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Signaling in Sensor Networks
for Sequential Detection

Ashutosh Nayyar, Member, IEEE, and Demosthenis Teneketzis, Fellow, IEEE

Abstract—Sequential detection problems in sensor networks are
considered. The true state of nature/true hypothesis is modeled
as a binary random variable H with known prior distribution.
There are N sensors making noisy observations about the hy-
pothesis; N = {1, 2, . . . ,N} denotes the set of sensors. Sensor
i can receive messages from a subset Pi ⊂ N of sensors and
send a message to a subset Ci ⊂ N . Each sensor is faced with
a stopping problem. At each time t, based on the observations, it
has taken so far and the messages it may have received, sensor
i can decide to stop and communicate a binary decision to the
sensors in Ci, or it can continue taking observations and receiv-
ing messages. After sensor i’s binary decision has been sent, it
becomes inactive. Sensors incur operational costs (cost of taking
observations, communication costs, etc.) while they are active.
In addition, the system incurs a terminal cost that depends on
the true hypothesis H , the sensors’ binary decisions, and their
stopping times. The objective is to determine decision strategies
for all sensors to minimize the total expected cost. Even though
sensors only communicate their final decisions, there is implicit
communication every time a sensor decides not to stop. This im-
plicit communication through decisions is referred to as signaling.
The general communication structure results in complex signaling
opportunities in our problem. Despite the generality of our model
and the complexity of signaling involved, it is shown that the
a sensor’s posterior belief on the hypothesis (conditioned on its
observations and received messages) and its received messages
constitute a sufficient statistic for decision making and that all
signaling possibilities are effectively captured by a 4-threshold
decision rule where the thresholds depend on received messages.

Index Terms—Decentralized detection, optimal stopping rules,
signaling.

I. INTRODUCTION

THE PROBLEM of decentralized detection with a group of
sensors has received considerable attention in the litera-

ture. The basic problem structure involves: 1) multiple sensors
that can make observations about the environment; 2) limited
communication resources which prevent sensors from sharing
all their information; and 3) the requirement to make a decision
about a binary hypothesis about the environment. Typically,
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one of the sensors (or a nonsensing entity) serves as a fusion
center that receives messages from other sensors and makes a
decision about the hypothesis.

Within this basic structure, two classes of problems can be
distinguished. In static problems, each sensor makes a fixed
number of observations about the environment. It may also
receive messages from other sensors. The sensor then quantizes
this information and transmits a message to a fusion center
and/or to other sensors. Such problems have been extensively
studied since their initial formulation in [1]. (See the surveys
in [2]–[5] and references therein.) Static problems with large
number of sensors were studied in [6]–[8]. The key feature
to note here is that the number of observations made by each
sensor is fixed a priori. The second class of decentralized
detection problems is sequential problems, where the number
of observations made by each sensor is a stopping time. In
one formulation of such problems, the fusion center makes the
stopping decision for each sensor based on the information
it gathers [9]. In this formulation, even though the commu-
nication decisions are made in a decentralized manner (that
is, each sensor decides which message should be sent to the
fusion center), the stopping decisions are made in a centralized
manner. This formulation requires sensors to continuously send
messages to the fusion center which decides when each sensor
should stop.

The problem studied in this paper is motivated by the situ-
ation when sensors cannot communicate continuously. Instead,
each sensor makes its own stopping decision and communicates
only once after making the decision to stop. Note that the
stopping and communication decisions are now decentralized.
The decentralization of stopping decisions introduces new
signaling aspects in these problems that are absent from static
problems and sequential problems where stopping decisions are
centralized. Consider a sensor that has to first make a stopping
decision and, after stopping, sends a message to a fusion center.
At each time before the stopping time, the sensor’s decision not
to stop is implicitly observed by the fusion center. This decision
conveys information about the observations that the sensor has
made so far. This implicit communication through decisions
is referred to as signaling in decision problems with multiple
decision makers [10], [11].

Sequential problems where sensors make their own stopping
decisions but there is no possibility of signaling were consid-
ered in [12] (with only 1 sensor) and in [13] and [14] (with
multiple noncommunicating sensors). In all of these settings,
it was shown that two-threshold-based stopping rules are op-
timal. Sequential problems where signaling was present were
studied in [15] and [16], respectively. It was shown that optimal
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decision strategies for sensors are characterized by 2M thresh-
olds where M is the size of the communication alphabet.

A. Contributions

We consider a sequential decentralized detection problem
where sensors make their own decisions about how many
observations to take and what message to send after stopping.
We consider an arbitrary communication topology where sensor
i can send a message to an arbitrary (but fixed) subset Ci of sen-
sors and receive messages from another subset Pi of sensors.
The general communication topology distinguishes our work
from similar problems with two sensors or with a star topology
for communication [15], [16]. The communication structure
results in complex signaling opportunities in our problem. For
example, sensor j may be receiving a message from sensor 1
which, in turn, is receiving a message from sensors in the set
P1, which, in turn, may be receiving messages from other
sensors. Thus, sensor 1’s decision signals information about
its own observations as well as the information it gathers due
to signaling by sensors in the set P1. Despite the generality
of our model and the complexity of signaling involved, we
will show that the a sensor’s posterior belief on the hypothesis
(conditioned on its observations and received messages) and
its received messages constitute a sufficient statistic for deci-
sion making and that all signaling possibilities are effectively
captured by a 4-threshold decision rule where the thresholds
depend on received messages.

B. Organization

The rest of this paper is organized as follows. We formulate
our problem in Section II. We present the information states
(sufficient statistics) for the sensors in Section III. We give a
counterexample that shows that classical two-thresholds are not
necessarily optimal in Section IV. We derive a parametric char-
acterization of optimal strategies in Section V. We conclude in
Section VI.

C. Notation

Subscripts are used as the time index and the superscripts
are used as the index of the sensor. X1:t refers to the se-
quence X1, X2, .., Xt. For a collection of sensor indices P =
{a, b, . . . , z}, the notation XP

t refers to the collection of vari-
ables Xa

t , X
b
t , . . . ,

z
t . We use capital letters to denote random

variable and the corresponding lowercase letters for their re-
alizations. P(·) denotes the probability of an event and E[·]
denotes the expectation of a random variable. For a random
variable X and a realization x, we sometimes use P(x) to
denote the probability of event {X = x}.

II. PROBLEM FORMULATION

We consider a binary hypothesis testing problem where the
true hypothesis is modeled as a random variable H taking
values 0 or 1 with known prior probabilities

P(H = 0) = p0; P(H = 1) = 1− p0.

There are N sensors, indexed by i = 1, 2, . . . , N . Let N :=
{1, 2, . . . , N}. Each sensor can make noisy observations of
the true hypothesis. Conditioned on the hypothesis H , the
following statements are assumed to be true:

1) The observation of the ith sensor at time t, Y i
t (taking

values in the set Yi), either has a discrete distribution or
admits a probability density function. For convenience,
we will denote the conditional discrete distribution and
the conditional density by f i

t (·|H).
2) Observations of the ith sensor at different time instants

are conditionally independent given H .
3) The observation sequences at different sensors are condi-

tionally independent given H .

A. Communication and Decision Model

Each sensor is faced with a stopping problem. At any time t,
sensor i, i ∈ N , can decide to stop and make a binary
decision—U i

t = 0 or U i
t = 1—or it can decide to continue

operating which we will denote by U i
t = b(blank).

We assume that the communication model among the sensors
is described by a directed graph G = (N , E). A directed edge
from sensor i to sensor j means that the final decision made at
sensor i is communicated to sensor j. Note that the observations
of sensor i are not communicated to sensor j. This limited
communication may be justified by resource constraints, such
as limited battery life, for the sensors that prohibit continuous
communication among them.

