
Abstract
Cache accesses consume a significant portion of total energy

dissipation in modern microprocessors. In this paper, we introduce
a new technique for data cache energy reduction, which exploits
the prevalence of small values and the inefficiency of using a full
word for their storage. Simulation results show that we can reduce
total data cache energy by around 23% for the SPEC benchmarks
without significant performance degradation. We also propose a
modified data compression cache architecture utilizing empty
cache space that is not used after data compression. This proposed
architecture improves the cache miss rate, which results in
improved performance and reduced energy dissipation when
accessing the next level of the memory hierarchy. We show that
this scheme has an energy saving of about 19%.

1. Introduction
Energy dissipation is an increasingly important design con-

straint in a wide range of processors, from those intended for
mobile use, all the way up to high-performance processors for
high-end servers [1]. Within a typical processor, cache accesses
consume a significant fraction (30%-60% [2, 3]) of the total energy
dissipation. As new generations of processors incorporate ever
larger caches this percentage will continue to grow.

A large portion of cache energy is dissipated in driving the
bit-lines, which are heavily loaded with storage cells, and so most
cache energy reduction techniques have concentrated on reducing
bit-line energy dissipation. One approach is to reduce the bit-line
capacitance switched on each access by using a combination of
sub-banking, segmented bit-lines, and hierarchical bit-lines [4]. A
complementary approach is to limit the voltage swing on the bit-
lines during read accesses by pulsing word-line drivers [5, 6].
According to [7, 8, 14], over 70% of the bits that are read from or
written to the data cache are zero, furthermore 75% of the values
are small, requiring only 16 or 8 bits of significance. The rest of
the upper 16 bits or 24 bits can be represented with just a single
sign bit. We will refer to this as sign compression even though it
may be applied to data that is not numerical but happens to have
upper bytes that are all zeros or all ones.

In this paper we propose a new technique that makes use of
sign compression to reduce energy dissipation in caches. It is par-
ticularly suited to data caches where data has to be both read and
written, and thus must accommodate changes in the number of sig-
nificant digits. Read-only instruction caches and tables of fixed
data can be handled by other means that allow greater compression
[9].

Our approach stores the words in some cache lines in sign-
compressed form. Specifically, we compress those words whose
upper half is either all zeros or all ones into a half-word and sign
bit. In these cases the full capacity of each word is not used, and, as
a result, we can reduce the energy dissipation caused by bit-line
discharging and leakage energy by turning on only the lower half
of each word of a cache line when we access the line. We show that
a significant fraction of the cache lines can be compressed in this

way so that they use only about half of a normal line. In the less
frequent case that the cache line cannot be compressed, it is stored
in its uncompressed form. When a line is accessed, energy is saved
by accessing only the lower half of each word, the assumption
being that it is compressed. If this is not the case, the rest of the
cache line is accessed in the next cycle. We show that this penalty
is quite small.

The scheme proposed in [7] reduces data cache energy dissi-
pation by compressing bytes that are all zeros into a single bit and
by accessing only the remaining bytes. However, they apply the
compression scheme for every byte of the cache line, which
increases the complexity of the cache architecture for only a mod-
est reduction in energy. They also lose the opportunity to compress
bytes of all-ones. In [8], they take advantage of bytes containing all
ones and all zeros, however, their cache access mechanism causes
a notable amount of performance degradation because they access
only one byte in one cache access cycle. Furthermore, both of the
compression schemes leave the empty space caused by the data
compression unused.

Although the technique proposed in [14] uses a similar com-
pression scheme and utilizes the unused cache space by the com-
pression, they overlooked the fact that the compressibility can be
increased significantly by adding some extra storage space and
allowing slack for the incompressible upper half-words in the
fetched cache lines. In additional experiments we demonstrate that
this space can be gainfully employed to reduce energy.

