Architectural Implications of Brick and Mortar
Silicon Manufacturing

Martha Mercaldi Kim*

*Computer Science & Engineering
University of Washington
Seattle, WA 98195
{mercaldi,oskini@cs.washington.edu

ABSTRACT

We introduce a novel chip fabrication technique called “brick and
mortar”, in which chips are made from small, pre-fabricated ASIC
bricks and bonded in a designer-specified arrangement to an inter-
brick communication backbone chip. The goal of brick and mortar
assembly is to provide a low-overhead method to produce custom
chips, yet with performance that tracks an ASIC more closely than
an FPGA. This paper examines the architectural design choices in
this chip-design system. These choices include the definition of
reasonable bricks, both in functionality and size, as well as the com-
munication interconnect that the I/O cap provides. To do this we
synthesize candidate bricks, analyze their area and bandwidth de-
mands, and present an architectural design for the inter-brick com-
munication network. We discuss a sample chip design, a 16-way
CMP, and analyze the costs and benefits of designing chips with
brick and mortar. We find that this method of producing chips in-
curs only a small performance loss (8%) compared to a fully cus-
tom ASIC, which is significantly less than the degradation seen
from other low-overhead chip options, such as FPGAs. Finally, we
measure the effect that architectural design decisions have on the
behavior of the proposed physical brick assembly technique, flu-
idic self-assembly.

Categories and Subject Descriptors: B.7 Integrated Circuits: Ad-
vanced technologies; B.4.3 Input/Output and Data Communica-
tions:Interconnections (Subsystems)[Interfaces, Topology]

General Terms: Design, Performance

Keywords: Chip assembly, Design re-use, Interconnect design.

1. INTRODUCTION

Technology scaling has produced a wealth of transistor resources
and, largely, commensurate improvements in chip performance.
These benefits, however, have come with an ever increasing price
tag, due to rising design, engineering, validation, and ASIC ini-
tiation costs [8]. The result has been a steady decline in ASIC
“starts” [9]. The cycle feeds on itself: fewer starts means fewer
customers to amortize the high cost of fabrication facilities, lead-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’07, June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

Mojtaba Mehrarat

Mark Oskin* Todd Austint

TElectrical Engineering & Computer Science
University of Michigan
Ann Arbor, Ml 48109
{mehrara,austinj@umich.edu

ing to even higher start costs and further declining starts.

To implement a design, engineers typically choose between two
options. Either they must face the high fixed costs of ASIC pro-
duction, and hope to amortize it over a large volume of parts, or
they must use an FPGA with low fixed costs but high unit part
cost. The trade-offs are not just financial. ASICs provide signif-
icant speed (3-4x) and power (up to 12x) savings [27], compared
to FPGAs, and the technical demands of certain applications, for
instance, cell phones, will demand an ASIC. However, FPGAs of-
fer in-field reprogrammability, which is useful for accommodat-
ing changing standards. This drives the need for a manufacturing
technology that provides the key advantages of FPGAs — low non-
recurring costs, and quick turn-around on designs — coupled with
the key advantages of ASICs — low unit cost, high performance and
low power.

This paper introduces such a technology, which we call brick
and mortar silicon. At the heart of this manufacturing technique
are two architectural components: bricks, which are mass-produced
pieces of silicon containing processor cores, memory arrays, small
gate arrays, DSPs, FFT engines, and other IP (intellectual property)
blocks; and mortar, an 1/0 cap, that is a mass-produced silicon sub-
strate. Engineers design products with the brick and mortar process
by putting pre-produced bricks of IP into an application-specific
layout. This arrangement of bricks is then bonded to the 1/O cap
that interconnects them.

What differentiates brick and mortar from existing approaches,
such as system on chip (SoC), is that bricks and I/O caps are manu-
factured separately and bonded together using flip-chip techniques.
Existing approaches provide IP blocks to engineers as “gateware”
netlists. Engineers integrate them into a chip design that is then
manufactured. Brick and mortar provides IP to designers as real
physical entities — small chips to be assembled into the final prod-
uct.

Our vision is that bricks are the modern-day analogue of the 7400
series of logic, and the I/O cap is the modern wire-wrap board.
Rather than spin custom ASICs for products, engineers could pur-
chase these prefabricated components and bond them together as
needed.

The key advantages of brick and mortar chip production stem
from mass-production of its constituent parts. Bricks are produced
in conventional ASIC processes, and hence brick and mortar chips
gain the advantages of an ASIC: low power and high performance.
Although they are ASICs, bricks are small, resulting in lower in-
dividual design and verification costs. Once designed and verified,
they can be produced in bulk and used in a variety of end-user prod-
ucts. All of this reduces the cost of a brick and mortar chip. Brick
and mortar chips are also designed to be mass-produced, using

fluidic self-assembly or another low-cost physical assembly tech-
nique.

To make brick and mortar chip production successful, one must
carefully design the architecture of the bricks and the I/O cap.
The bricks must have appropriate sizes and useful function. Large
bricks provide more area for physical connection to the I/O cap
and, consequently, more inter-brick bandwidth. Large bricks can
integrate more logic and/or memory on a single brick, thereby in-
creasing circuit performance via the decreased intra-brick commu-
nication latency. In contrast, small bricks offer more design flexi-
bility and, because they are less specialized, more potential re-use
across designs. It is important to find a suitable balance between
integration and generality in brick function for this technology.

The I/O cap implements inter-brick communication. It is an ac-
tive silicon die containing wiring, routing, and logic resources. I/O
caps that provide more sophisticated routing capabilities (such as
packet networks) free logic space on the bricks. On the other hand,
if the I/O cap is too specialized, it cannot be re-used across a vari-
ety of brick and mortar chips. Striking the correct balance between
logic and wiring efficiency is the question driving the architecture
of the I/O cap.

This paper is the first to describe and evaluate the brick and mor-
tar assembly process. One must carefully engineer the architecture
of both the bricks and the I/O cap to make this chip production
method viable. We present a design study of these components and
find that three physical sizes of bricks (0.25mm?, Imm?, 4mm?)
are sufficient to contain the IP blocks we study. Using these bricks
and an I/O cap designed for both packet-switched communication
and FPGA island-style, configured communication, we show how
to build a variety of CMP products. These CMPs can perform as
close as 8% to an equivalent design built with a traditional ASIC
design process. Finally, we describe how to build brick and mor-
tar chips from a low-cost fluidic self-assembly process. We study
how this manufacturing process interacts with the architectural de-
cisions both brick and application chip designers will make. Specif-
ically, we find that designing chip architectures permitting a small
amount of slack in brick placement on the I/O cap, can lead to a
factor of 10 improvement in the rate of brick and mortar chip pro-
duction.