We denote by Ci the set of all sensors that have access to
sensor i’s decisions, that is

Ci := {j ∈ N|(i, j) ∈ E} . (1)

Similarly, we define Pi to be the set of all sensors whose
decisions sensor i has access to, that is

Pi := {j ∈ N|(j, i) ∈ E} . (2)

If sensor i does not receive any message from sensor j ∈ Pi at
time t, it implies that U j

t = b.
At any time t, the information available to sensor i before it

makes its decision is

Iit =

{
Y i
1:t,

{
U j
1:t−1

}
j∈Pi

}
=:

{
Y i
1:t, U

Pi

1:t−1

}
. (3)

Sensor i can use this information to decide whether to stop
taking measurements and decide U i

t = 0 or U i
t = 1 or to

continue taking measurements, that is, U i
t = b. Once the sensor

makes a stopping decision (that is, U i
t = 0 or 1), it becomes

inactive and all further decisions are assumed to be b.
If sensor i has not already stopped before, its decision at time

t is chosen according to a decision rule γi
t

U i
t = γi

t

(
Y i
1:t, U

Pi
1:t−1

)
. (4)

The collection of functions Γi := (γi
t , t = 1, 2, . . .) constitutes

the decision strategy of the ith sensor. We define the following
stopping times:

τ i := min
{
t : U i

t �= b
}
, 1 ≤ i ≤ N
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We assume that each sensor must make its final decision no
later than a finite horizon T , hence we have τ i ≤ T for all i.
At any time t, we define the set of active sensors as

At := {j : τ j ≥ t}. (5)

B. System Cost

Sensors incur operational costs while they are active. These
include the cost of taking measurements and the cost of commu-
nicating with other sensors. The operational costs are a function
of the stopping times of the sensors and are given by the
function O(τ1, . . . , τN ). Further, the system incurs a terminal
cost that depends on the hypothesis H , the final decisions
made by the sensors U i

τ i , and the stopping times τ i of the
sensors. We denote this terminal cost by A(H,U1

τ1 , U2
τ2 , . . . ,

UN
τN , τ1, τ2, . . . , τN ). Thus, the total cost to the system can be

written as

J
(
H,

{
U i
τ i , τ i

}
i∈N

)
= O(τ1, . . . , τN )

+ A
(
H,U1

τ1 , . . . , UN
τN , τ1, . . . , τN

)
.

The system objective is to choose the decision strategies
Γ1,Γ2, . . . ,ΓN to minimize the expected value of the system
cost

J (Γ1,Γ2, . . . ,ΓN ) := E
Γ1,Γ2,...,ΓN [

J
(
H,

{
U i
τ i , τ i

}
i∈N

)]
(6)

where the superscript Γ1,Γ2, . . . ,ΓN over the expectation de-
notes that the expectation is with respect to a measure that
depends on the choice of the strategies Γ1,Γ2, . . . ,ΓN .

C. Special Cases

By making suitable choices of the communication graph and
the system cost function, our model can be reduced to several
known models of decentralized detection problems.

1) No Communication Model: Consider the case where no
sensor sends its final decision to any other sensor, that is, the
communication graph is G = (N , ∅). Further, the operational
cost is linear in the sensors’ stopping times and the terminal cost
depends only on the terminal decisions and the true hypothesis.
That is

J
(
H,

{
U i
τ i , τ i

}
i∈N

)
=

N∑
i=1

ciτ i+A
(
H,U1

τ1 , U2
τ2 , . . . , UN

τN

)
.

(7)

Such a model was considered in [13] with N = 2 sensors.
2) One-Way Communication: Consider the case where sen-

sors 2 to N send their final decision to sensor 1 which is
responsible for making a final decision on the hypothesis. The
system costs are given as

J
(
H,

{
U i
τ i , τ i

}
i∈N

)
=

N∑
i=1

ciτ i +A
(
H,U1

τ1

)
. (8)

Such a model was considered in [16]. An extension of this
model is the case where the communication graph is a tree with
sensor 1 as the root. A static detection problem with such a
network was considered in [4].

Two-Way Communication: Consider the case of two sensors
that can both communicate their final decision to the other. The
decision of the sensor that stops at a later time is considered
to be the final decision on the hypothesis. The system costs are
given as

J
(
H,U1

τ1 , τ1, U1
τ2 , τ2

)
=

2∑
i=1

ciτ i +A
(
H,U1

τ1 , U2
τ2 , τ1, τ2

)
(9)

where A(H,U1
τ1 , U2

τ2 , τ1, τ2) is given as

A
(
H,U1

τ1 , U2
τ2 , τ1, τ2

)
=

{
a
(
H,U1

τ1

)
if τ1 ≥ τ2

a
(
H,U2

τ2

)
if τ2 > τ1

(10)

where a(x, y) := μ1l{x �=y} and μ > 0. Such a model was con-
sidered in [15].

D. Signaling

Consider a simple two-sensor network where sensor 1 can
communicate its binary decision to sensor 2. In the static ver-
sion of this problem, sensor 1 makes an observation, quantizes
it, and sends it to sensor 2. The message sent is a compressed
summary of sensor 1’s observation. In the sequential version of
this problem, sensor 1 can make multiple observations and it
has to decide when to stop making further observations. When
the sensor stops, it sends a binary message to sensor 2. As
in the static case, the message sent at the stopping time is a
compressed version of the observations of sensor 1. However,
unlike the static problem, this final message is not the only
means by which sensor 1 conveys information to sensor 2. At
each time before the stopping time, sensor 1’s decision not to
stop is observed by sensor 2 (since it does not receive the binary
message from sensor 1 at that time). This decision conveys
information about the observations that sensor 1 has made so
far. This implicit communication through decisions is called
signaling in decision problems with multiple decision makers
[11], [10]. It is the presence of signaling in sequential problems
in the decentralized detection of the kind formulated in this
paper that distinguishes them from static problems.

The signaling is more complicated in the general problem
formulated in Section II. Sensor 2 may be receiving a message
from sensor 1 which, in turn, is receiving a message from
sensors in the set P1 [see (2)], which, in turn, may be receiving
messages from other sensors. Thus, sensor 1’s decision signals
information about its own observations as well as the informa-
tion it gathers due to signaling by sensors in the set P1.

Some basic questions associated with signaling problems
with the aforementioned features are: What is an information
state (sufficient statistic) for the sensors? How is signaling
incorporated in evolution/update of the information state? Is
there an explicit description of all signaling possibilities? We
will answer these questions in Sections III–V and discuss them
further in Section VI.
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Remark 1: It should be noted that our communication model
allows for cycles in the communication graph. However, be-
cause a decision by sensor i at time t is available to other
sensors only at the next time step and because all sensors must
stop in finite time, there is no possibility of deadlocks and the
problem is always well posed.

III. INFORMATION STATES

In this section, we identify information states for the sensors.
We start by fixing the strategies of all sensors j �= i to an
arbitrary choice and considering the problem of minimizing
the expected cost only over the strategy of sensor i. When the
strategies of all other sensors are fixed, we show that sensor i
can optimally make its decisions as a function of its posterior
belief on the hypothesis and its received messages. Therefore,
the posterior belief and the received messages constitute an
information state for sensor i when strategies of all other
sensors are fixed. This result does not depend on the arbitrary
choice of other sensors’ strategies. In particular, if all other sen-
sors were using their globally optimal strategies, sensor i’s op-
timal strategy would still be a function of its information state.

