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for providing useful comments
and feedback on this article. This work was supported by grants from the
Gigascale Systems Research Center.

REFERENCES

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system
modeling. Computer 35, 2, 59–67.

BAUMANN, R. 2002. The impact of technology scaling on soft error rate performance and limits
to the efficacy of error correction. In Proceedings of the International Digest of Electron Devices
Meeting. 329–332.

BOSSEN, D. C. AND HSIAO, M. Y. 1980. A system solution to the memory soft error problem. IBM
Journal of Research and Development 24, 3, 390–397.

CALDER, B., KRINTZ, C., JOHN, S., AND AUSTIN, T. 1998. Cache-conscious data placement. In
ASPLOS-VIII: Proceedings of the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 139–149.

CARDARILLI, G. C., LEANDRI, A., MARINUCCI, P., OTTAVI, M., PONTARELLI, S., RE, M., AND SALSANO, A.
2003. Design of fault tolerant solid state mass memory. IEEE Transactions on Reliability 52, 4,
476–491.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

Exploiting Selective Placement for Low-cost Memory Protection • 14:23

CHEN, C. L. AND HSIAO, M. Y. 1984. Error-correcting codes for semiconductor memory applications:
A state-of-the-art review. IBM Journal of Research and Development 28, 2, 124–134.

CHEN, G., KANDEMIR, M., IRWIN, M. J., AND MEMIK, G. 2005. Compiler-directed selective data pro-
tection against soft errors. In Proceedings of the 2005 Asia and South Pacific Design Automation
Conference. 713–716.

CONSTANTINIDES, K., PLAZA, S., BLOME, J., ZHANG, B., BERTACCO, V., MAHLKE, S., AUSTIN, T., AND ORSHAN-
SKY, M. 2005. Assessing SEU vulnerability via circuit-level timing analysis. In Proceedings of
the 1st Workshop on Architectural Reliability (WAR-1).

DERHACOBIAN, N., VARDANIAN, V. A., AND ZORIAN, Y. 2004. Embedded memory reliability: the SER
challenge. In Proceedings of the International Workshop on Memory Technology, Design and Test-
ing. 104–110.

DUPONT, E., NICOLAIDIS, M., AND ROHR, P. 2002. Embedded robustness IPs for transient-error-free
ics. IEEE Design & Test of Computers 19, 3, 54–68.

GHOSH, S., TOUBA, N. A., AND BASU, S. 2004. Reducing power consumption in memory ECC check-
ers. In Proceedings of the International Test Conference, 1322–1331.

GOMAA, M. A. AND VIJAYKUMAR, T. N. 2005. Opportunistic transient-fault detection. In ISCA ’05:
Proceedings of the 32nd annual International Symposium on Computer Architecture. IEEE Com-
puter Society, 172–183.

GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001.
Mibench: A free, commercially representative embedded benchmark suite. In IEEE International
Workshop on Workload Characterization (WWC-4), 3–14.

IWAMOTO, T. 2006. Methods and apparatus for segmented stack management in a processor sys-
tem. US Patent 20060195824.

KIM, S. AND SOMANI, A. K. 1999. Area efficient architectures for information integrity in cache
memories. In Proceedings of the 26th Annual International Symposium on Computer Architecture
(ISCA’99), 246–255.

LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: a tool for eval-
uating and synthesizing multimedia and communicatons systems. In Proceedings of the
30th annual ACM/IEEE International Symposium on Microarchitecture (MICRO 30), 330–
335.

LEE, K., SHRIVASTAVA, A., ISSENIN, I., DUTT, N., AND VENKATASUBRAMANIAN, N. 2006. Mitigating soft
error failures for multimedia applications by selective data protection. In Proceedings of the
2006 International Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES’06), 411–420.

LI, X. AND YEUNG, D. 2007. Application-level correctness and its impact on fault tolerance. In
Proceedings of the 13th International Symposium on High-Performance Computer Architecture
(HPCA-13).

