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This paper studies asymptotic agreement among communicating decision-makers in
terms of the evolution of a dynamical system defined on the lattice of information o-
algebras. This approach focuses on the concept of decisions based on common
knowledge introduced earlier by Aumann, but it extends the investigation to general
decision rules. We obtain conditions for asymptotic agreement in cases of direct,
indirect, and random communications. We also present several examples to illustrate
disagreement when the agreement conditions are not satisfied.

1. INTRODUCTION

Systems with decentralized information and limited communication
are in general very difficult to analyze; their formulation so far has
led to infinite dimensional, nonconvex, nonlinear optimization
problems as evidenced by [1-8]. Even for the simplest problem with
decentralized information and limited communication, it is very hard
to compute the optimal performance [1] or even tight bounds on the
performance [5, 6].

In this paper we analyze the asymptotic behavior of a simple
system of distributed decisionmakers with limited communication.
We do not attempt to prescribe optimal decision and
communication strategies, but we instead analyze the consequences
of given, plausible strategies. We believe that such analysis improves
the understanding of what are good strategies and what tractable

problem formulations may be.
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The system considered in this paper consists of a finite number of
decisionmakers who take measurements and have to decide among a
finite or infinitt number of hypotheses. Periodically, the
decisionmakers can communicate their current decisions and then
recompute their own decision. This process results in a sequence of
decisions for each decisionmaker. We study several questions related
to the evolution of these sequences of decisions: will an individual
decisionmaker settle on a final decision; will all decisionmakers
eventually agree on one hypothesis; if the decisionmakers eventually
agree, on what will they agree?

The general problem of reaching a consensus of opinion among
several decisionmakers has been studied by several statisticians and
mathematicians (see [9] for background). In this paper we follow the
recent work of [10]-[14] on the agreement problem, but we have
tried to obtain a deeper understanding of the role of information in
the evolution of decisions. In order to do this we have described the
decisionmakers’ information in terms of a dynamical system evolving
in the lattice of information o-algebras. Abstract lattice dynamical
systems have been studied and applied to other information
processing problems in [15]. In our formulation the state of the
dynamical system is an n-tuple of g-algebras describing each
decisionmaker’s current information. Note that Witsenhausen
introduced the idea of using a o-algebra as the state of a stochastic
system in [16,17]. Of crucial importance in the formulation
proposed here is the idea of “common information” or “common
knowledge” which determines the outcome of the agreement in our
problem. This notion was defined in [10,18,19], and our work takes
a similar approach in this respect.

With this approach we have been able to characterize general
decision rules for which asymptotic agreement among
communicating decisionmakers is possible. Thus, our results contain
those of [10-14] as special cases.

The paper is organized as follows. In Section 2 we formulate the
agreement problem precisely in terms of a lattice dynamical system
defined on the lattice of information o-algebras. We consider the
simple case in which each decisionmaker communicates directly with
each other and in which the number of different measurements is
finite. We relate our results to the earlier work of [10,11] and the
notion of “common knowledge” defined in [10]. In Section 3 we
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generalize the problem of Section2 to allow an infinite number of
different measurements. Under certain conditions there is eventual
agreement, and we relate these conditions to the results of [12,13].
We also present several examples to show what can happen when
these conditions are not satisfied. In Section 4 we generalize the
problem formulation of Sections 2 and 3 to permit indirect
communication. That is, there is not necessarily a communication
link between every pair of decisionmakers. We compare these results
to [12,13]. Section 5 formulates random communication (delays and
distortion) in the lattice g-algebra framework. In this framework we
can obtain results similar to [12,13]. Section 6 concludes our report.