The rest of this paper is organized as follows. Section 2 pre-
sents the basic idea showing how sign compression can be applied
to compressing cache lines. Section 3 elaborates on the basic idea,
showing how it can be built into a low energy cache architecture
using cache line bisection. Section 4 presents an alternative archi-
tecture that stores additional data in the unused cache space
remaining after compression. A reduced miss rate results that
reduces energy dissipation by decreasing the number of accesses to
the next level of the memory hierarchy (the L2 cache in our exper-
iments). Section 5 describes the simulation environment, the
implementation, and presents experimental data showing energy
reduction and the performance impact of the proposed cache archi-
tectures. Section 6 concludes the paper and suggests future work.

2. Sign-Compression for Data Caches
Figure 1 shows the basic idea behind our data compression

scheme for the data fetched on a cache miss. The lower half of
each word fetched during a cache line miss is not changed, but the
upper half-words are replaced by a zero or one when the upper
half-words are all zeros or all ones respectively. When, all the
upper half-words are compressible in this way, we can represent
the fetched cache line with only half the number of bits normally
reserved for the cache line plus a few sign extension flag bits. For-
tunately, it is often the case that all the upper half-words in the
fetched line are compressible. However, our preliminary experi-
ments to examine the compressibility of cache lines reveal that a
significant number of additional cache lines can be compressed if
we allow some tolerance in our compression scheme. Specifically,

Low-Energy Data Cache Using Sign Compression and
Cache Line Bisection

Nam Sung Kim, Todd Austin, Trevor Mudge

{kimns, taustin, tnm}@eecs.umich.edu
Advanced Computer Architecture Lab,

The University of Michigan,
1301 Beal Ave. Ann Arbor, MI, 48109-2122



we allow a few incompressible upper half-words to be included by
using extra memory space to store the incompressible upper half-
words. To support this scheme we need additional flag bits to indi-
cate the position of the uncompressed word(s) in the line, a flag bit
to represent whether or not the line contains any compressed
words, and a sign bit for each compressed word. The number of
uncompressed words allowed in a cache lines is a design parame-
ter—Figure 1 shows a line that tolerates up to one uncompressed
word.

3. An Architecture for Low-Energy Caches

3.1 Line compression using sign-compression and
cache line bisection

Figure 2 shows a low-energy data cache architecture using
cache line bisection to store sign-compressed words. To reduce
energy dissipation from bit-line discharge for those upper half-
words whose information can be compressed into a sign bit, we
divide the cache line into two parts (line bisection) and access only
one part at a time. The first to be accessed is the left-half way con-
taining the tags for the cache line, flags for the compression infor-
mation, the lower half-words of the cache line, and a part of the
upper half-words used to store the pre-defined number of incom-
pressible upper half-words for compressed lines.

Three types of cache line result: 1) a line which is uncom-
pressed; 2) a line in which every word is compressed; and 3) a line
in which one or more words are not compressed. Figure 2 shows a
cache line of four words of 32 bits and half-words of 16 bits with
just one word allowed to be uncompressed. As noted before, the
number of uncompressed words tolerated in compressed cache
lines is a design parameter. In Figure 2, 5/8 of the data cells in the
cache array are accessed when the left-half way is first accessed.

The design requires some special circuitry for the data com-
pression and decompression between the cache and the processor.
First, we need a circuit for checking the compressibility of the
fetched line on a cache miss. This can be quite simple—it need
only detect all ones (AND) or all zeros (NOR) for every upper half-
word of the fetched line. The more critical circuitry is the data
aligner needed to route the compressed lines into the cache and to
decompress cache lines when they are read into the processor. Fig-
ure 2 provides a sketch of how this might work. It can be imple-
mented by multiplexers controlled by the compression flag bits.
They are similar to those that would be required for a set-associa-
tive cache, but their control is a little more complex. In fact, the
way multiplexers can serve double duty if a set-associative cache
is implemented.

The access timing of the proposed cache architecture is
shown in Figure 3. In the first cycle of the cache access, the cache
decoder activates the indexed cache word-line and the left-half
way is retrieved including the cache line tag and compression
flags. As soon as it can be determined that the accessed cache line
is not compressed, the right-half way is pre-charged allowing the
upper half-words to be read out in the following cycle. This timing
arrangement increases the cache access latency by one cycle when-
ever we access a cache line that is not compressed. We model this
penalty in our simulations and show that it has only a small nega-
tive effect on performance.