MEHRARA, M. AND AUSTIN, T. 2006. Reliability-aware data placement for partial memory protection
in embedded processors. In Proceedings of the 2006 Workshop on Memory System Performance
and Correctness (MSPC’06). 11–18.

MUKHERJEE, S. S., WEAVER, C., EMER, J., REINHARDT, S. K., AND AUSTIN, T. 2003. A systematic method-
ology to compute the architectural vulnerability factors for a high-performance microprocessor.
In Proceedings of the 36th annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 36). 29–40.

PARASHAR, A., GURUMURTHI, S., AND SIVASUBRAMANIAM, A. 2004. A complexity-effective approach to
ALU bandwidth enhancement for instruction-level temporal redundancy. SIGARCH Computer
Architecture News 32, 2, 376.

PARASHAR, A., SIVASUBRAMANIAM, A., AND GURUMURTHI, S. 2006. SlicK: slice-based locality exploita-
tion for efficient redundant multithreading. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XII).
95–105.

REDDY, V. AND ROTENBERG, E. 2007. Inherent time redundancy (ITR): Using program repetition for
low-overhead fault tolerance. In Proceedings of the 2007 International Conference on Dependable
Systems and Networks. 307–316.

REDDY, V. K., ROTENBERG, E., AND PARTHASARATHY, S. 2006. Understanding prediction-based partial
redundant threading for low-overhead, high-coverage fault tolerance. In Proceedings of the 12th

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

14:24 • M. Mehrara and T. Austin

International Conference on Architectural Support for Programming Languages and Operating
Systems. 83–94.

SAGGESE, G. P., WANG, N. J., KALBARCZYK, Z. T., PATEL, S. J., AND IYER, R. K. 2005. An experimental
study of soft errors in microprocessors. IEEE Micro 25, 6, 30–39.

SALEH, A. M., SERRANO, J. J., AND PATEL, J. H. 1990. Design of fault tolerant solid state mass
memory. IEEE Transactions on Reliability 39, 1, 114–122.

SEIDL, M. L. AND ZORN, B. G. 1997. Predicting references to dynamically allocated object. (Tech.
Rep. CU-CS-826-97, Department of Computer Science, University of Colorado, Boulder, Co.
January 1997).

SEIDL, M. L. AND ZORN, B. G. 1998. Segregating heap objects by reference behavior and lifetime.
In Proceedings of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, 12–23.

VARGAS, F. AND NICOLAIDIS, M. 1994. SEU-tolerant SRAM design based on current monitoring. In
Proceedings of 24th International Symposium on Fault-Tolerant Computing.

WALCOTT, K. R., HUMPHREYS, G., AND GURUMURTHI, S. 2007. Dynamic prediction of architectural
vulnerability from microarchitectural state. In Proceedings of the 34th annual International
Symposium on Computer Architecture, 516–527.

WANG, N. J. AND PATEL, S. J. 2005. Restore: Symptom based soft error detection in microproces-
sors. In Proceedings of the 2005 International Conference on Dependable Systems and Networks
(DSN’05). 30–39.

YAN, J. AND ZHANG, W. 2005. Compiler-guided register reliability improvement against soft errors.
In Proceedings of the 5th ACM International Conference on Embedded Software. 203–209.

ZHANG, W. 2005. Replication cache: a small fully associative cache to improve data cache relia-
bility. IEEE Transactions on Computers 54, 12, 1547–1555.

ZHANG, W., GURUMURTHI, S., KANDEMIR, M., AND SIVASUBRAMANIAM, A. 2003. ICR: In-Cache Replica-
tion for Enhancing Data Cache Reliability. In Proceedings of the 2003 International Conference
on Dependable Systems and Networks. 291–300.

Received March 2007; revised August 2007, April 2008; accepted May 2008

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 3, Article 14, Publication date: Nov. 2008.