2. AGREEMENT AMONG DECISIONMAKERS WITH
FINITE MEASUREMENTS AND DIRECT
COMMUNICATION

2.1 Introduction

In this section we study the problem of agreement among
decisionmakers with finite measurements and direct communications.
We determine the conditions under which the decisionmakers
eventually agree after a finite number of communications. The main
conceptual conditions are that: (1) each decisionmaker uses the same
rule (with the same prior information) for generating his decision,
and (2) the resulting decision conveys enough information to
reconstruct the decision (using the given rule). These conditions are
formulated precisely in subsections 2.2 and 2.3. As an example, we
~will discuss in subsection 2.4 the algorithm corresponding to the
maximum a posteriori (MAP) decision rule. In subsection 2.5 we
interpret condition'2 in terms of the notion of “common knowledge”

introduced in [10].

2.2 Lattice dynamical system formulation

We assume a stochastic decisionmaking model throughout this
paper. The underlying probability space is denoted (Q, 7, P) where
Q is the sample space, # is the g-algebra of events, and P is the
probability measure. The hypothesis is represented by a random
function x:Q— X taking values in a finite set X. Decisionmaker k
takes measurements in a set Y,. The measurements are represented
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by random functions y,:Q-Y,. The main technical assumption in
this section is that each Y, is a finite set. We study what happens
with infinite Y in Section 3. If f is a measurable mapping of Q, F
into some measure space, let o(f) denote the o-algebra in F
generated by f. In the case of f=y,, let us denote a(y,) by ¥,. For
our purposes, only the o-algebras #, are relevant, and we need not
consider y,, Y. Note that since Y, is finite, so is ¥,.

In this paper we represent information by o-algebras contained in
F. A decision rule is a function d which maps o-algebras ¥ to
decision functions d(%):Q—X. We assume that d(¥) is §-measurable.
Note that this means o(d(¥%))<¥. Let #(t) denote the information
o-algebra of decisionmaker k just after the ¢t-th (:20)
communication. The decision made on the basis of this information
is the value of the function d(#,(t)), and this decision is
communicated to the other agents. The o¢-algebras evolve
dynamically as follows

Fit+)=F () v \;g/k o(d(F (1)) (21)

with the initial condition .
F.0)=%,. (2.2)

Note that v is the join operation on o-algebras: 4, v &, is the
smallest o-algebra containing 4, and ¥,.

Knowing the mapping d and the dynamic equations (Egs. 2.1 and
2.2) tells us everything we need to know about the evolution of
information and decisions in this problem. We may view Egs. 2.1
and 2.2 as a dynamical system defined on the lattice of g-algebras
contained in %. The lattice operations are v (as defined above) and
A (set intersection). The maximum g-algebra is # and the minimum
one is the trivial o-algebra #,:={,Q}. Equation 2.1 generates
increasing sequences {F,(t)},»o of o-algebras. We are interested in
the evolution of Z,(t) and the corresponding decision functions

d(F (t)) as t— 0.

2.3 Condition for agreement

The conceptual condition 2 stated in subsection 2.1 is made precise
in the following proposition.
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ProposITION 2.1 Suppose that d has the property that whenever
o(d(G) =G, <=9, then d(G)=d(%,). If {F(D)},z0 satisfy Egs. (2.1)
and (2.2), then there are c-algebras F kc\/j@ ; and an integer T 20

such that

Fut)=F, (2.3)

for t 2T, and

AF)=d(F) =d( O gﬂ) (2.4)

for all j, k.

Proof By the finiteness assumption we know that \/; %, is finite.
For each t =0,

[t follows that eventually #,(t)=4, for all t=T for some T =0.
Equation 2.1 for t = T says that

Fr=F Vv \Zk U(d(gr;))

or equivalently,

o(d(F ) = F,

for all j, k. Thus, we have

a(d(ﬁ’j))cmﬁ,- cF;
and therefore (by the assumed property of d)
d(fj)=d<m .9",-)

for each j. This completes the proof.
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2.4 EXAMPLE

To illustrate this approach let us consider the decision algorithm d
defined by the MAP decision rule. That is, if ¥ is a o-algebra, then

let d(%) be defined as
d(%9) =arg max { P(x=¢&|9)|Ee X}. (2.5)

The arg max function is defined precisely as follows. Let {i,|¢eX}
be a collection of real numbers; and let > be a total order relation

on X. Then

u=argmax {A,|e X}

if and only if

PR

for all {€ X, and if 4, =4, then
u>¢.