Definition 1: Given fixed strategies for all sensors j �= i and
decision rules γi

1:t−1 for sensor i, we define sensor i’s belief on
the hypothesis given all of its information at time t as

Πi
t := P

(
H = 0|Y i

1:t, U
Pi

1:t−1, U
i
1:t−1 = b1:t−1

)
,

where b1:t−1 denotes a sequence of blank messages from
time 1 to t− 1. For t = 0, we define Πi

0 := p0.
Note that the belief Πi

t is a random variable whose realiza-
tions (denoted by πi

t) depend on the realizations of observations
and messages received by sensor i. Also note that we define Πi

t

assuming that sensor i has not stopped before time t, that is,
U i
1:t−1 = b1:t−1. If the sensor has stopped before time t, it does

not have to make any decision at time t and, therefore, it would
be meaningless to define its information state.

We now describe the evolution of Πi
t in the following lemma.

Lemma 1: For t < τ i, sensor i’s belief Πi
t evolves according

to the following equation:

Πi
t+1 = ηit

(
Πi

t, Y
i
t+1, U

Pi

1:t

)
(11)

where ηit is a deterministic function that depends on other
sensors’ strategies.

Proof: See Appendix A. �
The optimal strategy for sensor i (for the given choice of

Γj , j �= i) can be obtained by means of a dynamic program.
We define below the value functions of this dynamic program.

Definition 2:
i) For each realization πi

T , u
Pi

1:T−1 of Πi
T , U

Pi

1:T−1, we define

V i
T

(
πi
T , u

Pi

1:T−1

)
:= min

{
E

[
J
(
H,

{
U i
τ i , τ i

}
i∈N

)
|πi

T ,

uPi

1:T−1, U
i
1:T−1 = b1:T−1, U

i
T = 0

]
E

[
J
(
H,

{
U i
τ i , τ i

}
i∈N

)
|πi

T , u
Pi

1:T−1, xU
i
1:T−1 = b1:T−1,

U i
T = 1

]
,
}
. (12)

ii) For t = T − 1, . . . , 1and for each realization πi
t, u

Pi

1:t−1 of
Πi

t, U
Pi

1:t−1, we define

V i
t

(
πi
t, u

Pi

1:t−1

)
:= min

{
E

[
J
(
H,

{
U i
τ i , τ i

}
i∈N

)
|πi

t,

uPi

1:t−1, U
i
1:t−1 = b1:t−1, U

i
t = 0

]
E

[
J
(
H,

{
U i
τ i , τ i

}
i∈N

)
|π1

t , u
Pi

1:t−1, U
i
1:t−1 = b1:t−1,

U i
t = 1

]
E

[
V i
t+1

(
Πt+1, u

Pi

1:t−1, U
Pi

t

)
|π1

t , u
Pi

1:t−1, U
i
1:t−1 = b1:t−1,

U i
t = b

]}
. (13)

Theorem 1: With fixed strategies for sensors j �= i, there is
an optimal strategy for sensor i of the form

U i
t = γi

t

(
Πi

t, U
Pi

1:t−1

)
for t = 1, 2, . . . , T . Moreover, this optimal strategy can be ob-
tained by the dynamic program described by the value functions
in Definition 2. At time t and for a given πi

t and uPi

1:t−1, the
optimal decision is 0 (or 1/b) if the first (or second/third) term
is the minimum in the definition of V i

t (π
i
t, u

Pi

1:t−1).
Proof: See Appendix B. �

IV. COUNTEREXAMPLE TO TWO THRESHOLD RULES

In the sequential detection problem with a single sensor [12],
it is well known that an optimal strategy is a function of the
sensor’s posterior belief Πt and is described by two thresholds
at each time. That is, the decision at time t, Zt, is given as

Zt =

{
1 if Πt ≤ αt

b if αt < Πt < βt

0 if Πt ≥ βt

where b denotes a decision to continue taking observations
and αt ≤ βt are real numbers in [0,1]. A similar two-threshold
structure of optimal strategies was also established for the
decentralized Wald problem in [13]. We will show by means
of a counterexample that such a structure is not necessarily
optimal in our problem.

Consider the following instance of our problem.1 There are
two sensors and we have equal prior on H , that is

P(H = 0) = P(H = 1) =
1

2

and a time horizon of T = 3. The operational costs are given as

O(τ1, τ2) =
T∑

t=1

c(At) (14)

where c(∅) = 0, c({1}) = c({2}) = 1, and c({1, 2}) = K, 1 <
K < 2 (recall that At is the set of active sensors at time t,
see (5)). The observation space of sensor 1 is Y1 = {0, 1}

1This example is a modification of an example presented in [15].
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and the observations at time t obey the following conditional
probabilities:

Observation, y y = 0 y = 1

f1
t (y|H = 0) qt (1− qt)

f1
t (y|H = 1) (1− qt) qt

where q1 = q2 = 1/2 and q3 = 1. Thus, the first two obser-
vations of sensor 1 reveal no information about H while the
third observation reveals H noiselessly. The observation space
of sensor 2 is Y2 = {0, 1, 2} and the observations at time t obey
the following conditional probabilities:

Observation, y y = 0 y = 1 y = 2

f2
t (y|H = 0) rt (1− rt) 0

f2
t (y|H = 1) 0 (1− rt) rt

where r2 = r3 = 0 and 0 < r1 <1. Thus, the second and third
observations of sensor 2 reveal no information about H .

Both sensors can receive each other’s final decision, that is,
P1={2} and P2={1}. The terminal cost function is given as

A
(
H,U1

τ1 , U2
τ2 , τ1, τ2

)
=

{
a(H,U1

τ1) if τ1 ≥ τ2

a(H,U2
τ2) if τ2 > τ1

(15)

where a(x, y) := μ1l{x �=y} and μ >0. This cost structure im-
plies that the final decision of the sensor that stops later is taken
as the system decision about the hypothesis. The constant μ
can be interpreted as the cost of making a mistake in the system
decision.

Note that under this statistical model of observations, there
exists a choice of strategies such that the system makes a perfect
final decision on the hypothesis and incurs only operational
costs (if sensor 2 stops at t = 1 and sensor 1 waits till time
t = 3, then it can make a perfect decision on H and the system
incurs an operational cost of K + 2). We assume that the cost
of a mistake in the system decision (that is, the parameter μ)
is sufficiently high so that any choice of strategies that makes
a mistake in the system decision with nonzero probability
will have a performance worse than K + 2. Thus, any choice
of strategies that makes a mistake in the final decision with
nonzero probability cannot be optimal.

In the aforementioned instance of our problem, sensor 2’s
posterior belief on the event {H = 0} after making the obser-
vation at time t = 1, Π2

1, can take only one of three values—0,
1/2, or 1. If sensor 2 is restricted to use a two-threshold rule at
time t = 1, then the lowest achievable value of the objective is
given as

min [{K + r1 + (1− r1)(K + 1)} , {K + 2− r1/2}] . (16)

The first term in the minimization in (16) corresponds to the
case when γ2

1 is given as

U2
1 =

⎧⎨
⎩

1 if Π2
1 = 0

b if 0 < Π2
1 < 1

0 if Π2
1 = 1

(17)

γ2
2 is such that sensor 2 stops at time t = 2 and sensor 1’s

strategy is as follows: if it receives a 0 or 1 from sensor 2 at time
t = 1, it stops at time t = 2 and declares the received message
as its final decision; otherwise, it continues operating until time
t = 3 when it observes H noiselessly and declares the observed
H as its decision. The the second term in the minimization in
(16) corresponds to γ2

1 as

U2
1 =

{
1 if Π2

1 < 1
0 if Π2

1 = 1
(18)

sensor 1’s strategy is as follows: if it receives a 0 from
sensor 2 at time t = 1, it stops at time t = 2 and declares the
received message as its final decision; otherwise, it continues
operating until time t = 3, when it declares the observed H
as its decision. It can be easily verified that other choices of
thresholds for sensor 2 at time t = 1 do not give a lower value
than the expression in (16).

