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Abstract

As the number of cores per die increases, be they pro-
cessors, memory blocks, or custom accelerators, the on-chip
interconnect the cores use to communicate gains importance.
We begin this study with an area-performance analysis of the
interconnect design space. We find that there is no single net-
work design that yields optimal performance across a range
of traffic patterns. This indicates that there is an opportu-
nity to gain performance by customizing the interconnect to
a particular application or workload.

We propose polymorphic on-chip networks to enable per-
application network customization. This network can be
configured prior to application runtime, to have the topol-
ogy and buffering of arbitrary network designs. This paper
proposes one such polymorphic network architecture. We
demonstrate its modes of configurability, and evaluate the
polymorphic network architecture design space, producing
polymorphic fabrics that minimize the network area over-
head. Finally, we expand the network on chip design space
to include a polymorphic network design, showing that a sin-
gle polymorphic network is capable of implementing all of
the pareto optimal fixed-network designs.

1 Introduction

On-chip networks play a critical role in the performance
of computing systems, from high-speed network routers, to
embedded devices, to chip multiprocessors (CMPs). Mov-
ing forward, as we integrate progressively more functionality
on a single die, the communication infrastructure that binds
them will play a central role in overall chip performance.
Foreseeing this, researchers have developed innovations in
all aspects of network-on-chip (NoC) design, including novel
topologies [17, 5], routing algorithms [1], and switches op-
timized for latency [19, 21], fault tolerance [4], and power
consumption [25].

We motivate our work by showing, through simulations
of over 1500 design points, that no single network provides
optimal performance across a range of traffic patterns. For
example, a common network benchmark, uniformly random
all-to-all communication, performs best with a network sup-
porting direct non-local links, such as a fat tree; while a
streaming-style benchmark is well suited for a simple mesh
or ring network with efficient nearest neighbor communica-
tion support. Furthermore, even when optimal designs share
a topology, the networks are provisioned very differently in
terms of buffering and packet sizes. If an application is fixed,
for example in an embedded device, its communication pat-
tern is likely also to be fixed, and the network can be tailored
to that traffic without penalty. When the application and traf-
fic pattern varies, as one finds in programmable devices such
as CMPs, overall performance suffers.

To address this problem, we introduce the polymorphic
on-chip network. The polymorphic network consists of a
configurable collection of network building blocks, princi-
pally queues and crossbars, in which an arbitrary network
can be instantiated. The polymorphic network supports cus-
tomization of network topology, link width, and buffering, to
be determined post-fabrication, but prior to application run-
time, thereby affording the opportunity to customize the on-
chip network to each application. Prior work [13, 12, 22]
indicates that there is significant opportunity to improve per-
formance by tailoring the network on a per-application basis.
Until now, however, it has not been possible to realize these
benefits with a single hardware configuration.

We demonstrate how to configure the polymorphic net-
work architecture to customize network topology, link band-
width, and buffer capacity. The network pays for this flex-
ibility with additional area overhead. We explore the poly-
morphic network design space by instantiating the networks
composing the initial network-on-chip design space in each
candidate polymorphic design. We identify the polymorphic
network designs that incur the least area overhead relative
to fixed hardware implementations. The most efficient in-



stances of the architecture we propose incur a 40% increase
in interconnect area, which, for an interconnect that com-
prises 15% of a die, represents 6% of total die area.

In exchange for this extra area, the polymorphic network
affords design flexibility. For a fixed area budget, our studies
indicate that if you spent that area on a polymorphic network
you could implement a large percentage – ranging from 80%
all the way up to 97% – of the fixed-function networks that
you could have built. Furthermore, the polymorphic network
can emulate all of the previously-identified, optimal network
designs. In summary, this paper makes the following contri-
butions:

• We present a detailed design space exploration and Pareto
analysis of NoC architectures.

• We introduce the polymorphic on-chip network, and
demonstrate how to configure it into a variety of network
topologies, buffering requirements, and link bandwidths.

• We explore the architectural design space of the polymor-
phic network, identifying the most area-efficient members.

• We extend the original NoC design space to include the
polymorphic network, demonstrating the improvement in
overall performance achievable with the a polymorphic net-
work.