We noted that a significant portion of the energy consumed by
the cache is dissipated by the bit-lines, which we can reduce to
nearly half with our proposed cache architecture. This suggests we
should increase the number of compressible lines by allowing
more incompressible upper half-words in the cache line to reduce
the number of right-half way cache accesses and thus reduce the
energy dissipated in the bit-lines. However, allowing too many
extra incompressible upper half-words has a negative effect at
some point, because the energy savings are offset by the energy
needed for the extra incompressible upper half-words in the left-
half way. Data cache lines are written as well as read so it can hap-
pen that a compressed line can change to an incompressible one as
a result of a write. Conversely, lines that are not compressed can
become candidates for compression as writes occur. Fortunately,
we show that cache writes do not result in a noticeable decrease (or
increase) in the number of compressed lines.

3.2 Compression experiments
Figure 4 shows our experimental results using SPEC benchmarks
to measure the percentage of accessed cache lines that can be com-
pressed for different tolerances. The experimental cache configura-
tion was a 16-KB, 4-way, set associative cache with a 32-byte line.
Among the cache configuration parameters, the cache line size
affects the compressibility of the fetched cache line, because there
are more chances that all the words will have non-significant upper

FIGURE 1. Sign compression for a cache line. The words
in this diagram are 16 bits, and up to one
uncompressed word is tolerated per line.

FIGURE 2. Line compression with sign compression and
cache line bisection. The line has four words
of 16 bits, and a tolerance of up to one
uncompressed word in compressed lines.

FIGURE 3. Compression cache management and access
timing



FIGURE 4. Compressed cache line access rates: The percentage of compressed cache lines that are accessed for three
tolerances and three words sizes. Ten SPEC benchmarks are shown.

32-Bit

16-Bit

64-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit

16-Bit

64-Bit

32-Bit



bytes, the smaller the cache line. To avoid this extreme we have
chosen a fairly large common line size, although as we will show
smaller lines can provide greater compression. The experiments
also examined the effect of different words sizes on compressibil-
ity. We considered 16-bit, 32-bit and 64-bit words. The word size
is simply the subdivision of the cache line which can be com-
pressed. Thus in the case of a 16-bit word each upper byte per 16
bits can be recoded as one or zero, and for a 32-bit word the two
upper bytes can be recoded as one or zero, etc. In addition, we
chose three tolerance schemes 0%, 12.5% and 25% for the number
of the allowable incompressible words. The tolerance indicates the
fraction of a line that can be stored in the upper half-words of the
left-half way of the cache. For example, a 12.5% tolerance for a
32-byte cache line allows two upper 16-bit words (4-bytes) to be
stored in the left-half way of the cache.

As expected we can obtain more compressible cache lines as
we allow more incompressible upper half-words in the lines
fetched on a cache miss, and we can confirm this fact from the
experimental results shown in Figure 4. Furthermore, a 64-bit
word unit works well when no tolerance is allowed, because only
four consecutive words have to be compressible. When a smaller
size is used for the compressible word size, there are more chances
to obtain individual compressible words. However, this has to be
balanced against the decreasing likelihood of more consecutive
words having upper halves that are all-zeros or all-ones. Our
experiments show that shorter words compress better as we allow a
higher tolerance for incompressible words. However, the 32-bit
word size outperforms the 16-bit word size, in most cases, because
the base-line architecture is a 32-bit machine and most of the sig-
nificant values need more than 8 bits. This can be seen clearly in
Table 1 which summarizes the results of Figure 4.