Consider now the following choice of γ2,∗
1

U2
1 =

⎧⎨
⎩

1 if Π2
1 = 0

0 if 0 < Π2
1 < 1

b if Π2
1 = 1

(19)

γ2
2 is such that sensor 2 stops and decides U2

2 = 0 at time t = 2
and sensor 1’s strategy is as follows: if it receives a 1 from
sensor 2 at time t = 1, it stops at time t = 2 and declares
the received message as its final decision, if it receives b from
sensor 2, it stops at time t = 2 and declares U1

2 = 0; otherwise,
it continues operating until time t = 3, when it declares the
observed H as its decision. The expected cost in this case is
J ∗ = K + 2(1− r1) + r1(K + 1)/2. It is easy to check that
for 1 < K < 2 and 0 < r1 < 2/3

J ∗ < K +min [{r1 + (1− r1)(K + 1)} , {2− r1/2}] .

Thus, γ2,∗
1 outperforms the two-threshold rules.

Discussion: The threshold rule of (17) implies that a message
of 0 or 1 from sensor 2 at time t = 1 conveys certainty about the
hypothesis. On receiving either 0 or 1 at time t = 1, sensor 1
can declare the correct hypothesis and stop at time t = 2.
However, if sensor 2 is uncertain at time t = 1 (that is, 0 <
Π2

1 <1), then it does not stop at time t = 1 and incurs additional
operation costs at time t = 2 even though its observation at time
t = 2 provides no information. By making the probability r1
small, the contribution of these wasteful operational costs in
the overall system cost is increased. The threshold rule of (18)
ensures that sensor 2 incurs no unnecessary operational costs by
always stopping at time t = 1. However, in doing so, it reduces
the information content of the message sent by sensor 2 at time
t = 1 (since U2

1 = 1 no longer conveys certainty about H).
On the other hand, the nonthreshold rule of (19) attempts to

minimize sensor 2’s operational costs by making sure that it
stops at time 1 if it is certain that H = 1 or if it is uncertain. A
decision not to stop at time t = 1 by sensor 2 signals to sensor 1
that sensor 2 is certain that H = 0. In that case, both sensors can
stop at t = 2 and declare the correct hypothesis. The cost and
observation parameters are chosen so that this signaling strategy
outperforms the two-threshold-based strategies.
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V. PARAMETRIC CHARACTERIZATION OF

OPTIMAL STRATEGIES

In centralized sequential detection problems, the two thresh-
old characterization of optimal strategies modifies the problem
of finding the globally optimal strategies from a sequential
functional optimization problem to a sequential parametric
optimization problem. Even though we have established that
a classical two-threshold rule does not hold for our detection
problem, it is still possible to obtain a finite parametric char-
acterization of optimal strategies. Such a parametric character-
ization provides significant computational advantage in finding
optimal strategies by reducing the search space for an optimal
strategy.

In Theorem 1, we have established that for an arbitrarily
fixed choice of other sensors’ strategies, the optimal strategy
for sensor i can be determined by a dynamic program using
the value functions V i

t (π, u
Pi

1:t−1), t = T, . . . , 2, 1. We now
establish the following lemma about these value functions.

Lemma 2: With fixed strategies for sensors j �= i, the value
function V i

T can be expressed as

V i
T

(
π, uPi

1:T−1

)
:= min

{
l0
(
π, uPi

1:T−1

)
, l1

(
π, uPi

1:T−1

)}
(20)

where for each uPi

1:T−1, l0(·, uPi

1:T−1) and l1(·, uPi

1:T−1) are affine
functions of π.

Also, the value functions at time t can be expressed as

V i
t

(
π, uPi

1:t−1

)
:= min

{
L0
t

(
π, uPi

1:t−1

)
, L1

t

(
π, uPi

1:t−1

)
,

Gt

(
π, uPi

1:t−1

)}
(21)

where for each uPi

1:t−1, L0(·, uPi

1:t−1) and L1
t (·, uPi

1:t−1) are affine
functions of π, and Gt(·, uPi

1:t−1) is a concave function of π.
Proof: See Appendix C. �

We can now derive the following result from the above
lemma.

Theorem 2: With fixed strategies for sensors j �= i, an opti-
mal strategy for sensor i can be characterized as follows: For
each time t and each realization of messages uPi

1:t−1 received
by sensor i, there exist subintervals [αt(u

Pi

1:t−1), βt(u
Pi

1:t−1)] and
[δt(u

Pi

1:t−1), θt(u
Pi

1:t−1)] of [0,1] such that

U i
t =

⎧⎪⎨
⎪⎩

1 if Πi
t ∈

[
αt

(
uPi

1:t−1

)
, βt

(
uPi

1:t−1

)]
0 if Πi

t ∈
[
δt

(
uPi

1:t−1

)
, θt

(
uPi

1:t−1

)]
b otherwise.

(22)

For t = T[
αT

(
uPi

1:T−1

)
, βT

(
uPi

1:T−1

)]
∪
[
δT

(
uPi

1:T−1

)
, θT

(
uPi

1:T−1

)]
= [0, 1].

Proof: From Lemma 2, we know that the value functions
for t < T can be written as the minimum of two affine and one

concave functions. The intervals correspond to regions where
one of the affine functions coincides with the minimum. At time
T , the value function is the minimum of two affine functions
which implies that the two intervals cover [0,1]. �

The result of Theorem 2 provides a 4-threshold character-
ization of an optimal decision strategy for a sensor where
the thresholds depend on the received messages. (Note that
the interval [αt(u

Pi

1:t−1), βt(u
Pi

1:t−1)] or [δt(u
Pi

1:t−1), θt(u
Pi

1:t−1)]
could be ∅. To include this possibility in the four-threshold
characterization, we use the convention that [a, b] = ∅ if a > b).

If sensor i’s decision at its stopping time is not interpreted
as a decision about the hypothesis H but simply as a message
to other sensors, then it may be allowed to take more than
binary values, that is, if U i

t �= b, then it may take values in
{0, 1, . . . ,M − 1}. The arguments of Theorems 1 and 2 can
be easily extended to obtain the following result.

Corollary 1: If sensor i can send one of M possible mes-
sages when it decides to stop, then its optimal decision strat-
egy is characterized by M subintervals of [0,1] [α0

t (u
Pi

1:t−1),

β0
t (u

Pi

1:t−1)], . . . ,[α
M−1
t (uPi

1:t−1), β
M−1
t (uPi

1:t−1)] such that the
optimal decision is U i

t = m if Πi
t ∈ [αm

t (uPi

1:t−1), β
m
t (uPi

1:t−1)].

VI. DISCUSSION AND CONCLUSION

We considered a sequential detection problem in sensor
networks where each sensor can communicate with only a
subset of sensors in the network, sensors cannot communicate
continuously, each sensor makes its own stopping decision and
communicates only once after making the decision to stop.
Even though communication is not continuous, the absence of
communication conveys information. Sensor j’s decisions uj

1:t

signal to other sensors in the set Cj the information sensor
j has up to time t through its own observations Y j

1:t and the
messages UPj

1:t−1 it received from sensors in the set Pj . Since
sensors in Pj may be receiving messages from sensors with
which sensor j has no direct communication, the messages
UPj

1:t−1 include information about (some) sensors not in Pj .
This form of signaling that arises from the decentralization of
stopping decisions as well as the fact that sensors transmit their
decisions only locally is not present in static detection problems
or in sequential detection problems where stopping decisions
are centralized. Some of the basic questions associated with sig-
naling problems with the aforementioned features were posed
in Section II and were analyzed and answered in Sections III–V.
Here, we present a qualitative discussion of the answers to these
questions.