In the next section we begin by providing background ma-
terial on NoCs. The reader highly familiar with NoC work
may skip this and proceed directly to Section 3 which con-
tains the NoC design space exploration and Pareto analysis.
In Section 4, we describe the polymorphic network architec-
ture and demonstrate how to use it, and then in Section 5, we
explore the polymorphic network design space and expand
the original space of network designs to include polymorphic
networks.

2 Background

On-chip networks are a rich research domain, covering
both breadth and depth. In the comparatively narrow space of
this section, we outline the research context most necessary
to frame the content of this paper.
Network designs: The history of on-chip networks begins
with off-chip, large-scale system interconnects. This previ-
ous art used a variety of topologies, amongst them the ones
we will include in our study: fat tree [20], butterfly [6],
mesh [6] and ring [6]. Present and future multi-core de-
signs demand much more than a simple integration of ear-
lier large-scale system interconnects onto a single die. For
example, while mapping meshes and rings is relatively easy,
mapping a butterfly network onto a single chip presents more
challenges [17]. In addition, new topologies, specifically de-
signed for on-chip interconnects have arisen [17, 5].

Meanwhile, the switches that are connected to form these

topologies have also been refined, to meet the stringent
power, latency, and fault tolerance requirements of an on-
chip network [4, 19, 25, 21]. The result is that today, we
have a rich and expanding array of options when implement-
ing an on-chip interconnect. Despite this array of choices,
there is contemporary evidence that tailoring an interconnect
to a particular workload can frequently and significantly im-
prove performance.
Tailored NoC designs: There are a number of published
techniques for determining the appropriate network design
for a specific application. In 2006, Hu et al. [13] pre-
sented evidence that non-uniform network input buffers offer
significant network performance improvements. The work
then presents a pre-fabrication, buffer allocation algorithm
that can be applied to find the appropriate buffer sizings to
improve performance and economize resources. Other re-
searcher aims to develop tools to synthesize a custom net-
work on chip for a particular application [12, 22]. Each of
these projects has demonstrated a significant improvement
in performance when the interconnect was tailored to a par-
ticular application.
Relationship to FPGAs: Field-programmable gate arrays
(FPGAs) already contain configurable networks. While cer-
tainly the concept of “island style” routing and FPGAs have
inspired our work, the details and underlying purpose are
entirely different. The performance (delay, power, area) of
FPGAs is impacted by their design goals. The ability to con-
figure routes on a per-bit level, means the overhead is quite
high. Consequently, a long history of research into coarse-
grained FPGAs exists [24, 11, 2]. This work reduces the
overhead caused by bit-level configurability, but still pro-
vides interconnect structures geared towards fully statically
routed designs, as would be required for emulating circuits.
As will be evident later, the relationship between our poly-
morphic on-chip network architecture and an FPGA is only
at a superficial level. In effect, a polymorphic network is a
tailored configurable device designed for emulating on-chip
networks, in the same way that an FPGA is a tailored config-
urable device designed for emulating circuits.

3 NoC Design Space Exploration

We begin our study by exploring the NoC design space,
examining the performance of a range of network architec-
tures operating under different traffic patterns. The first part
of this section outlines the methodology we employ for this
study, and the second part presents our results.

3.1 Methodology

NoC Designs: To explore a wide range of network on chip
(NoC) designs, we vary not only the network parameters,



such as queue capacities and packet sizes, but also the poli-
cies and structures of the network, via the topology and ar-
bitration algorithm. The first section of Table 1 enumerates
the specific parameters and parameter values that define the
design space.

We selected the topologies to cover a range of degrees
of connectivity – from the highly connected fat tree, to the
less connected ring – and because they belong to several
widely-used topology families. For each topology, we used
a deterministic, minimal, oblivious source routing algorithm.
The design space includes two buffered arbitration policies:
store-and-forward and wormhole [6] which reserves and pre-
serves a connection at each switch until all packets in a
packet have traversed the switch.

The network is defined by the topology, routing algorithm
and arbitration policy. Within this definition, however, the
performance of a network can vary a great deal based on its
resources. Thus we also include a range of queue capacities
and packet sizes, as outlined in Table 1, in the design space.
Cycle-level Simulation: We measure the performance of
each NoC in the design space using a microarchitectural
network simulator. The simulator is execution-driven and
models the network on a cycle-by-cycle basis. We validated
this simulator by successfully reproducing data from prior
art [25].
Traffic Patterns: To drive the simulations, we use three syn-
thetic workloads. The first of these, uniform random traf-
fic, is a widely used traffic generation pattern, in which each
node generates a message in each cycle for another randomly
chosen node. This workload has similar traffic character-
istics to an application that has near-random data accesses
running on a CMP, for example a breadth first graph traver-
sal [26]. For this workload, and the others used in this study,
the packets are injected via a Bernoulli process.