Note that the arg max depends on > to break ties consistently in
case {1,:¢e€X} does not have a unique maximum. Now we show
that d defined in Eq. 2.5 satisfies the property described in

Proposition 2.1.

PROPOSITION 2.2 Suppose d is defined by Eq. (2.5) and Gy, 4, are o-
algebras such that o(d(4,))<¥%,<=%,. Then d(%,)=d(%,).

Proof Consider the event E,={u=d(%,}. Note that E, e d(d(¥%,))
and E, €%, by assumption. By definition Eq. (2.5) of d,

P(x=u|#%,)2 P(x=¢|%,) as. E,t

for all ¢e X. Conditioning this inequality with respect to %, (noting

t“as. E,”=“for almost all samples w in E,” Note that w is the unexpressed
argument of all conditional probabilities and expectations.
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E,e%,) gives
P(x=u|9,)2P(x=¢|9,) as. E,.
Suppose equality holds. Then we have
E(1g, '(P(x=u[(ﬁl)—P(x=f]‘§1))[€42)=O (2.6)

where 1; denotes the indicator function, lg (w)=0 if w#E, and
lg(w)=1 if weE,. Since

lg, (P(x=n|9,)~ P(x=¢|4,))20 as. ,

it follows from Eq. (2.6) that in fact
lg, (P(x=u|%9,)— P(x=¢|%,))=0 as.

Since u is the arg max {P(x=¢|4,} on E,, we see that u>¢. Thus,
we see that

u=argmax {P(x=¢|%,)} = :d(¥9,)

on E,. It follows that d(¥4,)=d(%,).
Note that the proof of Proposition 2.2 is true even if the g-algebras
Y,, 9, are infinite.

Note that MAP is not the only decision rule that satisfies the
property in Proposition 2.1. Suppose we allow the space of decisions -
to be infinite. The property of Proposition 2.1 will make sense and
Proposition 2.1 will still be true as long as the measurements %, are
finite. For example, d(%) may be E(xl.(f), the conditional expectation
of some random variable, or d(%) may be a vector with components

P(x=¢|%) where e X.

2.5 Common knowledge

In [10] information is represented by a partition of the sample space
Q. There is an obvious correspondence between partitions and o-
algebras. Note that the meet P, A P, of two partitions corresponds
to the intersection #,NF, of the corresponding g-algebras.
Aumann [10] defines an event E to be common knowledge to
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decisionmakers | and 2 (with information 2, and P,, respectively) at
w if there is an atom Fe2, A 2, such that we F c E. An equivalent
definition in terms of the g-algebras #, and #, corresponding to
2, and 2, is that there is an event Fe # n% , such that we F<E.
Let us say that the event is common knowledge to decisionmakers 1
and 2 if it is common knowledge at each weW. Then E is common
knowledge to 1 and 2 if and only if it belongs to the o-algebra
generated by 2, A #,, namely F | NnF,.

In [10] Aumann noted the simple fact that if the conditional
probability functions P(E|#,) and P(E|# ;) are common knowledge
to 1 and 2 (ie., both are #,n#, measurable), then P(E[.g" )=
P(E]ﬁ ,). Let us compare this to the condition for agreement in
subsection 2.3. We have the following proposition whose proof
follows directly from the definitions.

ProrosITiON 2.3 The conditions

0d(F )= F,cF =dF )=dF ) (2.7)

and

cd(F ) v od(F ) < F A F y=d(F ) = d(F ) (2.8)

are equivalent.

In Aumann’s language [10] Eq. (2.8) asserts that if decisions d(F )
and d(#,) are common knowledge to 1 and 2, then they are equal.
Aumann showed this condition is satisfied by the decision rule

d(F) = P(E|F).