We have shown in Section III that a sensor’s posterior
belief on the hypothesis conditioned on its observations and
the messages received from other sensors is an appropriate
information state for the sensor. Signaling is done based on this
information state, and all signaling possibilities are captured by
a four-threshold decision rule where the thresholds depend on
received messages. In determining its signaling action at any
time t, a sensor must assess the effect of actions of all other
sensors on the cost. This assessment is described by expressions
such as those in (42) and (47) (in Appendix B). The effect of
signaling is also explicitly taken into account in the update of
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the sensor’s information state; it is described in Step 2 of the
proof of Lemma 1. As pointed out earlier in this section, the
messages sensor j receives from other sensors in Pj convey
information about the observations of sensors in N \ Pj ; this
communication of information is described in Step 2 of the
proof of Lemma 1.

The results of this paper reveal qualitative properties of
optimal sensor signaling strategies. Moreover, if the strategies
Γ−i := (Γ1,Γ2, . . . ,Γi−1,Γi+1, . . . ,ΓN ) of all sensors other
than sensor i have already been chosen, Theorem 1 provides
a dynamic programming method to find the best strategy Γi of
sensor i for the given choice of Γ−i. An iterative application
of such an approach may be used to find person-by-person
optimal strategies [17]. Finding globally optimal strategies for
the problem formulated in this paper is a difficult task since it
involves nonconvex functional optimization [17].

APPENDIX A
PROOF OF LEMMA 1

Proof: We will prove the lemma for i = 1. We will pro-
ceed in three steps.

Step 1: Consider a realization y11:t of sensor 1’s observations
and a realization uP1

1:t−1 of the messages received by sensor
i before it makes its decision at time t. By definition, the
realization π1

t of sensor 1’s belief Π1
t is

π1
t = P

(
H = 0|y11:t, uP1

1:t−1, u
1
1:t−1 = b1:t−1

)
. (23)

In the first step of the proof, we will use π1
t and uP1

1:t−1 to
construct sensor 1’s joint belief on H and the observations
of all other sensors. Recall that the strategies Γj , j �= 1 have
been fixed. Under these fixed strategies, UP1

1:t is a deterministic
function of Y 2:N

1:t and U1
1:t−1. To see this, think of the group

of sensors 2 to N as a single deterministic system interacting
with sensor 1. Until time t, the inputs to this system are the
observations Y 2:N

1:t and the messages from sensor 1, U1
1:t−1.

The outputs of this system, as seen by sensor 1, are UPi

1:t . With
the strategies of all sensors 2 to N fixed, this is a deterministic
system with a fixed deterministic mapping from its inputs Y 2:N

1:t

and U1
1:t−1 to its outputs UPi

1:t . Let this mapping be denoted by
Mt, that is

UP1

1:t = Mt

(
Y 2:N
1:t , U1

1:t−1

)
. (24)

Similarly, for a fixed choice of γ1
1:t−1, U1

1:t−1 is a deterministic
function of Y 1

1:t−1, U
P1

1:t−2

U1
1:t−1 = Nt

(
Y 1
1:t−1, U

P1

1:t−2

)
. (25)

Now, let ρ1t (h, y
2:N
1:t ) be defined as sensor 1’s joint belief at

time t on H and the observations of all other sensors. That is

ρ1t
(
h, y2:N1:t

)
:= P

(
H = h, Y 2:N

1:t = y2:N1:t |y11:t, uP1

1:t−1, u
1
1:t−1 = b1:t−1

)
.

(26)

For h = 0, we can write ρ1t (0, y
2:N
1:t ) as

P

(
Y 2:N
1:t = y2:N1:t |H = 0, y11:t, u

P1

1:t−1, u
1
1:t−1 = b1:t−1

)

× P

(
H = 0|y11:t, uP1

1:t−1, u
1
1:t−1 = b1:t−1

)

=P

(
Y 2:N
1:t =y2:N1:t |H= 0, y11:t, u

P1

1:t−1, u
1
1:t−1=b1:t−1

)
π1
t .

(27)

Using Bayes’ rule, the first term of (27) can be written as

P

(
H = 0, y2:N1:t , uP1

1:t−1, U
1
1:t−1 = b1:t−1|y11:t

)
∑

ỹ2:N
1:t

P
(
H = 0, ỹ2:N1:t , uP1

1:t−1, U
1
1:t−1 = b1:t−1|y11:t

) . (28)

Because of (24) and (25), the numerator in (28) can be
written as

1l{uP1

1:t−1
=Mt(y2:N

1:t ,b1:t−1)}1l{(b1:t−1)=Nt(y1
1:t−1

,uP1

1:t−2)}

× P
(
H = 0, y2:N1:t |y11:t

)
= 1l{uP1

1:t−1
=Mt(y2:N

1:t ,b1:t−1)}1l{(b1:t−1)=Nt(y1
1:t−1

,uP1

1:t−2)}

× P
(
y2:N1:t |H = 0, y11:t)P(H = 0|y11:t

)
= 1l{uP1

1:t−1
=Mt(y2:N

1:t ,b1:t−1)}1l{(b1:t−1)=Nt(y1
1:t−1

,uP1

1:t−2)}

× P(y2:N1:t |H = 0)P(H = 0|y11:t) (29)

where we used the conditional independence of observations
in (29).Similar expressions can be obtained for each term in
the denominator of (28). Substituting these expressions back in
(28) and canceling the common terms simplifies (28) to

1l{uP1

1:t−1
=Mt(y2:N

1:t ,b1:t−1)}P
(
y2:N1:t |H = 0

)
∑

ỹ2:N
1:t

1l{uP1

1:t−1
=Mt(ỹ2:N

1:t ,b1:t−1)}P
(
ỹ2:N1:t |H = 0

) . (30)

Substituting (30) back in (27) gives

ρ1t
(
0, y2:N1:t

)

=
1l{uP1

1:t−1
=Mt(y2:N

1:t ,b1:t−1)}P
(
y2:N1:t |H = 0

)
∑

ỹ2:N
1:t

1l{uP1

1:t−1
=Mt(ỹ2:N

1:t ,b1:t−1)}P
(
ỹ2:N1:t |H = 0

)π1
t . (31)

Similarly, we can obtain

ρ1t
(
1, y2:N1:t

)

=
1l{uP1

1:t−1
=Mt(y2:N

1:t ,b1:t−1)}P
(
y2:N1:t |H = 1

)
∑

ỹ2:N
1:t

1l{uP1

1:t−1
=Mt(ỹ2:N

1:t ,b1:t−1)}P
(
ỹ2:N1:t |H = 1

) (1− π1
t

)
.