The other two workloads are permutation workloads, in
which each node sends packets to exactly one other node.
This is sometimes called an adversarial pattern because, un-
like in the uniform random pattern, the communication load
is unbalanced. We experiment with two workloads in this
family: random permutation, in which the permutation of
sender to receiver nodes is randomly generated, and nearest
neighbor, in which each sender sends packets to a nearby
receiver. The local adversarial pattern reasonably approxi-
mates a system-on-chip design in which the designer took
care to place communicating blocks near to one another to
maximally exploit any locality in the application.
Area Model: As on-chip interconnects are often designed
under tight area budgets, it is unrealistic to explore intercon-
nection options on the basis of performance alone. Thus,
we adopt the methodology of previous work [3], and de-
velop an analytical area model for a network design. To
balance model accuracy with design space size, we syn-
thesize designs for the base network components, including

buffers, queues and crossbars. These base estimates target
a 90nm process, using high-performance GT standard cell
libraries from Taiwan Semiconductor Manufacturing Com-
pany (TSMC) for memories, and models for full-custom lay-
out of crossbar interconnects.

Table 1 describes the model in more detail. The inputs
to the model in the first section of the table are the param-
eter settings which define a particular network design. The
synthesis-based section of the table, specifies the base area
components, including queue and crossbar areas. We then
analytically combines the areas of the base components to
estimate the total network circuit area. Because networks
are wiring-heavy circuits, we conservatively assume a 20%
wiring overhead [3] in the cell placement, in addition to the
already-accounted-for crossbar.

3.2 Design Space Exploration Results

Fixed Area Budget: We found that previous work has allo-
cated a remarkably consistent 15% of die area to on-chip in-
terconnects [10, 18, 14]. These estimates span a wide range
of process technologies, from 130nm all the way down to
32nm, and core counts, from eight to sixty-four core designs.
We allocate 15% of a 15x15mm die (225mm2) to the inter-
connect, and subject to this area constraint investigate the
performance tradeoffs in network latency and throughput.

The graphs in Figure 1 come from 64-node (N = 64)
network simulations. On the x-axis is average packet latency
while on the y is the average throughput. There is one graph
per traffic pattern, with each point in the graphs representing
one network design. The circled points indicate the designs
that are pareto optimal for the given workload. These are the
designs for which one dimension cannot be improved (la-
tency reduced or througput increased) without sacrificing in
the other dimension (increasing latency or reducing through-
put).

First, we can examine the design tradeoffs when imple-
menting a network for a single traffic pattern. For exam-
ple, the first graph shows that the pareto optimal network
designs for uniform random traffic include all four topolo-
gies. The fat tree and mesh offer the lowest latency optimal
designs, followed by the butterfly with double the latency,
and lastly by the ring with quadruple. Over these optimal
designs, increases in throughput come only with accompa-
nying increases in latency. With both the fat tree and mesh,
short queues, of four entries, and large, 128-bit packets give
rise to the aggregate optimal performance. At the other end
of the spectrum, the ring, when provisioned with the same
large packets, has a long transmission latency, but offers sig-
nificantly higher throughput.

In the case of random adversarial traffic, Figure 1 indi-
cates that fat tree once again offers the lowest-latency com-
munication option. As with uniform random communica-



Figure 1. On-chip Interconnect Performance: Each of the three graphs above plots the average la-
tency and throughput for each network in the design space defined by Table 1. The three graphs
correspond to the three network traffic patterns. The circled network designs represent pareto opti-
mal designs subject to an area budget of 32mm2 (15% of a 15mm × 15mm die). Those circled points
that appear stacked actually have different latencies which the scale of these plots makes imper-
ceptible. No network is always optimal, and thus, when selecting which network to implement in a
multi-application environment, there must necessarily be a compromise amongst the different de-
signs.