The compressibility of cache miss fetches is also important.
The percentage of compressible miss fetches is shown in Table 2.
The statistics show that the compressibility of cache lines fetched
at misses is slightly higher than those shown previously for cache
accesses, suggesting that some of the initially compressed cache
lines become uncompressed during program execution as a result
of store operations. In this paper, we only consider the benefits of
compression of the top level cache structures, however, these
results suggest that compression could be gainfully applied to the

memory system busses and deeper levels of the memory hierarchy.
If the data is sign-compressed at the next level of the memory, it
can be brought over the memory-cache bus in compressed form.
This will save bus energy, especially if the bus is off-chip. In addi-
tion, compressing the L2 cache structures will likely result in bene-
fits similar to those described in this study.Before we leave this
technique, we examine the effect of varying the cache line size.
Figure 5 shows the average compression ratios for cache lines
fetched on a cache miss for 8, 16, and 32-byte cache line block
sizes. In this experiment, we used 16 KB caches and did not assign
any extra blocks for the incompressible words in the fetched cache
line—zero tolerance for the incompressible words. Therefore, we
cannot compress the fetched line if there exists any incompressible
words among the words in the fetched line.

It can be seen that the compressibility of the fetched cache
lines decreases as the number of the bytes in the cache line
increases, because the probability of obtaining contiguous com-
pressible words decreases. In addition, a 64-bit word size shows
the best compressibility, because it has a smaller number of words
than other word sizes for the same cache line block size. However,
this is only true for zero tolerance. We can obtain a different result
if we allow some tolerance for the incompressible words as we saw
in the experiments of Table 2 in compressing the fetched line since
then we lose chances to compress the line with finer granularity if
we use the 64-bit compression word size.

The point to notice for the work presented in this paper is that
we chose a 32-byte cache line to be representative of some existing
systems rather than use small line sizes to inflate the results.

4. A Cache Architecture that Uses the Empty
Right-half Way

4.1 Using the empty right-half way
Although we can save energy by preventing the discharge of

the bit-lines in the right-half way for compressed cache line
accesses, like [7, 8] we waste the cache memory space which is not
utilized by the compression scheme. From the experimental results
shown in Section 3 it was seen that we can represent many cache
lines with only half of the cache line space, if we allow some toler-
ance for the incompressible words in each cache line. This sug-
gests that we can increase the effective cache size, and accordingly
performance, if we provide an independent tag array for the right-
half way. Figure 6 shows a modified data compression cache archi-

Tolerance 0 bytes 4 bytes 8 bytes

16-bit word 14.18% 46.28% 94.78%

32-bit word 21.56% 52.06% 95.79%

64-bit word 32.11% 44.00% 64.02%

TABLE 1. Average ratio of compressible cache lines to
uncompressed ones for cache accesses.

Tolerance 0 bytes 4 bytes 8 bytes

16-bit word 22.62% 64.36% 95.16%

32-bit word 47.94% 68.40% 93.86%

64-bit word 57.18% 65.88% 74.14%

TABLE 2. Average compression ratios for cache lines
fetched on a miss.

FIGURE 5. Average compression ratios for cache lines
fetched on a cache miss for 8, 16, and 32-byte
cache line block sizes: A 16-KB cache was used
with ten SPEC benchmarks.



tecture based on this idea. Each half way has its own tags allowing
compressed cache lines to be stored in both half ways. The effec-
tive cache size is thus increased at the cost of an additional tag and
compression flags for the right-half way, plus incompressible
upper half-word storage for both ways of the cache line. Using
both ways and adding a tag array increases energy consumption;
however, the fraction of the tag bit-lines in tag arrays are relatively
small compared to the number of the bit-lines in data arrays, and
the effective increase of the cache size reduces the number of
accesses to the next level in the memory hierarchy—an L2 cache
in our experiments. It is this reduction that saves energy by
decreasing the activity in the L2 cache.

4.2 Cache management
When accessing this modified cache, the tag bit-lines of both

half ways are examined to check the availability of the requested

cache line. To keep energy consumption to a minimum, only the
bit-lines of one of the halves are pre-charged based on a most
recently used (MRU) mechanism that exploits the temporal local-
ity of cache access. A performance and energy penalty occurs
when there is an MRU miss or when the accessed cache line is not
compressed.