The next section describes brick and mortar chip production in
more detail. We also foreshadow the quantitative results presented
later in this paper with a qualitative discussion summarizing the
key advantages of brick and mortar chips. Section 3 presents the
architecture of bricks and the I/O cap and motivates those architec-
tural choices through design synthesis results. Section 4 examines
how architectural choices affect a sample chip design, a 16-way
chip-multiprocessor, quantifying the benefits and costs of brick and
mortar with respect to performance. In Section 5 we discuss how
to assemble brick and mortar chips, which can be either via robots
or via self-assembly. For cost and convenience reasons, we ex-
pect mass-produced brick and mortar chips to utilize fluidic self-
assembly, and in Section 6 examine in more detail the behavior of
the assembly process and how it interacts with the architectural de-
cisions presented in Section 3. Section 7 summarizes related tech-
nologies before we conclude.

2. THE POTENTIAL OF BRICK AND
MORTAR CHIPS

At the heart of the brick and mortar chip manufacturing process
are two architectural components: a brick and an I/O cap. Bricks
are physical pieces of silicon that contain an IP block size compo-
nent such as a processor, network interface, or small gate array. An

I/O cap is another silicon die containing an inter-brick communica-
tion infrastructure. A brick and mortar manufactured chip consists
of several bricks, arranged into an application specific layout, that
are bonded to an I/O cap. Once bricks are bonded to the /O cap,
the cap provides power and clock to the bricks and I/O capabilities
that enable bricks to communicate with each other and the outside
pins of the chip package. Figure 1 depicts a brick layout and the
I/O cap to which the bricks are bonded.

Before delving into the architectural components of brick and
mortar chip design, we outline qualitatively the key reasons we are
pursuing this line of research. Later sections of this paper will re-
visit most of these issues with quantitative analysis.

Reduced cost: As already discussed in the introduction, the chief
motivation for our research is to produce a low-cost alternative to
ASIC chip production. Section 7 describes other technologies with
related goals. With brick and mortar, cost reductions come from
utilizing mass produced bricks and I/O caps in multiple different
chip designs.

Compatible design flow: Today ASIC designers employ signifi-
cant amounts of existing IP to produce chips. This improves design
reliability and saves design time and cost. Brick and mortar is com-
patible with this design flow, merely moving the IP blocks from de-
sign modules, which fit into synthesis tool flows, to physical bricks,
which fit into a manufacturing flow.

ASIC-like speed and power: Because most of the logic of a brick
and mortar chip exists within a single ASIC component, its perfor-
mance, in speed and power, will tend closer to an ASIC than an
FPGA. Small gate array bricks can implement any small custom
logic.

Mixed process integration: As we will show, bricks must to
comply with a standard physical and logical interface. They do
not, however, have to be built from the same underlying technol-
ogy. This offers an easy way to mix and match bulk CMOS, SOI,
DRAM and other process technologies into the same chip.
Improved yield: Large brick and mortar chips can have a higher
yield than large ASICs. The advantage comes from assembling a
large chip out of a many smaller components. The smaller the com-
ponent, the higher the yield. One can test component bricks before
assembling them, ensuring only functional bricks are included in
any assembly, and resulting in an extremely high overall yield.

These advantages do not come for free, however. Brick and
mortar assembly will be viable only if its components are well-
architected. This paper presents the results of our architectural
analysis. We begin in the next section by designing the brick and
I/O components.

3. ARCHITECTURE

We now turn to the task of understanding two central architec-
tural questions the brick and mortar approach poses, namely, “what
is a brick?”, and “what is an I/O cap?”

3.1 Bricks

There are three important architectural questions to answer about
a brick. How do bricks communicate? How large is a brick? What
is the appropriate functionality for bricks to provide? To answer
these questions we begin by investigating how the physical con-
straints placed on bricks influence the architectural decisions.
What are the goals and constraints of inter-brick communica-
tion? The primary architectural constraint on inter-brick commu-
nication is that bricks must communicate with other bricks through
the I/O cap. Flip-chip bonding connects the I/O pads of each brick
to the I/O pads in the cap. Other studies [19] indicate that each
bonding bump requires only 25umx 25umin area and can provide

V%

Functional Bricks

1/0 pad bond to I/0 cap

I/0 Cap

Figure 1: Brick and Mortar Process: With brick and mortar chip design, mass produced ASIC functional bricks are assembled
in a custom, per-design fashion, and bonded to an ASIC I/O cap providing flexible, high-performance interconnect for bricks to
communicate. I/O pads cover the surface of both the bricks and the I/O cap, so that the bricks can communicate when bonded
together.

Function Cite Circuit | Max. Circuit | Min. Perf. || 0.25 mm? 1.0 mm? 4.0 mm?

Area (um?) | Freq. (MHz) (Mbps) brick brick brick

Valid Freq. Range (MHz)
Small Bricks
USB 1.1 [34] 2,201 2941 12 2-2941 | No benefit [No benefit
PHYSICAL LAYER
VITERBI [46] 2,614 1961 - [N/A'-1961 | No benefit | No benefit
VGA/LCD [34] 4,301 1219 - || N/A -1046 | N/A -1219 | No benefit
CONTROLLER
WB DMA [34] 13,684 1163 - N/A - 521 | N/A - 1163 | No benefit
MEMORY [34] 29,338 952 - N/A - 843 N/A - 952 | No benefit
CONTROLLER
TRI MODE [34] 32,009 893 1000 125-893 | No benefit | No benefit
ETHERNET
PCI BRIDGE [34] 76,905 1042 - N/A - 610 | N/A - 1042 | No benefit
WB Switch [34] 81,073 1087 - N/A - 88 N/A -353 | N/A - 1087
(8 master, 16 slave)
FPU [34] 85,250 1515 - N/A -505 | N/A - 1515 | No benefit
DES [34] 85,758 1370 1000 16 - 1203 16 - 1370 | No benefit
16K SRAM [7] 195,360 2481 - || N/A -2481 | No benefit | No benefit
(Singleport)
AHO-CORASIK [51] 201,553 2481 - |[N/A-1331 | N/A - 2481 | No benefit
STR. MATCH
RISC CORE (NO [34] 219,971 1087 - || N/A-1087 | No benefit | No benefit
FPU) / 8K CACHE [7]
8K SRAM [7] 230,580 1988 - || N/A-1988 | No benefit | No benefit
(Dualport)
Medium Bricks
TRIPLE [34] 294,075 1282 1000 No space 16 - 1282 | No benefit
DES
FFT [45] 390,145 1220 - No space | N/A -1220 | No benefit
JPEG DECODER [34] 625,457 629 - No space N/A - 629 | No benefit
64K SRAM 171 682,336 2315 - No space | N/A -2315 | No benefit
(Singleport)
32K SRAM [7] 733,954 1842 - No space | N/A -1842 | No benefit
(Dualport)
RISC CORE [34] 864,017 1087 - No space | N/A -1087 | No benefit
+ 64K CACHE [7]
Large Bricks