Network Design Space Parameters
Description Symbol Range
Number Of Terminals N 16,64,256,1024

Topology T

8>>>>><>>>>>:

butterfly (k = 2)

fat tree (k = 2, levels = 3)

flattened butterfly (k = 2)

mesh

ring

Routing Algorithm R deterministic
Arbitration Algorithm A store-and-forward, wormhole
Message Size M 256
Packet Size P 32, 64, 128
Switch Packet Queue Capacity SQ 4, 16, 64
Converter Packet Queue Capacity CPQ 4, 16, 64
Converter Message Queue Capacity CMQ 4

Synthesis-Analytical Area Model
Description Symbol Value

Synthesis
Queue area Queuearea 0.00002 mm2/bit
Wire pitch χ 0.00024mm [15]
Crossbar area XBararea χ2 × Din × Dout × P 2 [8]
Wire overhead Warea 20%

Analytical

Number Of Switches S

8>>>>><>>>>>:

N
k
× log(N) if T is butterfly

N
k

if T is flattened butterfly

N + N
k2 + N

k4 if T is fat tree

N if T is mesh

N if T is ring

Switch Degree D

8>>>>>>>>>><>>>>>>>>>>:

k + logk(N
k

) if T is flattened butterfly

k if T is butterfly8><>:
2 if leaf

k2 + 1 if internal

k2 + 4 if root

if T is fat tree

5 if T is mesh

3 if T is ring

Switch Queue Area SQarea SQ × P × Queuearea

Switch Area Sarea SQarea × D + XBararea + SQarea × D
Converter Message Queue Area CMQarea CMQ × QPB
Converter Packet Queue Area CPQarea CPQ × QPB
Converter Area Carea 2 × CMQarea + 2 × CPQarea

Network Component Area Narea S × Sarea + N × Carea

Total Network Area Iarea 1.20 × Narea

Table 1. NoC Design Space and Area Model: The top part of this table defines a design space of
on-chip network designs to explore. The space includes varying network topologies, arbitration
algorithms, and resource provisions. Below, is the hybrid synthesis-analytical area model we use
to estimate the circuit area of each network in the design space. We ground the area estimates in
90nm standard cell ASIC synthesis data, and then analytically combine these synthesized values to
complete an estimate of total area.

tion, some communicating nodes are going to be at a distance
in the network, and thus, the non-neighbor connections prof-
fered by the higher levels of the tree speed that traversal. The
differences in throughput amongst the fat tree designs on this
workload are entirely attributable to packet size: the larger
the packet the higher the throughput. This is feasible under
the area budget, because the network does not require par-
ticularly deep queues on this workload. The same is true of
the mesh network, for which the best designs incorporate the
large, 128-bit packets and short, 4-entry queues to maximize
throughput under the area budget. However, on average, the

packet latency through the mesh is slightly higher due to the
neighbor-only links in the mesh.

By contrast, the local adversarial traffic experiences ex-
actly the opposite result. While random traffic latency suf-
fered on neighbor-only topologies, the local adversarial traf-
fic, which is neighbor-only, took good advantage of those
topologies. Thus, for this workload, the mesh topologies are
optimal, with the ring not far behind.

While there is a network to fit each workload, there is no
network to fit all workloads. In other words, no network in
the design space is optimal across all three workloads. The



optimal designs can differ in topology, and when the topolo-
gies are the same, the resource provisioning is very differ-
ent. Although these workloads are synthetic, it would not
be farfetched to encounter three similar patterns in a single
multicore device, depending on the application or input data
set that is running. Thus, in selecting a network, one will
necessarily have to sacrifice performance on one or more ap-
plications.

4 Polymorphic On-chip Network Architec-
ture and Design

The previous section empirically motivated the fact that
no single fixed-design on-chip network efficiently communi-
cates different styles of traffic. In this section we describe the
polymorphic on-chip network, which can be configured at
runtime to mimic traditional fixed function networks. From
a hardware standpoint, the network is built from a sea of re-
sources, namely buffers and crossbars. Careful design al-
lows post-fabrication or even runtime configuration of these
resources to form an interconnect with a custom topology,
buffer allocation and packet size. We begin by describing
the microarchitecture of the configurable fabric, followed by
some examples of how to take advantage of the polymor-
phism.

4.1 Microarchitecture

The polymorphic network switch, as with a classic switch,
consists of input and output packet queues, routers, arbiters
and a crossbar of connections. We call the set of input queue,
router, arbiter a slice. These slices are clustered into regions.
Although Figure 2 illustrates eight slices per region, in the
following section we will explore different configurations of
this underlying fabric structure.