(32)

Step 2: We now consider how sensor 1 can update its belief
on H and Y 2:N

1:t after observing the messages uP1

t at time t. We
define

σ1
t

(
h, y2:N1:t

)
:= P

(
H = h, y2:N1:t |y11:t, uP1

1:t, u
1
1:t = b1:t

)
(33)
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which, using Bayes’ rule, can be written as

P

(
H=h, Y 2:N

1:t =y2:N1:t , uP1

t |y11:t, u1
1:t=b1:t, u

P1

1:t−1

)
∑

h̃,ỹ2:N
1:t

P

(
H= h̃, Y 2:N

1:t = ỹ2:N1:t , uP1

t |y11:t, uP1

1:t−1, u
1
1:t=b1:t

) .
(34)

Consider the numerator in (34). It can be written as

P

(
H = h, Y 2:N

1:t = y2:N1:t , uP1

t |y11:t, uP1

1:t−1, u
1
1:t−1 = b1:t−1

)
(35)

where we dropped the conditioning on u1
t because u1

t is a func-
tion of the remaining terms included in the conditioning. For a
fixed choice of other sensors’ strategies, uP1

t is a deterministic
fixed function of Y 2:N

1:t and U1
1:t−1. Let this map be Lt, that is

UP1

t = Lt

(
Y 2:N
1:t , U1

1:t−1

)
. (36)

We can now write (35) as

1l{uP1
t =Lt(y2:N

1:t ,b1:t−1)}

× P

(
H = h, y2:N1:t |y11:t, uP1

1:t−1, u
1
1:t−1 = b1:t−1

)
= 1l{uP1

t )=Lt(y2:N
1:t ,b1:t−1)} × ρ1t

(
h, y2:N1:t

)
. (37)

Substituting (37) in (34), we obtain

σ1
t

(
h, y2:N1:t

)
=

1l{uP1
t =Lt(y2:N

1:t ,b1:t−1)}×ρ1t
(
h, y2:N1:t

)
∑

h̃,ỹ2:N
1:t

1l{uP1
t =Lt(ỹ2:N

1:t ,b1:t−1)}×ρ1t

(
h̃, ỹ2:N1:t

) .
(38)

We let σ1
t (h) =

∑
y2:N
1:t

σ1
t (h, y

2:N
1:t ).

Step 3: Finally, we will show that π1
t+1 can be obtained from

σ1
t (·) and y1t+1

π1
t+1 =P

(
H = 0|y11:t+1, u

P1

1:t−1, U
1
1:t−1 = b1:t−1

)

=
P

(
y1t+1, H = 0|y11:t, uP1

1:t−1, U
1
1:t−1 = b1:t−1

)
∑

h P
(
y1t+1, H = h|y11:t, uP1

1:t−1, U
1
1:t−1 = b1:t−1

)
=

P
(
y1t+1|H=0

)
σ1
t (0)

P
(
y1t+1|H=0

)
σ1
t (0)+P

(
Y 1
t+1=y1t+1|H=1

)
σ1
t (1)

=
f1
t+1

(
y1t+1|0

)
σ1
t (0)

f1
t+1

(
y1t+1|0

)
σ1
t (0) + f1

t+1

(
y1t+1|1

)
σ1
t (1)

. (39)

Combining (31), (32), (38), and (39), it follows that Π1
t+1 =

η1t (Π
1
t , Y

1
t+1, U

P1

1:t ). �

APPENDIX B
PROOF OF THEOREM 1

We will prove Theorem 1 for i = 1 by a backward induc-
tive argument. Suppose that the sensor 1 is still active at the
terminal time T . Let F1

T be the set of sensors in P1 that have
stopped before time T , that is, F1

T = P1 \ AT and let G1
T =

N \ ({1} ∪ F1
T ). For k ∈ F1

T , sensor 1 knows the actual value

of τk and Uk
τk ; we will denote them by tk, uk

tk , respectively.
Then, sensor 1’s expected cost if it decides U1

T = 0 is given as

E

[
J(H,U1

T = 0, τ1 = T,
(
U i
τ i , τ i

)
i∈N )|y11:T , uP1

1:T−1,

U1
1:T−1 = b1:T−1, U

1
T = 0

]

=E

[
J

(
H,U1

T =0, τ1=T,
(
tk, uk

tk

)
k∈F1

T

,
(
U j
τj , τ

j
)
j∈G1

T

)∣∣∣∣
y11:T , u

P1

1:T−1, U
1
1:T−1 = b1:T−1

]
. (40)

We now note that given the strategies of sensors 2 to N ,
(U j

τj , τ
j)j∈G1

T
) is a deterministic function of Y 2:N

1:T , U1
1:T−1,

that is (
U j
τj , τ

j
)
j∈G1

T

= S
(
Y 2:N
1:T , U1

1:T−1

)
. (41)

Therefore, the conditional expectation in (40) can be written as

∑
h,y2:N

1:T

[
J
(
h, U1

T =0, τ1=T,
(
tk, uk

tk

)
k∈F1

T

,S
(
y2:N1:T , b1:T−1

))

× ρ1T
(
h, y2:N1:T

) ]
. (42)

Because (42) is a function only of ρ1T , uP1

1:T−1 (which, in turn,
can be computed from π1

T , u
P1

1:T−1), it follows that:

E

[
J
(
H,

(
U i
τ i , τ i

)
i∈N

)
|y11:T ,uP1

1:T−1, U
1
1:T−1=b1:T−1,U

1
T =0

]
=E

[
J
(
H,

(
U i
τ i , τ i

)
i∈N

)
|Π1

T =π1
T , u

P1

1:T−1,U
1
1:T−1=b1:T−1,

U1
T = 0

]
. (43)

Note that the expression in (43) is the first term of the min-
imization in the definition of V 1

T (π
1
T , u

P1

1:T−1) [see (12)]. A
similar result holds for U1

T = 1 with the sensor 1’s expected
cost of deciding U1

T = 1 as the second term of the minimization
in the definition of V 1

T (π
1
T , u

P1

1:T−1). Therefore, for any given
realization π1

T , u
P1

1:T−1 of Π1
T , U

P1

1:T−1, the optimal decision for
sensor 1 at time T is 0 (1) if the first (second) term is the
minimum in the definition of V 1

T (π
1
T , u

P1

1:T−1). Further, sensor
1’s optimal expected cost if it has not stopped before time T is
V 1
T (π

1
T , u

P1

1:T−1).
Now assume that the theorem holds for time t+ 1, t+

2, . . . , T and that the optimal expected cost for sensor 1 if it
hasn’t stopped before t+ 1 is V 1

t+1(Π
1
t+1, U

P1

1:t ). For time t,
using arguments similar to those used before, we can show that
for u = 0,1, sensor 1’s expected cost if it decides U1

t = u is

E

[
J
(
H,

(
U i
τ i , τ i

)
i∈N

)
|y11:t,uP1

1:t−1,U
1
1:t−1=b1:t−1,U

1
t =u

]
= E

[
J
(
H,

(
U i
τ i , τ i

)
i∈N

)
|Π1

t =π1
t ,u

P1

1:t−1,U
1
1:t−1=b1:t−1,

U1
t = u

]
. (44)
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Note that the right-hand side in (44) is the first term (or the
second term depending on u = 0 or 1) of the minimization in
the definition of V 1

t (π
1
t , u

P1

1:t−1) [see (13)].
If sensor 1 does not stop at time t (that is, it decides U1

t = b),
then by induction hypothesis, its optimal expected cost is

E

[
V 1
t+1

(
Π1

t+1, U
P1

1:t

)
|y11:t, uP1

1:t−1, U
1
1:t−1 = b1:t−1, U

1
t = b

]
(45)

which can be written because of Lemma 1 as

E

[
Vt+1

(
ηt

(
π1
t , Y

1
t+1, U

P1

t

)
, uP1

1:t−1, U
P1

t

)
|y11:t, uP1

1:t−1,

U1
1:t−1 = b1:t−1, U

1
t = b

]
. (46)

We now use the fact that UP1

t is a deterministic function of
Y 2:N
1:t , U1

1:t−1 [see (36)] to write (46) as

E

[
Vt+1

(
ηt

(
π1
t , Y

1
t+1,Lt

(
Y 2:N
1:t , b1:t−1

))
, uP1

1:t−1,

Lt

(
Y 2:N
1:t , b1:t−1

))
|y11:t, uP1

1:t−1, U
1
1:t−1=b1:t−1, U

1
t =b

]
=

∑
h,y2:N

1:t ,y1
t+1

Vt+1

(
ηt
(
π1
t , y

1
t+1,Lt

(
y2:N1:t , b1:t−1

))
, uP1

1:t−1,

Lt

(
y2:N1:t ,b1:t−1

))
P

(
y1t+1,h,y

2:N
1:t |y11:t,uP1

1:t−1,U
1
1:t−1=b1:t−1

)
=

∑
h,y2:N

1:t ,y1
t+1

Vt+1

(
ηt
(
π1
t , y

1
t+1,Lt

(
y2:N1:t , b1:t−1

))
, uP1

1:t−1,

Lt

(
y2:N1:t , b1:t−1

))
P
(
y1t+1|h

)
ρ1t

(
h, y2:N1:t

)
. (47)