Whenever a cache miss occurs, the L2 cache is accessed and
the requested cache line is fetched. During the L2 access the avail-
ability of empty right-half ways are checked among the indexed
sets before we select a cache line for the replacement. If there
exists an available empty right-half way and the fetched cache line
is compressible we store the compressed line in the available right-
half way without replacing the existing cache line. If there does not
exist an available empty right-half way or the fetched cache line is
not compressible, we proceed with a normal cache replacement
sequences as shown in Figure 7.

Occasionally store operations can make a compressed line
incompressible. In such cases, it is necessary to evict the one of the
compressed line if the compressed lines occupy both cache sub-
lines. During the eviction process the evicted line must be written
back if the status of the line is dirty. If both ways are dirty this
requires additional write-back cycles. However, this case is rare
according to the experimental results that will be shown in Section
5.

4.3 Experimental results when the empty half line
is used

There are three types of fetched lines. One is an incompress-
ible line that occupies both half ways. Another is a compressible
line that occupies the left-half way of the cache line. The other is a
compressible line that occupies the right-half way of the cache
line. The summation of the ratios of both compressible categories
represents the compressible ratio for lines fetched on a cache miss.
Figure 8 shows the distributions of the fetched cache line types.
The word size is 32-bit and 25% additional cache space is avail-
able for the incompressible tolerance of each half way.

The results in Figure 8 show that a significant fraction of the
fetch lines fit into the right-half way of the cache line, effectively
improving cache capacity.

FIGURE 6. A modified cache architecture that uses the empty right-half way.

FIGURE 7. Cache miss handling for the modified cache
architecture.



In order to discover how much the cache miss rate improves,
the miss rates were measured with 4KB, 8KB, 16KB, and 32KB
caches size and 1-, 2-, and 4-way associativities while running the
SPEC benchmarks. The experimental results are shown in Figures
9 and 10. For comparison the miss rates are also shown for a nor-
mal cache of the same size and a normal cache of double the size
which has twice as much associativity as the normal cache. The
results in the figures show that, in most cases, the miss rate of the
modified data compression cache is closer to the miss rate of the
double-sized cache than the same-sized cache.

5. Evaluation of the Low Energy Cache
Architectures

5.1 Evaluation methodology
The evaluation methodology combines detailed processor

simulation for performance analysis and for gathering event
counts, and analytical modeling for estimating the energy dissipa-
tion for both the conventional caches and those employing the
compression strategies. We used the SimpleScalar toolset [11] to
model an out-of-order speculative processor with a two-level
cache hierarchy. The simulation parameters, listed in Table 3,
roughly correspond to those of a present-day high-end micropro-
cessor such as the HP PA-8000 or Alpha 21264.SimpleScalar does
not move actual data between memory levels, but only captures the
behavior of the address streams. We need actual data values to val-
idate the energy reduction and performance degradation of the pro-
posed data compression cache architectures, because we have to be
able to calculate the compressibility of the lines. Thus SimpleSca-
lar was modified to trace the actual data streams between the mem-
ory levels. Furthermore, a configurable cache miss handler, data
compressor, and decompressor were added for the proposed data
cache compression architectures.

In addition, we required a cache energy estimator to measure
the energy usage of the conventional cache as well as the proposed
cache architecture accurately. The energy usage of the L1 data
cache and unified L2 cache was computed with Wattch [12]. This
model in turn calculates cache energy dissipation using event
counts from the SimpleScalar simulations and technology and lay-
out parameters from CACTI, which has been previously calibrated
against HSPICE [13]. We use simple event counts because we are
comparing energy rather than power dissipation. The SimpleScalar
execution-driven simulations employ ten SPEC benchmarks from
the SPEC95 and SPEC2000 benchmark suites: compress, gcc, go,

ijpeg, li, mk88sim, pearl, vortex, crafty, and mcf. We run each
benchmark for 1 billion instructions. Only L1 data cache and the
unified L2 cache energy dissipations are considered, because the
L1 instruction cache and the main memory energy dissipation do
not change significantly with the proposed compression architec-
ture.