The crossbar connecting the slices in a region is a dou-
ble crossbar that allows redefinition of the input connec-
tions as well as the usual dynamic definition of output con-
nections. The diamond-shaped intersections on the incom-
ing packet lines in Figure 2’s slice detail denote the static
connections, while the circular intersections indicate the dy-
namically switching output connections. Although Figure 2
shows these crossbars as bidirectional, they in fact consist
of two single directional wires, because drive buffers can be
employed only on directed wires. Furthermore, the physical
crossbars in this crossbar are segmentable, with a potential
segment point between each of the slices.

The configurable connection between input wires and
crossbars, and the ability to segment a crossbar make it eas-
ier to construct switches out of slices from different regions
in the fabric. This ability to aggregate slices from different
regions into one logical switch turns out to be very valuable,
as it allows for a dense packing of switches. This has two

benefits: First, as the input and output queues consume most
of the area of this fabric, it is important to waste as few as
possible when configuring the network. Second, the closer
the switches are physically, the shorter the routed links that
connect them must be, leading to less link routing congestion
and less capacitive load on those links.

Routing and arbitration: Each network slice contains rout-
ing and arbitration logic. These two pieces of logic serve the
same function as the router and arbiter in their classic switch
counterparts. The router is associated with an input queue,
and determines to which output to route the first packet in
the queue. Meanwhile each output queue has an associated
arbiter which grants access to the output queue, one input at
a time.

In the polymorphic network, we use source routing, where
each packet carries its pre-computed route with it, rather than
making routing decision at each point in the network. This
allows the network to support any static routing scheme, such
as the ones explored in design space exploration presented in
Section 3. However, the effect of this is that it adds bits to the
packet header, reducing the payload of a fixed-size packet.
One way to get around this, and the one we currently utilize,
is to implement wormhole arbitration [9], allowing a lead
packet to carry the route and establish necessary connections,
to be used by the subsequent packets belonging to the same
message.

Configurable link resources: Surrounding the regions are
configurable link tracks which support configurably routed
links between the switches. Unlike the crossbar connections
between the slices, the connections in these crossbars are
statically configurable. They will implement one fixed topol-
ogy per configuration.

Virtual channels: Each slice supports two virtual channels,
which can share the available buffer space, using a flexible
sharing scheme [7]. Networks requiring more than two chan-
nels, must aggregate multiple slices together.

Interface to cores: The polymorphic fabric will be con-
nected to cores in much the same way as a normal network on
chip would. A region is specialized further such that certain
fixed input/output nodes are directed not to general purpose
FIFOs, but instead to the target end-points.

Fabric configuration: We envision configuring the poly-
morphic fabric via bitstream. As opposed to FPGAs, which
are programmed from external sources, when an applica-
tion is loaded on a chip with this fabric, the OS, or runtime
system, can reconfigure the network accordingly, by writ-
ing to memory-mapped bits containing the configuration as it
would any other I/O device. The device could also include a
default network configuration to support applications which
do not specify a custom interconnect.
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Figure 2. Polymorphic Network-on-Chip Microarchitecture: The polymorphic network is formed from
a repeating pattern of “regions” and “crossbars”. The connections within the crossbar are statically
configurable, as shown in the detail above. The regions consist of multiple “slices”, with each slice
containing a slice of a network switch: an input queue, router, potential switch crossbar connections,
and an arbiter.
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Figure 3. Fat tree topology on polymorphic fabric: The placement of switches and routing of links of
a piece of a fat tree topolgy are shown on the polymorphic network fabric for a four-way fat tree with
three levels. Only the subtree beneath beneath one root node is shown. Not shown are the links
that form the mesh connection between root nodes. However, the available configurable links to the
north, south and east of this region have sufficient leftover space to route those connections.