Since (47) is a function only of π1
t , ρ

1
t ,uP1

1:t−1 (which, in turn, is
a function only of π1

t , u
P1

1:t−1), it follows that sensor 1’s expected
cost of deciding U1

t = b is:

E

[
Vt+1

(
Π1

t+1, U
P1

1:t

)
|y11:t, uP1

1:t−1, U
1
1:t−1 = b1:t−1, U

1
t = b

]
=E

[
Vt+1

(
Π1

t+1, U
P1

1:t

)
|Π1

t =π1
t , u

P1

1:t−1, U
1
1:t−1=b1:T−1,

U1
t = b

]
. (48)

Note that the right-hand side in (48) is the third term in the
minimization in the definition of V 1

t (π
1
t , u

P1

1:t−1) [see (13)].
Therefore, for any given realization π1

t , u
P1

1:t−1 of Π1
t , U

P1

1:t−1,
the optimal decision for sensor 1 at time t is is 0 (or 1 or b) if the
first (or second or third) term is the minimum in the definition
of V 1

t (π
1
t , u

P1

1:t−1). Further, sensor 1’s optimal expected cost
at this time is V 1

t (π
1
t , u

P1

1:t−1). This completes the induction
argument. (See equation (49)–(51) at the bottom of the page)

APPENDIX C
PROOF OF LEMMA 2

We prove the lemma for i = 1. We start at time T . Consider
the first term in minimization in (12)

E

[
J
(
H,

{
U i
τ i , τ i

}
i∈N

)
|π1

T , u
P1

1:T−1, U
1
1:T−1=b1:T−1, U

1
T =0

]
.

(52)

Recall that F1
T is the set of sensors in P1 that have stopped

before time T , that is, F1
T = P1 \ AT and G1

T = N \ ({1} ∪
F1

T ).For k ∈ F1
T , sensor 1 knows the actual value of τk and

Uk
τk ; we denote them by tk, uk

tk , respectively. Therefore, (52)
can be written as

E

[
J

(
H,U1

T =0, τ1=T,
(
tk, uk

tk

)
k∈F1

T

,
(
U j
τj, τ

j
)
j∈G1

T

))
|π1

T ,

uP1

1:T−1, U
1
1:T−1 = b1:T−1, U

1
T = 0

]
. (53)

We now note that given the strategies of sensors 2 to N ,
(U j

τj , τ
j)j∈G1

T
) is a deterministic function of Y 2:N

1:T , U1
1:T−1,

that is (
U j
τj , τ

j
)
j∈G1

T

= S
(
Y 2:N
1:T , U1

1:T−1

)
. (54)

Therefore, the conditional expectation in (53) can be written as∑
h,y2:N

1:T

[
J
(
h, U1

T =0, τ1=T, (tk, uk
tk

)
k∈F1

T

,S
(
y2:N1:T , b1:T−1)

)

× ρ1T
(
h, y2:N1:T

) ]
. (55)

E

[
E

[
V 1
t+1

(
Π1

t+1, u
P1

1:t−1, U
P1

t

)
|y11:t, uP1

1:t−1, U
P1

t , U1
1:t−1=b1:t−1, U

1
t =b

]
|y11:t, uP1

1:t−1, U
1
1:t−1=b1:t−1, U

1
t =b

]
(49)

∑
y1
t+1

[
P
(
y1t+1|H=0

)
σ1
t (0)+P

(
y1t+1|H=1

)
σ1
t (1)

]
× inf

s
{αs

(
uPi

1:t

)
P
(
y1t+1|H=0

)
σ1
t (0)

P
(
y1t+1|H=0

)
σ1
t (0)+P

(
y1t+1|H=1

)
σ1
t (1)

+ βs
(
uPi

1:t

)
(50)

∑
y1
t+1

inf
s

{
αs(uPi

1:t)
(
P
(
y1t+1|H = 0

)
σ1
t (0)

)
+ βs

(
uPi

1:t

) (
P
(
y1t+1|H = 0

)
σ1
t (0) + P

(
y1t+1|H = 1

)
σ1
t (1)

)}
. (51)
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For any given sequence of past messages uPi

1:T−1 received by
sensor 1, (55) implies that the first term in the minimization in
the definition of V 1

T is a linear function of ρ1T . Further, from
(31) and (32), ρ1T is an affine function of π1

T and, therefore, the
first term in minimization in V 1

T is an affine function of π1
T .

Similarly, the second term in the minimization in the definition
of V 1

T is also an affine function of π1
T . Thus, for a given se-

quence of past messages, V 1
T (·, uP1

1:T−1) is the minimum of two
affine functions of π1

t . This establishes the result of lemma 2
for time T and implies that V 1

T (·, uP1

1:T−1)is concave in π1
T .

Now assume that for a fixed sequence of past messages
uP1

1:t, V
1
t+1(·, uP1

1:t) is a concave function of π1
t+1. Therefore,

V 1
t+1(·, uP1

1:t) can be written as an infimum of affine functions
of π1

t+1, that is

V 1
t+1

(
π, uP1

1:t

)
= inf

s

{
αs

(
uP1

1:t

)
π + βs

(
uP1

1:t

)}
(56)

where αs(uP1

1:t), β
s(uP1

1:t) are real numbers.
We will now prove the result of the lemma for time t and

establish that V 1
t (π

1
t , u

P1

1:t−1) is concave in the first argument.
The first two terms in the minimization in (13) are affine in π1

t

due to arguments similar to those used for time T . We will prove
that the third term is concave. Recall from (48) in Appendix B
that the third term in the minimization in (13) is sensor 1’s
expected cost of deciding U1

t = b. We can write this term as

E

[
V 1
t+1

(
Π1

t+1, U
P1

1:t

)
|π1

t , u
P1

1:t−1, U
1
1:t−1 = b1:t−1U

1
t = b

]
=E

[
Vt+1

(
Π1

t+1, U
P1

1:t

)
|y11:t, uP1

1:t−1, U
1
1:t−1=b1:t−1, U

1
t=b

]
.

(57)

Further, by smoothing the property of conditional expectation,
we can write (57) as in (49).

We now proceed in two steps.
Step 1: We first consider the inner expectation in (49).