256K SRAM [7] 2,729,344 2315 - No space No space | N/A - 2315
(Singleport)
128K SRAM 171 2,935,817 2882 - No space No space | N/A - 2882
(Dualport)
RISC CORE + [34] 3,111,025 1087 - No space No space | N/A - 1087
256K CACHE [7]

Table 1: IP Block Synthesis and Brick Assignment: This table shows the synthesis-produced area and timing characteristics of each
brick-candidate IP block. Each block has been assigned to the smallest brick which met its area and bandwidth constraints. Note
how some of the blocks that we have assigned to small bricks could take advantage of the increased I/O bandwidth afforded by larger
bricks (indicated by the increased frequency range).

at least 2.5Gbps bandwidth.

What are the goals and constraints on brick size? The con-
strained I/O sets a lower-bound on feasible brick size. Early VLSI
engineers observed a phenomenon dubbed “Rent’s rule”. Rent’s
rule states that a circuit’s required I/O is proportional to its area
(IO o Area®). While the precise constants used in the rule
change depending upon the type of circuit, the structure of the rule
does not [10]. It is important for our purposes, however, that the
I/O required by a block of circuitry grows at just above the square
root of the area. Prior work[10] suggests that 5 = 0.45 for proces-
sors and memory, and 5 = 0.6 for less structured logic. Because
the 1/0 available to a brick grows linearly with its area, there must
be some minimum brick size, below which the brick area will not
be sufficient to support the I/O demands of the circuitry the brick
contains.

Bricks will also have a maximum useful size. Rent’s rule also
means that beyond some larger size, bricks will not be able to uti-
lize all of the I/O available to them. Brick designers should design
bricks that use the available I/0, because it is this I/O that connects
the fixed, inflexible brick designs in unique ways to produce unique
chip designs.

Finally, there can be multiple brick sizes. The more brick sizes

offered, the better the area and 1/O offering of the bricks can match
the true area and I/O requirements of the circuit. We require that
the bricks conform to “standard” sizes because it is very difficult to
design an 1/O cap to interconnect arbitrarily-sized bricks.
What are the goals and constraints on brick functionality? The
applications for which we envision using brick and mortar manu-
facturing are those which currently employ traditional ASICs. For
example, wireless transceivers, media encoding/decoding, system-
on-chip (SoC) integrations, etc. In these realms, the functional
blocks forming a design are fairly large: FFT engines, JPEG com-
pressors, embedded microprocessors.

Below, we address each of these three questions quantitatively,

based on synthesis data from candidate brick functions.
Brick size determination To begin assembling a brick family, we
used freely available IP cores to produce a “benchmark suite”.
Starting with Verilog source code from OPENCORES.ORG [34] and
other sources of publicly available IP [51, 45, 46], we compiled the
designs with the Synopsys DC Ultra design flow[49], targeting the
90nm TSMC [50] ASIC process. We used a commercial memory
compiler [7] to generate optimized memory IP blocks.

Based on this data and the constraints outlined above, we con-
clude that three brick sizes are reasonable: small (0.25mm?),
medium (1.0mm?) and large (4.0mm?). Table 1 shows the speci-
fications of the resulting brick assignments. Each brick size offers
a fixed I/O bandwidth based on the brick area. In Table 1 we have
converted these bandwidth limitations into upper bounds on the
brick clock speed. Based on prior work [19] we assume 2.5Gbps
per pin. This upper bound is also subject to the speed at which the
IP block can operate in a 90nm TSMC standard cell process. When
present, the lower frequency bound indicates the minimum speed
required to meet application requirements (e.g. an ethernet device
must process data at the line rate).

We have organized bricks according to their sizes. We assign IP
blocks to the smallest brick size which could meet their area and
application bandwidth needs. Note that none of the medium bricks
benefits from increasing the brick size, indicating that none of them
is I/O constrained. This is a direct effect of Rent’s rule. The higher
maximum clock frequency at a larger brick size indicates, however,
that five of the thirteen small bricks could take significant advantage
of the increased I/O bandwidth that a larger brick affords. In these
cases, we envision brick builders will do one of two things: (1)

provide two different brick sizes, with the smaller brick supporting
only lower frequency designs, or (2) more likely, they will redesign
the bricks to take advantage of the added area of a larger brick. We
did not investigate this aspect of brick design in this study, but one
option would be to group blocks of similar functionality (e.g., an
ethernet and USB controller on the same “general purpose comput-
ing I/O” brick). Another option is to tune buffer sizes on the design.
For example, the Aho-Corasik [51] block can use additional buffer
space to support more complex matching patterns.

3.2 1/O cap

The I/O cap is a silicon die that has four primary functions: (1)
power for the bricks; (2) clocks for the bricks; (3) I/0 pads for con-
nectivity to external package pins; and (4) connectivity between
bricks. The first three offer little in the way of brick and mortar-
specific architectural questions, so we focus on the fourth to drive
the I/O cap design. Within this, two key questions are: Given an
application space and brick family, what is the best use of the lim-
ited number of communication pins into and out of a brick? How
do we design a single I/O cap that functions with a variety of brick
sizes? To answer these questions we return to our synthesis data.

Because the bricks come in three sizes, and because the partic-

ular arrangement of bricks will vary on a per-chip basis, the in-
terconnect in the I/O cap must be both multigranular and flexible.
Figure 2 illustrates the two network designs we propose.
Packet-switched interconnect: The first network is a dynamically
switched packet network. Panel (a) shows an example brick lay-
out, with an overlay of the logical packet-switched network. Each
circle represents a network node. The black nodes are leaf nodes
which are valid packet destinations. The nodes represent routers
in the interconnect. Within each 4mm?of silicon, the interconnect
is a fat-tree, and at the topmost level it is a grid. We coded and
synthesized a 64-bit packet implementation of this network using
Synopsys DC Ultra. The synthesis results indicated that this net-
work could operate at 800Mhz, with one cycle per hop, and would
consume 43% of the I/O cap area. For a 64mm?1/O cap, the bisec-
tion bandwidth of this network is 3.3Tbps.
FPGA-style interconnect fabric: The second interconnect option
is an island-style reconfigurable interconnect, shown in Figure 2,
panel (b), over which pins in the I/O cap are programmatically
connected. Just as with an FPGA, the connecting wires are routed
through this mesh. Since wires are constrained at the brick-to-1/0
cap interface, we utilize the same physical wires as the packet net-
work and mux them between the two networks dynamically.