Figure 11-(a) shows compressible cache line fetch ratios for
the SPEC benchmarks from Figure 4 for a 32-bit word size. This is
for the first cache line bisection scheme. The benchmarks go,
m88ksim, and mcf show a very high compressibility for different
tolerances, because they are control-intensive programs and most
of data used in these programs are small values. Furthermore, the
data in the cache line for these three programs are very sparse,
because there is little data used in control-intensive programs. For
the 25% tolerance scheme, more than 85% of the fetch lines can be
compressed over all the benchmarks, which outperforms the
12.5% scheme by nearly a factor of two. (This promises good
results in the data compression architecture where the empty right-
half way is used, too.)

As noted earlier, we must check how many cache accesses,
rather than fetches, are to compressed lines, because this metric is
directly related to the energy dissipation and performance degrada-
tion. Figure 11-(b) shows that the 25% tolerance scheme again sig-
nificantly outperforms the 12.5% one. Therefore, although this
scheme uses 12.5% more resources, we will use it for the compres-
sion cache architecture of Section 4.1 that uses the empty right-half
way, when we compare the energy reduction and performance with
the conventional and double-sized caches. The total extra cache
memory space increases by 50% if we use the 25% tolerance
scheme for each half way. This size increase places the cache mid-
way between the normal and double-sized caches, making compar-
isons easier.

FIGURE 8. Distribution of ratios for cache lines fetched on a
cache miss.

Parameter Value

fetch width 4 instructions

fetch queue 4 instructions

fetch speed 1x

decode width 4 instructions

issue width 4 instructions

commit width 4 instructions

branch prediction bimodal, 2K

BTB 512 entry, 4-way

RAS 8 entry

RUU size 16 entry

LSQ size 8 entry

LSQ size 8 entry

integer ALUs 4

integer mult/divs 1

floating point ALUs 1

floating point multi/divs 1

L1 instruction cache 16KB, 2-way set associative,
32B line block, LRU, 1 cycle
latency, write-back

L2 unified cache 256KB, 4-way set associa-
tive, 64B line block, LRU, 6
cycle latency

TABLE 3. Simulation parameters.



FIGURE 9. Cache miss rates improvement for 4KB direct, 8KB 2-way, and 16KB 4-way configurations. Normal caches of the
same and double size are shown for comparison.

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression
Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Compression

Double

Normal



FIGURE 10. Cache miss rates improvement for 8KB direct, 16KB 2-way, and 32KB 4-way configurations. Normal caches of the
same and double size are shown for comparison.

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double

Normal

Compression

Double



5.2 Energy and performance impact
Simulation results in Figure 12 show the energy reduction

ratio and performance degradation of the cache line bisection
architecture of Section 3.1 compared to a conventional cache
architecture having a 16KB, 4-way cache with a 32-byte line size.
In this architecture we do not need extra memory space except for
the compression tags which are very small compared to the entire
data and tag array. They introduced about 5% overhead when a 32-
bit word size is used. The average energy reduction ratio over the
SPEC benchmarks is 23% for the 25% tolerance scheme. Further-
more, there is only 1.7% performance degradation in the 25% tol-
erance scheme because most of the cache accesses are compressed
and only a few penalty cycles are incurred.

Figure 13 shows the energy reduction ratio for the architec-
ture of Section 4.1 that attempts to use the empty right-half way.
The cache is 16KB, 4-way with a 32-byte line size and a 25% tol-
erance scheme in each half way. Recall that this does not include
the energy dissipation of driving the bus between the L1 and L2
caches; it just measures the savings from reducing the number of
accesses to L2. For a larger L2, the savings would be larger.

6. Conclusion and Future Work
This paper presents two cache compression architectures to

reduce cache energy. They take advantage of the high occurrence
of all-ones and all-zeros that primarily occur as a result of the large
number of small values typically stored in an L1 data cache. The

FIGURE 11. Percentage of compressible cache lines fetched (a) and compressible cache lines accessed (b) for the SPEC
benchmarks. Three tolerances are shown.