Consider a realization uP1

t . Recall that σ1
t is the sensor 1’s

posterior belief on H and Y 2:N
1:t conditioned on y11:t, u

P1

1:t and
U1
1:t = b1:t—which are precisely the terms on the right side

of conditioning in the inner expectation in (49). Also, recall
from (39) that Π1

t+1 can be obtained from σ1
t and Y 1

t+1; we
will denote this mapping as Π1

t+1 = νt(σ
1
t , Y

1
t+1). Therefore,

the inner expectation in (49) can be written as

E

[
V 1
t+1

(
νt

(
σ1
t , Y

1
t+1

)
, uP1

1:t

)
|σ1

t , y
1
1:t, u

P1

1:t−1, u
P1

t ,

U1
1:t−1 = b1:t−1, U

1
t = b

]
. (58)

The conditional expectation in (58) is now only over the random
variable Y 1

t+1. Note that

P

(
Y 1
t+1 = y1t+1|σ1

t , y
1
1:t, u

P1

1:t, U
1
1:t−1 = b1:t−1, U

1
t = b

)
=
∑
h

[
P
(
y1t+1|H = h

)
P

(
H = h|σ1

t ,y
1
1:t,u

P1

1:t,U
1
1:t=b1:t

)]

=
∑
h

P
(
y1t+1|H = h

)
σ1
t (h). (59)

Using the induction hypothesis (56), the form of νt from (39)
and the conditional probability of Y 1

t+1 given in (59), the right-

hand side of (58) can be written as in (50), which can be further
written as (51). We denote the expression in (51) by the function
W 1

t (σ
1
t , u

P1

1:t). Thus, W 1
t (σ

1
t , u

P1

1:t) is the inner expectation in
(49) for UP1

t = uP1

t .
Using the fact that σ1

t (1) = 1− σ1
t (0), and that the infimum

of affine functions is concave, it follows that (51) is concave in
σ1
t (0). ThereforeW 1

t (σ
1
t , u

P1

1:t) can be written as

W 1
t

(
σ1
t , u

P1

1:t

)
= inf

s

{
γs

(
uP1

1:t

)
σ1
t (0) + δs

(
uP1

1:t

)}
. (60)

Step 2: The outer expectation in (49) can now be written as

E

[
W 1

t

(
Σ1

t , u
Pi

1:t−1,U
Pi

t

)
|y11:t,uPi

1:t−1,U
i
1:t−1=b1:t−1, U

i
t =b

]
.

(61)

Note that in the above equation Σ1
t appearing as an argument of

W 1
t (·) is a random variable whose realization σ1

t is determined
after uP1

t is observed. The above conditional expectation can be
written as∑
uP1
t

P

(
UP1

t = uP1

t |y11:t, uPi

1:t−1, U
i
1:t−1 = b1:t−1, U

i
t = b

)

× inf
s

{
γs

(
uP1

1:t

)
σ1
t (0) + δs

(
uP1

1:t

)}
. (62)

Recall that ρ1t is sensor 1’s posterior belief on H and Y 2:N
1:t

conditioned on y11:t, u
P1

1:t−1 and U1
1:t−1 = b1:t−1. Therefore, the

conditional probability in (62) can be written as

P

(
UP1

t = uP1

t |y11:t, uPi

1:t−1, U
i
1:t−1 = b1:t−1, U

i
t = b

)
=

∑
h̃,ỹ2:N

1:t

1l{uP1
t =Lt(ỹ2:N

1:t ,b1:t−1)} × ρ1t

(
h̃, ỹ2:N1:t

)
. (63)

We now use (38) to write σ1
t (0) in terms of ρ1t . Observe that the

denominator in σ1
t (·) is exactly the same as the expression in

(63). So, after some cancellations, (62) reduces to the infimum
of affine functions of ρ1t . Because ρ1t is an affine function of
π1
t , this implies that (62) is a concave function of π1

t . Thus, the
third term in the minimization in the definition of V 1

t (·, uPi

1:t−1)
is concave in π1

t which proves the lemma for time t. Further,
it follows that V 1

t (·, uPi

1:t−1) itself is concave in π1
t , which

completes the induction argument.

REFERENCES

[1] R. R. Tenney and N. R. Sandell, Jr., “Detection with distributed sensors,”
IEEE Trans. Aerosp. Electron. Syst., vol. AES-17, no. 4, pp. 501–510,
Jul. 1981.

[2] J. N. Tsitsiklis, “Decentralized detection,” in Advances in Statistical
Signal Processing. Greewich, CT, USA: JAI Press, 1993, pp. 297–344.

[3] P. K. Varshney, Distributed Detection and Data Fusion. New York, NY,
USA: Springer, 1997.

[4] W. P. Tay, J. N. Tsitsiklis, and M. Win, “Bayesian detection in bounded
height tree networks,” IEEE Trans. Signal Process., vol. 57, no. 10,
pp. 4042–4051, Oct. 2009.

[5] J. D. Papastavrou and M. Athans, “On optimal distributed decision ar-
chitectures in a hypothesis testing environment,” IEEE Trans. Autom.
Control, vol. 37, no. 8, pp. 1154–1169, Aug. 1992.

[6] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,”
Math. Control, Signals Syst., vol. 1, no. 2, pp. 167–182, 1988.

[7] J.-F. Chamberland and V. V. Veeravalli, “Asymptotic results for decentral-
ized detection in power-constrained wireless sensor networks,” IEEE J.
Sel. Areas Commun., vol. 22, no. 6, pp. 1007–1015, Aug. 2004.



46 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

[8] J. D. Papastavrou and M. Athans, “Distributed detection by a large team
of sensors in tandem,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 3,
pp. 639–653, Jul. 1992.

[9] V. V. Veeravalli, T. Basar, and H. Poor, “Decentralized sequential detec-
tion with a fusion center performing the sequential test,” IEEE Trans. Inf.
Theory, vol. 39, no. 2, pp. 433–442, Mar. 1993.

[10] Y.-C. Ho, M. P. Kastner, and E. Wong, “Teams, signaling, information
theory,” IEEE Trans. Autom. Control, vol. AC-23, no. 2, pp. 305–312,
Apr. 1978.

[11] A. M. Spence, Market Signaling: Informational Transfer in Hiring
and Related Screening Processes. Cambridge, MA, USA: Harvard
University Press, 1974.

[12] A. Wald, Sequential Analysis. New York, NY, USA: Wiley, 1947.
[13] D. Teneketzis and Y. C. Ho, “The decentralized wald problem,” Inf.

Comput., vol. 73, pp. 23–44, 1987.
[14] A. LaVigna, A. M. Makowski, and J. S. Baras, “A continuous-time dis-

tributed version of the wald’s sequential hypothesis testing problem,”
Lect. Notes Control Inf. Sci., vol. 83, pp. 533–543, 1986.

[15] A. Nayyar and D. Teneketzis, “Decentralized detection with signaling,”
presented at the Workshop Math. Theory of Netw. Syst., Budapest, Hun-
gary, 2010.

[16] A. Nayyar and D. Teneketzis, “Sequential problems in decentralized de-
tection with communication,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5410–5435, Aug. 2011.

[17] Y. C. Ho, “Team decision theory and information structures,” Proc. IEEE,
vol. 68, no. 6, pp. 644–654, Jun. 1980.

Ashutosh Nayyar (S’09–M’11) received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology, Delhi, India, in 2006 and
the M.S. degree in electrical engineering and computer science and the M.S.
degree in applied mathematics, and the Ph.D. degree in electrical engineering
and computer science in 2011 From the University of Michigan, Ann Arbor,
MI, USA, in 2008 and 2011, respectively.

He was a Postdoctoral Researcher at the University of Illinois at Urbana-
Champaign, Urbana-Champaign, IL, USA, and at the University of California,
Berkeley, CA, USA, before joining the University of Southern California,
Los Angeles, CA, USA, in 2014. His research interests are in decentralized
stochastic control, decentralized decision making in sensing and communica-
tion systems, game theory, mechanism design, and electric energy systems.

Demosthenis Teneketzis (M’87–SM’97–F’00) received the M.S., E.E., and
Ph.D. degree in electrical engineering from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 1976, 1977, and 1979, respectively.

Currently, he is Professor of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor, MI, USA. In winter and spring
1992, he was a Visiting Professor at the Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland. Prior to joining the University of Michigan, he
worked for Systems Control, Inc., Palo Alto, CA, USA, and Alphatech, Inc.,
Burlington, MA, USA. His research interests are in stochastic control, decen-
tralized systems, queueing and communication networks, stochastic scheduling
and resource allocation problems, mathematical economics, and discrete-event
systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