As with the packet-switched network, we synthesized a config-
urable single-bit wiring node. Area results from DC Ultra indicate
that such a node requires 155 square microns. Leaving area for re-
maining logic on the I/O cap (power distribution, clock, pad drivers,
etc), we estimate room for approximately 500 switches per small
brick. We devote 400 of these switches to a 20 by 20 fully con-
figurable mesh, and another 64 switches to a partially configurable
one. Figure 2 illustrates this design. The benefit of this approach
is that by enforcing a small amount of standardization on the pin
interface, bricks can utilize the mesh to route large 64 bit items to
their neighbors. We also retain some flexibility with the 20 fully
configurable routes. The bisection bandwidth of this network is
0.26Tbps (fully switchable) and 0.8Tbps (partially configurable).

While the packet-switched network is most useful for routing
data between dynamically changing sources and destinations, this
mesh is better suited to tightly and statically coupling two bricks,
particularly two that are physically near by one another. We uti-
lize this, for example, to bind the FPU to the CPU for one CMP
configuration in the next section.

T%%
b 3
v 51 Gbps g : H
L>. 205 Gbps L ¥
3 i
¢-— 819 Gbps
Fa 2
l<— 64 bits —>|
--------------------- T
l« 0.5mm >

Figure 2: I/0O Cap Interconnects: The I/O cap offers two inter-brick interconnects. The first, in panel (a), is a dynamically-routed,
packet-switched network. The routers, represented by circles in the figure, are organized into a 4-ary fat tree. The network runs
at 800MHz and requires a single cycle hop between routers. The black routers represent valid routing destinations for the example
brick layout. The second interconnect in panel (b) is an island-style, statically programmable, mesh interconnect that can connect
pins directly to one another. These two interconnects support two different styles of inter-brick communication. The first supports
dynamic and variable communication while the second can tightly couple bricks in a fixed pattern.

[Chip Multiprocessor Designs |

CMP-L CMP-M CMP-S
Total Area (mm?) 193.5 177.5 200.5
[Chip Composition |
[Count % Area | Count % Area | Count % Area
Small Bricks (.5x.5 mm)
RISC CORE (NO FPU) - N/A - N/A 16 1.99%
+ 8K CACHE
FPU - N/A - N/A 16 1.99%
ETHERNET NIC 1 0.13% 1 0.14% 1 0.12%
MEM CNTL 1 0.13% 1 0.14% 1 0.12%
USB PHYS LAYER 1 0.13% 1 0.14% 1 0.12%
DMA 1 0.13% 1 0.14% 1 0.12%
PCI BRIDGE 1 0.13% 1 0.14% 1 0.12%
VGA/LCD CNTL 1 0.13% 1 0.14% 1 0.12%
Medium Bricks (IxI mm)
RISC CORE - N/A 16 9.01% - N/A
+ 64K CACHE
Large Bricks (2x2 mm)
RISC CORE 16 33.07% | - N/A - N/A
+ 256K CACHE
256K SRAM 32 66.15% | 40 90.14% | 48 95.29%
[Simics/GEMS Performance Simulation |
Brick & Mortar ASIC Brick & Mortar ASIC Brick & Mortar ASIC
Number of Cores 16 16 16 16 16 16
L1 Cache / Core (KB) 256 256 128 128 8 8
L2 Cache Size (MB) 8 8 10 10 12 12
L2 Associativity 4 4 5 5 6 6
L2 Block Size (B) 64 64 64 64 64 64
L2 Set Size (KB) 32 32 32 32 32 32
Processor Cycles to L2 31 22 41 22 50 22
Exe. Time (Avg.) 108% 100% 120% 100% 136% 100%

Table 2: CMP configurations: The following table describes the three CMP configurations used in our study. We have focused on
building CMPs from three different size RISC core bricks. CMP-L features high integration with a large brick combining processor
and L1 cache. CMP-M integrates a much smaller L1 cache onto a medium brick with the processor, while CMP-S offers only 8K of
L1 cache with the processor on a small brick.

4. CASE STUDY

In this section we examine and quantify the costs and benefits of
the brick and mortar assembly process. We focus our attention on
a design familiar to processor architects: a CMP.

4.1 Methodology

This section relies upon several analysis tools, which we describe
below.
CMP simulator: To understand the performance impact of brick
and mortar assembly on a CMP design we used the Virtutech Sim-
ics [28] simulation framework and GEMS [29] tool set. We specify
the exact configurations for the CMP designs in Table 2. We used
the Splash?2 [44] suite for multithreaded benchmarks.
I/O Cap Model: To gauge the performance of the I/O cap, we
developed a simulation model of the synthesized I/O cap from the
previous section. We use the latency information from this model
to provide appropriate interconnect delays to Simics for the CMP.

4.2 Made-to-order chip multiprocessors

Large customers of computing systems recognize that their ap-
plication requirements do not always match the one-size-fits all
processors available today. For example, network servers need
throughput on task-based parallelism, while scientific computing
requires extensive floating point capabilities. Thanks to the low
overhead associated with starting and producing a run of chips with
brick and mortar assembly, it is possible to produce made-to-order
CMPs. For this work, we select a basic CMP design, and examine
the costs and benefits of fabricating it using brick and mortar.

We examine three different 16-way CMPs, built from the bricks
in Section 3, all of which fit within 200mm?. Each design consists
of 16 combined processor and L1 cache bricks. These bricks differ
in size (small, medium and large), cache capacity (6K, 64K, and
256K), and whether or not the FPU is on the same brick. After
some general-purpose I/O bricks, the L2 cache fills out the remain-
der of the 200mm?area budget. Table 2 summarizes the designs.
Performance: Across the three designs we study, three significant
factors change. First, the L1 caches are constrained by the choice
of brick size to implement the processor. Second the network delay
between the L1 and L2 depends on brick layout. Third, the CMP
built from smallest RISC core brick (CMP-S) requires an additional
FPU brick per processor. The configurable mesh interconnect con-
nects the processor and FPU bricks.

For each brick and mortar design we modeled a corresponding,
equally-provisioned ASIC version of the CMP for comparison. Be-
tween the ASIC and brick and mortar designs the primary differ-
ence is in the component latencies. The brick and mortar inter-
brick latencies come from the 1I/O cap network model, while the
ASIC latencies come from the published latencies of the UltraSparc
T1 [47] on-chip interconnect. The “Simics/GEMS Performance
Simulation” section of Table 2 gives the specifics of each pairwise
comparison.