We saw that this condition is satisfied by the MAP decision rule
also. In Section 4 we will characterize the class of decision rules d
which satisfy a stricter version of this condition.

Expressed in terms of common knowledge, Proposition 2.1 states
that if all decisionmakers use the same decision rule, if the
decisionmakers -communicate simultaneously, and if common
knowledge decisions agree, then all decisionmakers agree on the
same decision after a finite number of communications. The common
decision is the decision based on the ultimate common knowledge of
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the decisionmakers. With this interpretation, Proposition 2.1
generalizes the result of [11] which considered the case in which

d(F) was the posterior probability P(El;%’") given 7,

3. AGREEMENT AMONG DECISIONMAKERS WITH
INFINITE MEASUREMENTS AND DIRECT
COMMUNICATION

3.1 Introduction

The problem formulation of the previous section does not require
that the information g-algebras be finite. One can generalize the
formulation of the previous section to allow infinite measurement -
algebras and an infinite decision space. To do this one needs to
interpret agreement in terms of the convergence of a sequence of
decision functions. In this paper we will assume that the decision
space is a metric space, and convergence will always mean almost
sure convergence with respect to that metric. We will also assume
that all o-algebras are complete with respect to the underlying
probability measure. This ensures that limits of decision functions
are measurable. The difficulty with infinite measurements is that
the o-algebras #,(t) do not necessarily converge to the limit
Fr=\/120F(¢) after a finite number of communications. As we will
see in the examples below, it is possible that d satisfies the conditions
of Proposition 2.1 and d(#,(t)) does not converge or does not
converge to d(#,). In the next subsection we show that the
agreement results of Section 2 are true provided that d satisfies a
- continuity condition. Not all interesting decision rules d satisfy this
continuity condition. Decision rules which give discrete-valued
decision functions (e.g., the MAP rule of Section 2) are examples of
rules not satisfying the continuity condition. We give examples and

discuss this problem later in the section.

3.2 Continuity condition for agreement

The following proposition defines continuity for decision rules d.
Together with the earlier condition in Proposition 2.1, this condition
allows us to prove asymptotic agreement among decisionmakers who
take infinitely many measurements and communicate directly with

each other.
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ProposITION 3.1  Suppose that a decision rule d satisfies the following
two conditions: (1) if od(9,)<=%9,=%,, then d(%,)=d(9,); (2) if
9, <G,y and G=\/,5,9,, then lim,_ ,d(%,)=d¥). If {F(D}:z0
satisfies Eqs. (2.1) and (2.2) and if F,=\/ 50 F (1), then

lim d(F (1)) =d(F ) (3.1)
d(F,) =d(ﬂ F j) (3.2)
I

for each k.

Proof Since: F,(t)1F,, assumption 2 implies that Eq. (3.1) is
true. Thus, from Eq. (2.1), for each k, j we have

od(F (1) = F.

By the assumption concerning convergence in the preceding
paragraph, we see that

for each j, k. The result (Eq. 3.2) follows from condition 1.

Note that the same proof and result are true for the case in which
the decisionmakers can take measurements at each time.

If the decision space and the measurement o-algebras are finite (as
‘was assumed in Section 2), then every decision function
automatically satisfies the continuity condition defined with respect
to the discrete metric (i.e., the metric that assigns distance 0 between
point and itself, and distance 1 between a point and any other point
in the metric space). If the decision space is finite but the
measurement o-algebras are not, then the continuity condition may
not be true as we show in the examples below.