4.2 Examples of Polymorphism

The fabric described above introduces several modes of
flexibility into the network, including flexible topologies,
datapath widths, and queue depths, which we demonstrate
here.
Flexible or hybrid topologies: Configuration of the fabric
to implement a particular topology is a matter of forming
appropriately sized switches and connecting them according
to the desired topology. Figure 3 illustrates the mapping of
a portion of a fat tree onto the fabric. It is a four-way fat
tree with three levels: the same topology used in the design
space exploration in Section 3.1. For legibility, we show the
subtree of only one root node. In a full mapping, the leftover
routing resources on the north, south and east edges of this
diagram would be used to connect multiple nodes together.
Note that in the regions occupied by this design, only six
of the 128 queues have gone unused. This high utilization is
enabled by the ability to form switches from slices assembled
from multiple adjacent regions. We have demonstrated the
instantiation of a fat tree, with highly-connected, high-degree
switches, because it demands more careful configuration of
the fabric.
Flexible buffer allocation: One can also increase the logical
switch buffer size using this polymorphic fabric. It is possi-
ble to configure a single slice to connect the input queue to
the output queue. Such a configuration forms a single logical
buffer from two physically separate ones, in which packets
advance from the back half to the front half automatically,
as necessary. One could also view such a configuration as
a 1 × 1 switch, which in fact does not route or switch, but
simply advances packets forward as a queue would.

The decision to increase switch buffer resources need not
be a universal decision. One can selectively increase buffer
resources on certain switches or ports as the application may
demand. This capability dovetails nicely with other research
that develops tools to identify the ideal network configura-
tion for a particular application [16, 23, 13].
Flexible packet sizing: In a similar manner, one can also
increase the network packet size. Instead of aggregating
sequential buffers, as in the previous example, one can ag-
gregate parallel buffers and links. In effect, this aggrega-
tion increases the network’s packet size and datapath width.
Both of these aggregation techniques increase the per-switch,
or per-link resource requirements of the fabric. However,
with the polymorphic fabric, the increased resource demand
is commensurate with the analogous increase in resource
needs, in buffer sizes and wire bit widths, of a classic ASIC
interconnect.

Note that the polymorphic network need not be re-
stricted solely to general-purpose interconnect configura-
tions. Instead it can support nearly arbitrary application-by-
application tailoring. The performance benefits of such cus-

tomization are well-documented in the literature [13, 12, 22],
but were previously unattainable on multi-application de-
vices.

4.3 Polymorphic Network Design Space

The previous section presented a general architecture for
a polymorphic network, however it left all of the design pa-
rameters, such as packet widths and queue capacities unspec-
ified. Figure 4 illustrates the architectural parameters which
must be decided prior to implementing a polymorphic fabric.

There are N slices to a region, each containing a queue
that is W bits wide and D entries deep. Each region has two
crossbars that are N ×H where H , the number of horizontal
crossbars, must be at least N . Similarly, each configurable
link track intersection is V × H . As with the original net-
work design space, we explore the parameter space of poly-
morphic fabrics. The first section of Table 2 articulates the
polymorphic network parameter range we explore, totaling
108 polymorphic network instances.

Based on the parameters, we can calculate the area of the
base element of the fabric. The base element consists of a
region and a crossbar and is the minimal unit of fabric that
can be replicated to form a larger swath of fabric. The sec-
ond section of Table 2 details how the area of the queues
and crossbars are calculated and totaled to compute the area
of a particular instance of the polymorphic fabric. In a re-
gion there are N queues, and beneath them, two crossbars.
One crossbar from the input lines to the horizontal crossbars
which is N × H , and one crossbar from the horizontal lines
to the output queues which is H × N . Between regions is
a second crossbar. It consists of four crossbars, two of size
H×2V for packets entering in the horizontal direction, from
the left or right, and two of size V × 2H for packets entering
in a vertical direction, from above or below.

The number of base elements needed to implement a par-
ticular network, as well as the resulting latency and through-
put of the network, depend on how the polymorphic fabric
is configured. This is where the last parameter, the network
configuration C, comes in. To determine how much poly-
morphic fabric a particular network configuration will re-
quire, we calculate how many queues each of its switches
will require. This calculation was performed manually for
2×2 switches up to 8×8 switches in each polymorphic fab-
ric. These mappings accounted for the spatial blowup that
occurred when the switch required more bisectional band-
width than was available horizontally in a single region.
These initial queue counts were increased proportionally if
the network configuration demanded deeper or wider queues
than the queues provided by the polymorphic fabric. Note
that in the reverse case, because queues in the polymorphic
fabric cannot be subdivided, when the network configura-
tion’s queues are smaller than those in the fabric, the extra



V (≥ N)

H (≥ N)