Figure 3 shows the performance results from the simulations.
The performance of each brick and mortar chip was normalized to
the performance of the corresponding ASIC design. On average,
the benchmarks took 8%, 20% and 36% more time to complete on
the three brick and mortar CMPs than on the corresponding ASICs.
This was due to the increased interconnect latency that the I/O cap
introduces. The principle difference between the three CMP de-
signs was the size of the L1 cache in the processor brick. Naturally,
the smallest (8KB cache in CMP-S) incurred the most L1 misses
while the largest (256KB cache in CMP-L) incurred the fewest.
Each L1 miss sends a request to the L2, which on the brick and
mortar designs required communication via the I/O cap. Thus, the

L1 miss rate in the brick and mortar CMP designs largely deter-
mined performance.

S. MANUFACTURING BRICK AND MOR-
TAR CHIPS

Previous sections have described the basic structure of a brick
and mortar chip, namely ASIC bricks bonded to an I/O cap. What
we have not described is how to arrange bricks in an application-
specific layout prior to bonding to the I/O cap. A straightforward
approach is to use robotic assembly. Manipulating and aligning
devices at the ~ 1umscale that is required for brick and mortar as-
sembly is a solved mechanical engineering problem. Commercial
systems already exist for manipulating devices at this scale [59].
The drawback of these devices is cost. For low-volume manufac-
turing this cost might be manageable. However for larger volume
manufacturing a lower-cost alternative is preferable. Fortunately,
there is one.

Bricks can also be assembled via fluidic self-assembly
(FSA) [57]. As shown in Figure 4, FSA begins with one assembly
template per brick size. Bricks begin loosely and randomly placed
en masse on this substrate. The substrate is then agitated (shaken),
causing the bricks to move around. The assembly substrate is pit-
ted with brick-sized holes into which the bricks fall as they move
about. Eventually all holes on the substrate will fill, completing the
arrangement of bricks. Previous work [22] has demonstrated this
technique using devices that are approximately the same size as the
bricks in Section 3.

Assembly of a brick and mortar chip with FSA requires a hand-
ful of additional techniques. First, the assembly template is an ac-
tive silicon device. It therefore makes sense to design a template
that can be used in manufacturing a variety of chips; i.e., one that
is not application-specific. Second, our architectural study (Sec-
tion 3) indicates that multiple brick sizes are useful to match the
area and bandwidth offerings of a brick to the area and bandwidth
demands to the functional logic it contains. Unfortunately, a sin-
gle FSA process cannot assemble bricks of differing sizes, because
different brick sizes require different agitation forces. Simply run-
ning at the maximum agitation force will work fine for the larger
bricks, but the small bricks will never settle onto the substrate. This
means that the assembly process would require one (or more) sep-
arate FSA substrates per brick size. The final technique is to as-
semble bricks of the same size, but different functionality together.
This requires a method of controlling the bonding of a particular
brick type to a particular site on the assembly substrate.

We propose the following process for mass-production of brick
and mortar chips.

Brick modification: We modify the basic architecture of a brick
to include a simple AC coupled power and communication device
that is capable of transmitting a unique identification tag. This tag
identifies the type of the brick to the substrate. This technology
is well-established and in wide use in RFID tags [16, 20, 31]. A
simple version is suitable here, as the communication of the iden-
tification tag need travel only a few micrometers, instead of a few
feet.

Template assembly: The specific FSA process on which we base
our experiments is a semi-dry one [57, 36, 40, 41]. In this pro-
cess, bricks of the same size are mixed with a small amount of
water and poured over an assembly substrate with correspondingly-
sized bonding sites. Parts arrive at binding sites by random motion,
thanks to the shaking of the substrate. When a brick nears a binding
site, there are three forces that determine how it falls into the site.
First, bricks are not pure squares, but rather shaped such that they

200%

180%

160%

ECMP-L OcMp-Mm

FACMP-S

140%

120%

100% -

Corresponding ASIC

80% -

Execution Time Normalized to

60% -

CHOLESKY LU (Cont.)

LU (Non-Cont.) OCEAN (Non. OCEAN (Cont.
Cont.)

S
-
=
=

RAYTRACE AVG.

Figure 3: Application Runtime on Brick and Mortar CMP v. ASIC CMP: This graph shows the execution time of multithreaded
Splash2 workloads running on a brick and mortar CMP relative to their execution time on an equally-provisioned ASIC CMP. The
larger the L1 cache in the CMP design, the less L2 traffic arose, resulting in less inter-brick communication and thus less slowdown

relative to an ASIC.

can fit into binding sites only when aligned properly [13, 22]. Sec-
ond, they fall due to gravity. Third, capillary forces assist gravity.
This sort of capillary force-driven self-assembly [48] relies on the
minimization of interfacial energy.

The substrate on which bricks are assembled is coated with a
polymer pNIPAM (poly-N-isopropylacrylamide [25, 35, 26, 55])
which can reversibly switch between hydrophobic and hydrophilic
states, allowing bricks to be attracted to or repelled from the as-
sembly surface. During assembly, the substrate functions as an
active silicon die. As bricks fall into binding sites, it queries the
brick, using the AC-coupled communication device, to determine
the brick’s type. The substrate can then reject bricks that fall into
the wrong location by setting the polymer’s state to hydrophobic
through a small change in the local temperature of the binding site.
Brick Testing: Bricks, because they are unpackaged, bare silicon
dies, are not trivial to test, including functional testing at speed and
burn in. Historically, one had either to package a die or bond it to
a board in order to perform these tests. Packaging is not an option
for a technology such as brick and mortar or multi-chip modules
(MCMs), the field which named this particular problem the “known
good die” problem. This threatens overall chip yield because an
inability to test component parts until after assembly means that a
single bad component will ruin a whole assembly.

There are several solutions currently available, including tempo-

rary bonding [1], and advanced communication technologies, such
as capacitive coupling [56, 42] or more classic interconnect sys-
tems [21], which allow power and at-speed communication with a
bare die. Any one of these technologies could work to weed out
the bad bricks from brick and mortar chip assemblies. We have
selected capacitive coupling because it does not require maneuver-
ing the bricks in any way other than what the described assembly
system already requires.
Composite assembly: Once a complete template of same-size
bricks has been formed, it is robotically lifted off the substrate and
placed onto the I/O cap (See Figure 4). It is necessary to perform
this step once for each size brick used in the design. It is also
possible to perform this step more than once for each size brick if
so desired. The following section, Section 6 will outline circum-
stances under which this would be desirable. This process does not
completely eliminate the need for high-precision robotic assembly.
This last, composite assembly step still requires a mechanical de-
vice. However, it replaces the lion’s share of the work, i.e., brick
assembly, with the low-tech, and inexpensive FSA processes.