The continuity condition does hold in many cases in which the
decision space is infinite. For example, the continuity condition
holds in the case in which d is defined as a conditional expectation

d(F) = E(x| F)
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for some random variable (or finite dimensional vector) x. Condition
2 in this case is just the martingale convergence property [20].
Proposition 3.1 for this specific decision rule is included in the more
general results-of [12]. In [13] more general decision rules satisfying
2 are defined in the following way. Suppose J:DxQ—R is a cost
function and d(#) minimizes J(f(:), -) for all # measurable
decision functions f:Q-D. If 4,194, then under fairly weak
conditions E(J(d(%,), - )]9,,) IS a convergent supermartingale [20]
and it converges to E(J(d(9), - )]ff) Under some conditions (e.g.,
uniform strict convexity of J, where decisions take values in a finite
dimensional compact, convex set [13]), the convergence of the
optimal costs implies the convergence of the arguments d(¥,)—d(%).
Note that these decision rules also satisfy condition 1. We will
examine this further in Section 4.

3.3 Examples

It is interesting to note that some decision rules (the MAP rule, for
example) do not satisfy 2 but nevertheless satisfy the conclusion of
Proposition 2.1 in some cases. In other cases asymptotic agreement
is not achieved, and it is an open problem to determine useful
conditions for agreement in such cases. The following examples
illustrate possible behavior of the MAP decision rule.

Example 3.1 The first example shows that the MAP rule defined
in subsection 2.4 need not satisfy the continuity condition 2 of
Proposition 3.1. Let the sample space by the unit square [0, 1]3, let
the events be Borel sets, and let the probability P be uniformly
distributed over the unit square. For any real number r, and r,, let
E(r,,r;) denote the subset of [0, 1]* defined by

E(ry,r)={(w;,w,)e[0,1]*=r, = W, —wy >r,}

Let Eq=E(1/\/2,1) and E, =E(—1, —1/,/2).

Note that P(E,)=P(E,)=1/4. Given positive integers n, m, one can
choose n+m+1 real numbers r, such that r,>r,> ... >r iy,
r1=1/\/2-, ey =0, r,,+,,,+1=—1/\/§, and such that P(E(ry.,r.)
is 1/4nfor I1Sk<nandis 1/4mfor n+1<k<n+m.

Define %, , to be the og-algebra generated by the events
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E(res,re) for 25kEm+n—1, and the event
EqUE UE(ryr )UE(,+pn+1,"m+q)- Define the random function
x:[0,1]12—={0,1} as x(w)=0 for weE(0,1) and x(w)=1 for wekE
(—1,0). Let d be the MAP decision rule with respect to the
hypotheses x=0 and x=1. Assume that d prefers 0 in case of ties. It

is easy to compute that if we E,U E, then
d%, .)=0 if n<m

=1 if n>m.

Furthermore, if 4=\/, . %, . then if 0e EqUE,,

D(%)=0.

Thus, if 5, =% 4, Fo+1=F+1, 1 We see that for we EqUE,

lim d(%,,) =0=d(%)

k— o

m d(% 54 1)=1#£0=d(%)

k-

and lim, ., , d(%,) does not exist.

Example 3.2 It is possible that asymptotic agreement occurs even
though the decision rule does not satisfy the continuity condition.
This is the case for the previous example when there are two
decisionmakers with respective measurements y,(w,;,w,)=w; and
yy(wy,w,)=w,. In this case decisionmaker 1 communicates the
binary expansion of w, bit-by-bit up to the time of agreement.
Similarly, decisionmaker 2 communicates the binary expansion of
l—w, up to the time of agreement. The proof of this is
straightforward but lengthy, so we omit it and refer the reader to
[22]. The hypothesis x=0 is the event that w,>w; and x=1 is the
event that w,<w,. Thus, if w,#w,, these communications enable
each decisionmaker to determine x with certainty after a finite
number of communications. If w, =w, and w, is a binary rational
number, then the two decisionmakers also agree after a finite
number of communications. However, if w,=w, and ®, is an
irrational number, then the two decisionmakers never agree, nor do
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their decisions ever converge. However, the probability that o, =w,
is 0, and thus, the two decisionmakers agree almost surely after a

finite number of communications.