(b)(a)

FIGURE 12. Energy reduction (a) and performance degradation (b) of the cache line bisection architecture.

(a) (b)



first technique uses a small amount of additional hardware embed-
ded in the cache RAM array to manage the reading and writing of
compressed values. Simulation results show a 23% energy reduc-
tion on data cache accesses with a 1.7% performance degradation
and a 5% increase in area.

In the second technique, we use about 50% more RAM array
to provide overflow bytes so that we can utilize the unused portion
of the cache from the first scheme. This technique improves the
cache miss rate significantly compared to a conventional cache
(although of course it uses more memory) and approaches the miss
rate of a double-sized conventional cache, for small caches. The
impact of reducing the miss rate is directly proportional to the
energy dissipation of accessing the next level of the memory hier-
archy (L2 in our case). Simulation results show an average 19%
energy reduction when we account for fewer misses accessing the
L2 unified cache. The performance degradation is insignificant or
shows a slightly better performance than the conventional cache
with a 58% area overhead.

Although there is significant energy dissipation from driving
the bus capacitance between the L1 and L2 caches whenever the
L2 cache memory is accessed, we did not consider it. This effect
will also become more significant as the process technology
shrinks. Thus our savings are notably conservative and including
the bus energy loss is work that remains for the future.

7. Acknowledgements
This research is supported in part by DARPA under

contract AFRL F33615-00-C-1678, SRC under contract
SRC-2001-HJ-904, and National Science Foundation
CADRE program under contract EIA-9975286.

References

[1] T. Mudge. Power: A first class design constraint. Computer,
vol. 34, no. 4, April 2001.

[2] R. Gonzalez and M. Horowitz. Energy dissipation in general
purpose microprocessor. IEEE Journal of Solid State Circuits,
Sep. 1996.

[3] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W.
Ye. Energy-driven integrated hardware-software optimization

using SimplePower. Proc. 27th Int. Symp. on Computer
Architecture, June, 2000.

[4] K. Ghose and M. B. Kamble. Reducing power in superscalar
processor caches using subbanking, multiple line buffer and
bit-line segmentation. Proc. Int. Symp. on Lower Power Elec-
tronic Devices, Aug. 1999.

[5] B. Amrutur and M. Horowitz. Techniques to reduce power in
fast wide memories. Proc. Int. Symp. on Lower Power Elec-
tronic Devices, Oct. 1994.

[6] S. Santhanam et al. A low cost 300-MHz RISC CPU with
attached media processor. IEEE Jour. of Solid-State Circuits,
Nov. 1998.

[7] L. Villa, M. Zhang and K. Asanovic. Dynamic zero compres-
sion for cache energy reduction. Proc. 33th Int. Symp. on
Microarchitecture, Dec. 2000.

[8] R. Canal, A. Gonzalez, and J. Smith. Very low power pipe-
lines using significance compression. Proc. Int. Symp. on
Microarchitecture, Dec. 2000.

[9] C. Lefurgy, E. Piccininni, T. Mudge. Reducing code size with
run-time decompression. Proc. of the 6th Int. Symp. on High-
Performance Computer Architecture, Jan. 2000.

[10] C. Benveniste, P. Franaszek, and J. Robinson. Cache-memory
interfaces in compressed memory systems. Proc. 27th Int.
Symp. on Computer Architecture, June 2000.

[11] D. Burger and T. Austin. The SimpleScalar Toolset, Version
2.0. Tech. Rept. TR-97-1342, Univ. of Wisconsin-Madison,
June 1997.

[12] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimization.
Proc. 27th Int. Symp. on Computer Architecture, June 2000.

[13] S. Wilton and N. Jouppi. An Enhanced Access and Cycle
Time Model for On-Chip Caches. Tech. Rept. 93/5, Digital
Western Research Lab., July 1994.

[14] J. Yang, Y. Zhang, and R. Gupta. Frequent Value Compres-
sion in Data Caches. Proc. 33th Int. Symp. on Microarchitec-
ture, Dec. 2000.

FIGURE 13. Energy reduction ratio when using the empty
right-half way.