6. INTERPLAY OF ARCHITECTURE AND
FLUIDIC SELF-ASSEMBLY

An interesting fact of brick and mortar manufacturing is that
there is an extremely close interaction between what one manu-
factures and how one manufactures. In this section we explore how
the architecture of the chip affects and should be affected by the
FSA process.

For this study we simulated the FSA process itself. The simu-
lator matches production capabilities of current experimental FSA
systems [22]. It models assembly of bricks onto the substrate, pro-
grammatic discard if they are the wrong type, and accidental dis-
card (a feature of the FSA process which, in a well-tuned system,
happens 5% as often as bricks bind to sites [22]). For this study,
we utilize synthetic chip designs to examine assembly times as the
number of bricks and number of kinds of bricks in a design varies.
‘We varied the number of kinds of bricks from 1 to 5, as well as the
number of bricks in the design.

The data in Figure 5 show that increasing the number of kinds
of bricks (their heterogeneity) or the number of bricks required in-
creases the assembly time exponentially. This means that there are
strategic decisions to make at each stage of the process, from brick
architecture, to chip architecture, to how one makes use of the as-
sembly process to control assembly time. In the sections below we
explore the trade-offs in these decisions.

Brick design: The data in Figure 5 indicate that assembly time
grows exponentially with the number of kinds of bricks present in
an FSA process. For example, one will reap significant gains in
assembly time by offering one single, slightly reconfigurable brick
instead of two different brick types with largely similar functional-
ity. Brick functions where this might be possible include byte- vs.
word-aligned memories and bus interface standards.

Interconnect design: Another interesting interaction between ar-
chitecture and manufacturing is in the placement of bricks. Specif-
ically, if we can design architectures where the placement of bricks
need not be exactly the same for every chip produced, the assem-
bly time will shorten dramatically. The data in Figure 6 indicate
that by relaxing constraints on brick placement, the assembly pro-
cess will complete significantly more quickly. One can relax place-
ment constraints by carvint the grid of bricks into square regions
slack Radius bricks on a side. A brick that falls anywhere within
a region can satisfy any of the bricks required by that region (pro-
vided a brick of that type was indeed required by the region). Strict
brick placement is simply a 1x1 region (slackRadius = 1).

Note that the solid lines in Figures 5 and 6 are identical. The
25-brick line in Figure 5 is the same as the slackRadius = 1
line in Figure 6, because the data in Figure 6 was collected using
25-brick designs and the data in Figure 5 with slack Radius = 1.

Supply each shaker table with a brick
slurry of a given size.

<

AACd

<> A |_|“”“““““‘|_||_| waty l_l

FSA aligns bricks Lift bricks off of templates
to each template.

(discard) ;

wash and 1/0 cap
reuse
I I I ¥ I ...and flip-chip
bond to I/O cap.

A

* i
AN

A chip with this

brick layout...

With each brick
size...

...bonded to the 1/0

... is assembled in
three templates

I ..In succession

Figure 4: Illustrated Brick and Morter Fluidic Self-Assembly Process: To assemble a brick and mortar chip, we arrange the bricks
programmatically using fluidic self-assembly (FSA). Assembly requires one FSA process (and optionally more) per brick size. As-
sembly occurs on a template with holes matching the bricks in shape and size. The assembly process can select bricks based on the
desired type and functionality. Once assembled, bricks are robotically lifted from the templates and bonded to the I/O cap.

These graphs indicate that one can save approximately the same
amount of time introducing a slack Radius of 5 to a 25-brick chip
(Figure 6) as by reducing the size of the design from 25 to 9 bricks
(Figure 5).

In order to accelerate the assembly process in this way, the

communication interconnect must be sufficiently general or pro-
grammable to handle the unpredictability in placement. If place-
ment slack is allowed, a single chip design could result in a dif-
ferent brick layout for each chip that is assembled. Therefore the
interconnect must be flexible not only on a per-design basis, but a
per-chip basis. It is up to the chip designer to determine how much
slack to introduce. He or she will have to make a decision based on
the tradeoffs between assembly time, desired performance, and the
latency tolerance of the design itself.
Assembly management: Thus far we have described the brick and
mortar assembly process as one that utilizes different FSA stations
to assemble bricks of the same size. These partial-chip assemblies
are then robotically assembled onto an I/O cap. However, nothing
constrains the use of multiple templates to be used only for different
size bricks. Given some number of template assembly stations,
what mix of bricks should each station assemble?

One way to utilize multiple assembly stations is to spread the
heterogeneity of the desired bricks across a range of brick sizes. For
example, if a design requires 12 different kinds of bricks, a design
consisting of 12 kinds of large bricks will assemble significantly
more slowly than a design consisting of 4 small, 4 medium, and
4 large bricks. The type of chip one is designing will determine
how much flexibility the designer has in this respect. For example,
not all kinds of bricks are likely to have small, medium, and large
versions. For the bricks where that option is available, for example
with the memory bricks outlined in Section 3, the chip designer
will still need to decide how much he or she is willing to adjust the
design, perhaps sacrificing some performance, in order to optimize

assembly time.

Taken to the limit, the data in Figure 5 indicate that, in theory,
one should use a separate self-assembly process for each brick type.
In practice, that would require one assembly substrate per brick
type. This might not be feasible, as it essentially requires purchas-
ing sufficient equipment for the most heterogeneous chip design
one might ever make. Instead, one would conserve equipment and
either (1) assemble two brick types (of the same size) at the same
time on the same template, or (2) assemble the two brick types in
sequence, first the first brick type, then the second, on the same ta-
ble. The data in Figure 5 indicates that the second option will result
in faster assembly.

7. RELATED WORK

There are a handful of technologies that, like brick and mortar,
target the gaps between the performance, cost, power and conve-
nience of ASICs and FPGAs. We outline them and their relation-
ship to brick and mortar here.

System on a Package (SoP): SOP is a technology which packages
multiple silicon dies together in a single package. Commercially
available SoPs that we know of [6] are essentially multi-chip mod-
ules (discussed below). However, there are research devices that
stack multiple dies [19]. This physical technology could be em-
ployed in a brick and mortar system. What distinguishes brick and
mortar from these devices is the architectural work. SoPs are a way
to lower package costs, but still rely upon users to design and pay
for fabrication of the constituent ASICs that are bonded together.
Our goal, instead, is to develop a market of pre-fabricated ASIC
bricks that interconnect in a standard way.