Example 3.3 A simple variation of the previous two examples
shows that asymptotic agreement does not occur always. Define the
sample space € to be the union

Q={(0,w;, 1):0Sw, Sw, 1} {(w;,0,,0:0fw, Sw, 1),

This sample space is the same as that of Example 3.2 except that we
have added a copy of the diagonal w,=w, Let P, be the
probability distributed uniformly on the diagonal {(w,®,0):0Sw <1}
and let P, be the probability distributed uniformly on the other
diagonal {(w,w,1):0Sw<1}. Let P, be the probability distributed
uniformly on the rest of Q. Define the probability P on Q as

P=d0'Po+a1'Pl+d2‘P2

where ag+oy +a,=1 and 0=Za,,a,,a, Define y(w,,w, w;)=w,
k=1 or 2, and let H; be the hypothesis w;=j. If ag+a; =0, then the
decision functions depend only on w; and w, and are the same as
for Example 3.2. However, if 1/2>a,=a,>0, then the diagonals
have positive probability ay +a,; >0. Indeed, the decision-makers will
never agree on the points (w,w,w,) if w is not a binary rational
number. Such sample points have a total probability equal to the
probability of the diagonal, namely ay+a;>0. Thus, the
decisionmakers never agree with positive (x, +a,) probability.

4. AGREEMENT AMONG DECISIONMAKERS WITH
INDIRECT COMMUNICATIONS

4.1 Introduction

In the previous two sections we assumed that all decisionmakers
communicated directly with each other. In this section we examine
the agreement problem in cases where some pairs of decisionmakers
do not communicate directly, but communicate indirectly through
other decisionmakers. In such cases of indirect communication the
agreement condition of Section 2 is not sufficient. In this section we
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show that a stronger agreement condition is necessary and sufficient
to guarantee asymptotic agreement if only indirect communication is
assumed. We relate this condition to the results of [12] and [13],
and we show that the new agreement condition is equivalent to
requiring that the decision rule is optimal with respect to some
preference relation among decisions.

4.2 Agreement condition for rings of decisionmakers

We say that a decision rule d satisfies the agreement condition for
rings of decisionmakers if od(F,)<F,,, for k=1,2,...,n and
ocd(F , . )<= F, then d(F,)=d(F,) for all k. Note that the original
agreement condition in sub-section 2.3 is a condition for pairs of
decisionmakers. We now show that the agreement condition for rings
is both necessary and sufficient for asymptotic agreement among
decisionmakers who communicate indirectly.
Consider the lattice dynamical system

Flt+)=F () v \/ ad(F (1)) (4.1)

jeAk

where k=1,2,...,n and 4,<{1,2,...,n}. The sets {4,} determine a
fixed communication pattern between the decisionmakers {k}. In
Section 5 we will see how to treat time-varying and random
communication patterns in the framework of lattice dynamical
systems. Let us say here that a decisionmaker k, communicates to k,
(ky—k,) if there is a sequence k(j), 1 Sj< N, of decisionmakers such
that k, =k(1), k, =k(N), and k(j)e A,(j+1) for each j=1,2,...,N—1.
We say that k, and k, communicate indirectly (k,<k,) if either
ky =k, or if both k;—k, and k,—k;. Note that « is an equivalence
relation between decisionmakers. This equivalence relation partitions
the set of decisionmakers into equivalence classes, denoted [k], of
decisionmakers j such that je—k. Equivalently, j—k if and only if j
and k belong to a “communicating ring” [12]. With this notation we
can prove the following results.

ProrosiTION 4.1  Suppose that d satisfies the agreement condition for
rings of decisionmakers. If {F (t)},;50, | Sk=<n, satisfy Eq. (4.1) with
the initial conditions F,(0)=%,, and if \/, %, is a finite o-algebra,
then there are g-algebras #,<\/, Y, and an integer T =0 such that
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F)=F, (4.2)

for t = T, and

A F ) =d(F)) =d( N 35) (4.3)

lelk)

Jor all k, j such that ke j or equivalently, je[k] (or ke[j]).
Proof Arguing as in the proof of Proposition 2.1, we easily see
that there exist #, satisfying Eq. 4.2 and such that
od(F,)=F » (4.4)

if j € Ay. If k,«>k,, then there are m(i) such that k, =m(i,) for some
iy, ky =m(i,) for some iy, m(N +1)=m(1), and

m(j)eAn(j+1)
for each j. Hence, we have also
O'd(grmuﬂ))cgrmu) (4.5)

for each j. The relationship (Eq. 4.5) together with the agreement
condition for rings imply that A(F ) =UF (1)) Thus, k,—k,
implies that d(#, )=d(#, ,)- It follows that Eq. 4.3 is also true.