N

W

D

Figure 4. Polymorphic Fabric Design Parameters

Polymorphic Network Fabric Design Space Parameters
Description Symbol Range
Number of slices per region N 2,4,8,16
Queue width W 32,64,128
Queue depth D 4,16,64
Width of horizontal configurable link tracks H N , 2 × N
Width of vertical configurable link tracks V N ,2 × N
Network configuration C each network in Section 3.1

Polymorphic Fabric Configuration Model
Description Symbol Value
Base number of polymorphic queues PQueuesbase manual switch configuration

Queue depth adjustment Adjustmentdepth

(
CQueueDepth

D
if CQueueDepth > D

1 otherwise

Queue width adjustment Adjustmentwidth

(
CQueueW idth

W
if CQueueWidth > W

1 otherwise
Adjusted number of polymorphic queues PQueuesadjusted PQueuesbase×

Adjustmentdepth×
Adjustmentwidth

Number of base elements needed BaseElementsneeded PQueuesadjusted/N

Polymorphic Fabric Area Model
Description Symbol Value

Synthesis
Queue area Queuearea 0.00002 mm2/bit
Wire pitch χ 0.00024mm [15]
Crossbar area XBararea(Din, Dout) χ2 × Din × Dout × W

Analytical

Region area PolyRegionarea N × W × D × Queuearea+
XBararea(N, H)+
XBararea(H, N)

Crossbar area PolyXBararea 2 × XBararea(H, 2 × V )+
2 × XBararea(V, 2 × H)

Total area of base element BaseElementarea PolyRegionarea + PolyXBararea

Area of polymorphic fabric to implement C Fabricarea BaseElementsneeded×
BaseElementarea

Table 2. Polymorphic Fabric Design Space, Configuration Model, and Area Model: The “Polymorphic
Network Fabric Design Space Parameters” section of this table enumerates the parameters that de-
fine the polymorphic fabric design space, with the role of the parameters illustrated in Figure 4. The
“Polymorphic Fabric Configuration Model” indicates how many base elements of the polymorphic
fabric are required to instantiate a particular configuration C. Finally, the model translating this base
element count to area is outlined in the last, “Polymorphic Fabric Area Model”, section.

queue capacity amounts to wasted area. Finally, for each net-
work topology, we account for any extra polymorphic fabric
required to implement the overall routing.

4.4 Polymorphic Network Design Space

We explore the design space by varying the parameters
outlined in the section of Table 2 labelled “Polymorphic Net-
work Fabric Design Space Parameters”. In each fabric, we

instantiate each of the networks from the initial network de-
sign space (from Section 3), counting how many base ele-
ments are required to implement each network according to
the model in the section of Table 2 labelled “Polymorphic
Fabric Configuration Model”. Finally, we translate these
base element counts to area with the “Polymorphic Fabric
Area Model” from Table 2. Figure 5 plots the average area
expansion of each possible polymorphic fabric design across
all of the network configurations.



Figure 5. Polymorphic Network Design Space: We compare the area efficiency of the polymorphic
network design points. This chart shows the wide range of area overheads, from 38% on up. The
fabric designs that incur the largest overhead are those that overprovision the polymorphic queues,
in both depth and breadth. While fabrics with small queues can easily mimic large queues, fabrics
with large queues waste a great deal of area when only small queuse are needed. The next most
significant overhead determinant is horizontal routing resources. When severly constrained, this
incurs a large increase in the required polymorphic resources.

Uniform Random Traffic Random Permutation Traffic Nearest Neighbor
Traffic

Figure 6. Polymorphic Overhead Across Networks: The black bars in this chart indicate the area of
each of the pareto optimal fixed-function networks from Section 3.2. The white bars next to them
indicate the area required by a polymorphic network to implement each network in a polymorhpic
network. A polymorphic network of a given size can implement any network design whose white bar
is within the area budget.

Figure 7. Polymorphic Network Coverage Sensitivity: We examine how sensitive the polymorphic
network design coverage is to the area budget. When the area budget is low, a relatively small
percentage of the feasible fixed-function interconnects could also be implemented in a polymorphic
fabric. Thus, a polymorphic fabric is likely not the best interconnection option in this case. However
with a more standard area budget, of 5-10% of die area, the polymorphic fabric coverage improves to
support implementation of 80% of all fixed-function interconnect options. This coverage improves
even further, to 97%, with an increasing area budget.