Multi-chip modules (MCMs): An MCM or multi-chip module
consists of multiple silicon integrated circuits which share a single
package. MCMs have been in commercial use for over 30 years,
with packages as large as 10cm on a side in use [39]. MCMs amor-

10000

—— 25 bricks required
—B- 16 bricks required
—&— 9 bricks required

/0

8 1000 - _g_ 4 pricks required

S i i -
5 —¥ 1 bricks required ___,.-—""_

~ _ - ————
% 100 - - ==

E /.. ’/"'—

s 0 e -
% - _ -

,.
- =)
WY
\\ \\
\ \
K u
| \
|
|
|
|
1
|
|
|
|
|
]
)

3 4
Number of Kinds of Bricks

Figure 5: Effect of Design Size on Assembly Time: Assembly time Figure 6: Effect of Slack in Placement on Assembly Time: By al-

grows exponentially with both the number of bricks to be assem- lowing some flexibility in the brick placement, one can significantly

bled and the number of types of bricks.

tize the packaging area overhead across multiple components. The
closer a pair of communicating chips is, the faster they can trans-
mit signals to each other. Sharing a single package brings these
chips closer together. Like SoP technology, MCM chips bear a su-
perficial resemblance to brick and mortar fabrication, but the two
technologies have otherwise very different goals.

Systems on a chip (SoC): People build SoCs in a very brick and
mortar-like fashion, purchasing IP blocks and integrating them into
a single design. However, at the end of the day, an SoC consists of a
single custom silicon die, while brick and mortar entails assembling
the IP blocks which have already taken the physical, silicon form
of bricks.

Structured ASICS: Structured ASICs, also sometimes called plat-
form ASICs, are multi-layer circuits, where the circuitry in the bot-
tom layers is fixed, and only the top couple of layers (typically 2
to 3) is custom[33, 58, 52]. The bottom layers form an array of
logic units (i.e., lookup tables, flip-flops). These units are con-
nected as dictated by the designer via custom wiring implemented
in the top layers. Implementing a circuit in this way reduces the
non-recurring costs of an ASIC, as only the top layers are custom,
and thus fewer layers must be designed, verified and have masks
built. Furthermore the circuit is largely composed of fixed logic,
so if an application maps well onto the array, it will perform bet-
ter than an FPGA implementation and consume less area, thereby
reducing the unit cost. The structured-ASIC market is expected to
reach $1.3B by 2010, siphoning off 3.5% of the anticipated $31.4B
ASIC market [11]. Structured ASICs are currently commercially
available at the 180 and 250 nm nodes[8] through companies such
as AMI Semiconductor [5], ChipX [12], eASIC [17], Faraday [23],
Fujitsu [24] and NEC [32].

In some sense, brick and mortar is the dual of a structured ASIC.
While structured ASIC provides a fixed array of blocks with a cus-
tom interconnect on top, brick and mortar offers a custom array of
bricks with a non-custom, reconfigurable interconnect to connect
them. In addition, brick and mortar’s bricks offer larger, more com-
plex functions than the lookup tables and RAMs typical of struc-
tured ASICs. Because brick and mortar requires that bricks fit a
standard form factor to interact with the I/O cap, some logic area
might go to waste. Structured ASICS have a custom interconnect
and are therefore not subject to this restriction on the logic blocks.
Coarse-grained reconfigurable devices: In the gap between
structured ASICs and FPGAs are a new class of coarse-grained
reconfigurable devices. These chips consist of relatively large re-
configurable “objects”, which are configurably connected FPGA-
style. One startup, MathStar, Inc. [30], recently introduced its sec-
ond generation Field-Programmable Object Array (FPOA) family

10000
—+—slackRadius = 1
—m- slackRadius = 2
—i— slackRadius = 3
1000 - =

2 | —8— slackRadius = 4 ==
5 —¥— slackRadius = 5 ==
~ -
% 100
<
)
Q
7]
“ 10
-
-
-
‘

2 3 4
Number of Kinds of Bricks

reduce the time required to assemble a complete set of bricks.

called Arrix, which supports 400 individually configured 16-bit ob-
jects connected via a 1GHz programmable interconnect. A second
startup, CSwitch [15], has announced an architecture consisting of
configurable control, compute and switch nodes, connected via a
20-bit wide, 2 GHz interconnect fabric.

In some devices these objects resemble processors. In some
cases they are targeted towards a specific class of applications. For
example the picoArray from picoChip [37] targets wireless signal
processing. In other cases, such as QuickSilver [38], Abric [4], and
Cradle Technologies [14], the compute nodes are more general. In
still other cases [18], the entire device operates as a single recon-
figurable processor.

Certain applications, such as HDTV decoding, map well onto
these devices. Applications that map well generally contain signif-
icant amounts of traditional data parallelism and operate on word-
size chunks of data. Applications that do not map well are those
that require specialized bit-level operations and those with spe-
cific circuit requirements (e.g. analog to digital converters). These
technologies and brick and mortar are actually synergistic. Brick
and mortar fabrication can be used to produce coarse-grained, con-
figurable devices. Similar to the comparison to structured ASICs
above, brick and mortar offers the opportunity to mix and match
both part types and fabrication technologies to produce a wider va-
riety of these coarse-grained parallel technologies.

FPGAs with hard IP cores: For years, FPGA manufacturers have
provided complex fixed-logic cores inside their FPGA fabrics. For
example, Virtex2Pro [54] provides both fixed multipliers, SRAM
blocks, and entire PowerPC cores. Recent products from Xil-
inx[53] and Altera[3] have specialized further, with specific FPGAs
targeting different market segments (e.g., the Xilinx “FX” series
targets embedded processing, and the “SX” series aims for signal
processing). The advantage to having these cores is that, if a design
requires them, they incur little area/delay/power overhead relative
to an ASIC. The disadvantage is that the core selection is set by
the FPGA manufacturers and the product offerings that are neces-
sarily limited. Brick and mortar’s ability to synthesize a variety of
complex logic functions cheaply into the same chip is a potential
advantage over these domain-specific FPGAs.

Inexpensive Fabrication Techniques and Fluidic Self-
Assembly: Self-assembly has been studied extensively for
years [57]. Its promise has always been a low-cost alternative for
bulk manufacturing that would otherwise require robotic assembly.
To the best of our knowledge, only one company has attempted
to employ FSA commercially, Alien Technologies [2]. Alien
intended to use FSA to bond the antenna to the processing device
for RFID tag production. At this point in time, it is unclear to

the authors whether Alien will continue to use FSA, given recent
financial reports [43]. To make FSA commercially viable, one
must integrate of architectural and manufacturing decisions, as the
studies in Section 6 demonstrated.