ProrosiTiON 4.2 Suppose that d satisfies the agreement condition for
 rings and the continuity condition of Section 3. If {F (t)};50, 1SkZn,
satisfy Eq. (4.1) with the initial conditions #,(0)=%,, and if F .

= vt 20 fk(t), [hen

lim d(F (1)) =d(F)) (4.6)
d(F ) =d< F ,.) (4.7)
Jelk]

for each k.

Proof The proof of Eq. (4.6) is the same as in Proposition 3.1.
Likewise, the argument of Proposition 3.1 proves Eq. 4.4 in this case
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also. The result Eq. 4.7 then follows exactly as in the previous
proposition.

[t should be clear that the agreement condition for rings is
necessary as well as sufficient for Proposition 4.1 to be true. The
following example shows that the agreement condition for pairs of
decisionmakers is generally weaker than the agreement condition for

rings.

Example 4.1 The sample space for this example is {2,3,5,7}. Let
F., F, F, be g-algebras generated by the partitions {{2}, {3},
{571}, {{2}, {5}, {3,7}}, and {{3}, {5}, {2,7}} respectively. For any
a-algebra 4 of this sample space, there is a partition {E, E,,...,E,}
which generates 4. If 9+ % ,,%#,, #,, then define d(¥) as the
function which takes as its value on E, the product of the integers
in E,. Each product depends uniquely on E,, and therefore
od(9)=% for $+F,,F,,F; Define d(F,))=d(F nF;), dF,) =
d(F nF,), and d(F,)=d(F,NnF;). Thus, ocd(F,)=F NF,,
od(F ;) =F nF,, and od(F ;)=F ,nF,. It is easy to check that d
satisfies the agreement condition for direct communication as defined
in Section 2. It does not, however, satisfy the agreement condition
for rings. Although ¢d(F,)cF,, od(F;)=F,, and cd(F )= F,,
the decision functions d(#,), d(F ,), and d(F ;) are all different.

Example 4.2 The example above shows that the agreement
condition for pairs of decisionmakers is weaker than the condition
for rings of decisionmakers. Nevertheless, most decision rules of
interest satisfy the ring condition. We will examine such decision
- rules further in the next subsection. Here we note that the
conditional expectation decision rule d, defined by d(# )=E(x|.97 ) for
an integrable random variable x, satisfies the agreement condition

for rings. This is proved in [12].

4.3 Agreement condition for rings and optimal decision
rules

The paper [13] extended the results of [12] by showing that decision
rules which optimize a scalar cost function give asymptotic
agreement. Note that the conditional expectation decision rule of
[12] is a special case of this since the conditional expectation is
optimal for quadratic cost functions. In this subsection we show that
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the agreement condition for rings is satisfied only by decision rules
which are optimal in a sense we will define precisely below.

ProposiTioN 4.3 Suppose that d is a decision rule such that
od(F)cF for all o-algebras F which are sub-algebras of the o-
algebra F' of the sample space Q. Then d satisfies the agreement
condition for rings if and only if there is a partial ordering < of the
set of functions {d(F):F <F'} such that d(F) is the maximum
element of {d(9):9 < F', 6d(9) = F} with respect to <.