Each black bar in Figure 5 corresponds to one polymor-
phic fabric design. The height of the bar represents the area
of the polymorphic fabric relative to the ASIC area of the net-
work it is implementing. There are several overriding trends
which govern the quality of a polymorphic fabric.

• The “worst” fabrics, those that incur the greatest in-
creases in area consumption, are the fabrics which over-
provision the polymorphic fabric queues, both in depth
and width, relative to the queues in the configuring net-
work.

• For a fixed queue size, the more constrained the hori-
zontal routing resources, the greater the area overhead.

• The number of slices per region and the amount of ver-
tical routing do not influence area overhead with any
notable pattern. The reason vertical routing resources
are less significant than horizontal routing resources, is
because horizontal routing resources are used to build
network switches and route horizontally, while vertical
routes are used only for routing.

We highlight the “best” fabrics on the left hand side of
Figure 5. These instances of the polymorphic fabric incur,
on average, the smallest area overhead. In keeping with the
overall trends, the best polymorphic designs implement nar-
row and shallow queues, with generous routing resources in
the horizontal and vertical directions. This minimizes waste
because queues are aggregated only when the instantiated
network design requires it. The most area-efficient polymor-
phic fabrics incur a 40% area overhead compared to the av-
erage of the ASIC network designs.

5 Polymorphic Network Evaluation

5.1 Area Overhead on Optimal Networks

We identified the most efficient polymorphic fabric, one
with four slices per region, four, 32-bit packets per queue,
eight horizontal and four vertical routing tracks (N =
4, D = 4,W = 32,H = 8, V = 4). We then examine
the amount of this polymorphic fabric required to implement
each pareto optimal network design. Figure 6 plots these re-
sults. Each pair of bars corresponds to a network design, the
height of the black bars indicating its area when fabricated
directly, and the height of the white indicating the amount
of polymorphic fabric required to implement the same net-
work. This illustrates the flexibility of the polymorphic fab-
ric. Once you have committed to spending a certain amount
of area on a polymorphic fabric (corresponding to some point
on the Y axis of Figure 6), you can implement any network
for which the corresponding white bar does not exceed that
area budget. This chart includes the pareto optimal designs

from our initial design space exploration, however the net-
work configurations need not be constrained to be one of
them.

Figure 7 compares how many pareto optimal networks
can be implemented as directly in a fixed amount of silicon
area versus how many can be instantiated in a polymorphic
fabric of that size. This data indicates that when area is very
limited, you are better off implementing a fixed-function net-
work, because the flexibility of a polymorphic network is
compromised. However, once approximately 18mm2 is al-
located to the interconnect, a polymorphic fabric of a given
size can implement the overwhelming majority of the viable
(with respect to size) optimal fixed-function networks.

This data demonstrates that one should always build a
polymorphic network, except in two cases: (1) when the ap-
plication is fixed and well known ahead of time (e.g. em-
bedded fixed-function devices); and (2) a tighter area con-
straint than 18mm2 is required. Of the fixed topology net-
works we studied, no configuration (queue size, packet size,
etc) exists that is under our chip wide 15% area budget, and
achieves a performance superior to a polymorphic network.
For any pareto-optimal fixed configuration network with area
less than 15% of chip area, we can instantiate a polymorphic
network that is also less than 15% of chip area that achieves
the same performance. One can exploit the adaptability of
the polymorphic network and reconfigure it at runtime to im-
plement the network that best matches an application’s de-
mands, thereby improving total system performance.

6 Conclusion

This paper has identified the need for a flexible on-chip
interconnect architecture, and thus proposed a polymorphic
network architecture. This network can be configured on
a per-application basis to function as the network that best
suits the application needs, thereby improving performance
across a range of applications as compared to a fixed function
network.

We have explored the architectural design space of the
proposed polymorphic network, identifying the design point
which provides the most efficient network configurations.
While polymorphic network design incurs an average of 40%
area overhead relative to a fixed function network, it provides
significant flexibility. Withing a fixed area budget spent on
a polymorphic fabric, one can implement the vast majority
of all fixed-function networks that would have fit within the
area budget.

The value of application-specific interconnect tailoring
has already been demonstrated. As programmable multicore
devices emerge, a polymorphic network – enabling tailoring
of network configurations to fit application traffic patterns
– stands to offer a valuable boost to overall device perfor-
mance.
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