8. CONCLUSION

This paper introduced brick and mortar chip manufacturing.
Bricks are the modern day 7400 series logic, consisting of pro-
cessors, ethernet engines, gate arrays, and other IP-size blocks.
The mortar is an 1/O cap, on which engineers bond bricks to pro-
duce the resulting product. It explored the architecture of bricks,
determining reasonable design sizes (0.25mm?, 1mm?, 4mm?).
It presents an I/O cap design that include both a high-bandwidth
packet-switching network and lower-bandwidth, but more flexible
and lower-latency, island-style mesh. We explored how to use brick
and mortar to assemble made-to-order CMPs and found that such
chips perform comparable to fully custom ASIC versions. Finally,
we examined the interplay of architecture and manufacturing and
found that flexibility in the architecture can be used to dramatically
increase manufacturing production rate.

9. ACKNOWLEDGMENTS

This work has been made possible through the generous sup-
port of the Gigascale Systems Research Center, an NSF CAREER
Award (ACR-0133188), Sloan Research Foundation Award (Os-
kin), Intel Fellowship (Kim), and support from Intel and Dell. We
would like to thank our reviewers, Norm Jouppi, Tim Sherwood,
Susan Eggers, Rakesh Kumar, and Steve Swanson for their helpful
feedback.

10. REFERENCES

[1] H. O. Alan Barber, Ken Lee. A bare-chip probe for high I/O, high speed
testing. 1994.

[2] Alien technology website. www.alientechnology.com.

[3] Altera website. www.altera.com.

[4] Ambric, Inc. website. www.ambric.com.

[S] AMI semiconductor website. www.amis.com.

[6] Amkor technology website. www.amkor.com.

[7] Artisan website. www.artisan.org.

[8] R. Ball. The promise of structured ASIC. Oct 2004.
www.electronicsweekly.com.

[9] K. Brown. Economic challenges on the path to 22 nm. June 2004.
www.future-fab.com.

[10] R.R.B.S.Landman. On a pin versus block relationship for partitions of logic
graphs. Transactions on Computers, 1971.

[11] D. Bursky. Arrays narrow platform ASIC, FPGA gap. July 2006.
wWww.eetimes.com.

[12] ChipX website. www.chipx.com.

[13] T. Clark, R. Ferrigno, and et al. Template-directed self-assembly of
10-micron-sized hexagonal plates. 124, 2002.

[14] Cradle technologies website. www.cradle.com.

[15] Cswitch website. www.cswitch.com.

[16] R. Drost, R. Hopkins, and I. Sutherland. Proximity communication. 2003.

[17] eASIC website. www.easic.com.

[18] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - reconfigurable pipelined
datapath. In Workshop on Field-Programmable Logic, Smart Applications,
New Paradigms and Compilers, 1996.

[19] J. U. K. et. al. Development of next-generation system-on-package (SOP)
technology based on silicon carriers with fine-pitch chip interconnection. 49,
2005.

[20] K. K. etal. 1.27gb/s/pin 3mw/pin wireless superconnect (wsc) interface
scheme. 2003.

[21]
[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]
[31]

[32]
[33]

[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]
[50]

[51]

[52]
[53]
[54]
[55]
[56]
[57]

[58]

[59]

R. R. F. Agahdel, C. Ho. Known good die: A practical solution. Apr 1993.
J. Fang and K. F. Bohringer. Wafer level packaging based on uniquely
orienting self-assembly (the DUO-SPASS processes). 15, 2006.

Faraday electronics website. www.faradayelectronics.com.

Fujitsu website. www.fujitsu.com.

M. Heskins and J. Guillet. Solution properties of
poly(N-isopropylacrylamide). A2:1441, 1968.

D. Huber, R. Manginell, M. Samara, B. Kim, and B. Bunker. Programmed
adsorption and release of proteins in a microfluidic device. 301, 2003.

I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In
International Symposium on Field Programmable Gate Arrays, pages 21-30,
2006.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35, 2002.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset. Computer
Architecture News, 33, 2005.

Mathstar, Inc. website. www.mathstar.com.

S. Mick, J. Wilson, and P. Franzon. 4Gbps high-density AC coupled
interconnection. 2002.

Nec website. www.nec.com.

T. Okamoto, T. Kimoto, and N. Maeda. Design methodology and tools for
NEC Electronics’ structured ASIC ISSP. In International Symposium on
Physical Design, 2004.

Opencores.org website. www.opencores.org.

Y. Pan, R. Wesley, R. Luginbuhl, D. Denton, and B. Ratner. Plasma
polymerized N-Isopropylacrylamide: Synthesis and characterization of a
smart thermally responsive coating. 2, 2001.

J. M. Perkins. Magnetically assisted statistical assembly of III-V
heterostructures on silicon: Initial process and technology development. 2002.
picochip website. www.picochip.com.

Quicksilver technology website. www.gstech.com.

J. T. R. Kalla, Sinharoy Balaram. IBM Power5 chip: a dual-core multithreaded
processor. Micro, Mar-Apr 2004.

J. Rumpler. Optoelectronic integration using the magnetically assisted
statistical assembly technique: Initial magnetic characterization and process
development. 2002.

J. Rumpler, M. Perkins, and et al. Optoelectronic integration using statistical
assembly and magnetic retention of heterostructure pills. 2, 2004.

D. Saltzman and J. Knight, T. Capacitive coupling solves the known good die
problem. 1994.

E. Schuman. Rfid bellwether alien again postpones its ipo. July 2006.
www.eweek.com.

J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel
Applications for Shared-Memory. Computer Architecture News, 1992.
Software/hardware generation for dsp algorithms. ttp://www.spiral.net.
http://www-vlsi.stanford.edu/ee272/proj99/babyviterbi/verilogcode.html.
Sun ultrasparc-t1. http://www.sun.com/processors/UltraSPARC-T1/.

R.R. A. Syms, E. M. Yeatman, and et al. Surface tension-powered
self-assembly of microstrutures: The state-of-the-art. 12, 2003.

Synopsys website. http://www.synopsys.com.

TSMC 90nm technology platform. http://www.tsmc.com/
download/english/a05_literature/90nm_Brochure.pdf.

N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic
memory-efficient string matching algorithms for intrusion detection. In
Infocom Conference, 2004.

K.-C. Wu and Y.-W. Tsai. Structured ASIC: evolution or revolution? In
International Symposium on Physical Design, pages 103—-106, 2004.

Xilinx website. www.xilinx.com.

I. Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA user guide. www.xilinx.com.
X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. Schwartz, and

K. Bohringer. Controlled multibatch self-assembly of microdevices. 12, 2003.
Z. Yang, K.-T. Cheng, and K. Tai. A new bare die test methodology. VLSI Test
Symposium, 00, 1999.

H.-J.J. Yeh and J. S. Smith. Fluidic assembly for the integration of GaAs
light-emitting diodes on Si substrates. 6, 1994.

B. Zahiri. Structured ASICs: Opportunities and challenges. International
Conference on Computer Design, 2003.

Zyvex nanotechnology website. http://www.zyvex.com.