Proof We first show that if
d(F)=max {d(9): G < F',0d(F) c F} (4.8)

then d satisfies the agreement condition for rings. Suppose that
cd(F)cG<=F. Because 4<.F, it is clear that d(9) <d(#). Since
od(F)c9, it is clear that d(F)e {d(H#): H = F", od(#)=¥}. Thus,
d(F)<d(%). The relation < is a partial order, and therefore,
d(%) <d(¥) and d(F)=<d(¥) imply d(F)=d(%). Thus d satisfies the
agreement condition for pairs and in particular, d(od(F))=d(F).

Suppose that #, =%, , | and od(#,, )= F, ., for 1 Sk<n. Then

dF ) =dodF ) SdF 1)

for each k, and hence d(F ) <d(F,)<Sd(F 1) and therefore, d(F )=
d(#,) for all k. This shows that a decision rule d defined by
Eq. (4.18) satisfies the agreement condition for rings.

Conversely, suppose d satisfies the agreement condition for rings.
- Define the partial order < on {d(#):# cF '} as follows. We write
d(#,)<d(F,) if and only if there is an integer n=1 and o-algebras
Y =F', 1=k=n, such that od(F,)c¥,, od(9,)<= v ,,, and d(%,)
=d(F,). It'is easy to see that d(F)<d(7) for all F cF (hence, <
is reflexive), and that d(F,)<d(F 2) and d(F,)<d(F;) imply
d(F,)<d(F,) (hence, < is transitive). Suppose d(F,)<d(#,) and
d(#,)<d(F ). Then there are o-algebras 4, < F', 1<k<n+m, such
that 6d(9,,,)<%,, cd(%,) <%, ,,, 1Sk<n+m—1, d(F)=d%,.,),
and d(#,)=d(%,). The agreement condition implies that d(%,)
=d(9,) for all k, and therefore, d(F )=d(F,). Thus, < is
antisymmetric and hence, < is a partial order. Finally, if 4 #’ and
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od(9) < F, then d(4) <d(F) by definition of <. Thus, it follows that
d(F) is the maximum of {d(¥%):9 < F’, gd(¥) < F} with respect to <.

In many cases, as in [12] and [13], the partial order relation is
defined in terms of a scalar cost function. The following proposition
proves that decision rules defined by such cost functions satisfy the
agreement condition for rings provided that the decision includes a
tie-breaking rule if the cost function has more than one minimum.
This proposition shows, in particular, that the MAP decision rule
defined in Section 2 satisfies the agreement condition for rings of
decisionmakers.

PROPOSITION 4.4  Suppose that decision functions take values in a set
U. Let J be a real-valued functional of #'-measurable decision
functions 6:Q—U. For each & let D(#) be the set of F-measurable
decision functions 6 such that J(8)SJ(8') for all F-measurable
0":Q—U. Assume that U is partially ordered by <’ and that for each
F, there is a d€ D(F) such that & € D(F) implies &'(w) S’ d(w) for all
weC). The decision rule d(F) which assigns this 6 € D(F) satisfies the
agreement condition for rings.

Proof Suppose 6,,6,:Q—U are #'-measurable. Define 4, <"9,
to mean that either J(J,)<J(s,) or -that J(6,)=J(6,) and
0,(w)<'d,(w) for all w. It is easy to see that <” so defined partially
orders all #’-measurable decision functions. Suppose that # <%’
and J is an #-measurable decision function. Since d(F)e D(F), by
assumption J(9) S J(d(F)). If J(0)=J(d(#F)), then e D(F) also, and
dw) S'd(F)(w) for all w. It follows that d(#) maximizes {§:0d € F}
with respect to <”. In particular, d(#) maximizes
- |d(%):0d(9)=F,4<F'}. Thus, Proposition 4.3 implies that d
satisfies the agreement condition for rings.

Typically, J(5) will have the form

J(6) = E(c(8(w). )

in which the expectation is over w and ¢c:UxQ—R is a cost function.
Additional assumptions will be necessary to ensure that J has #-

measurable minima (i.e., that D(F) #+ ).
For example, suppose U is finite and define ¢ as

c(u, w) = 1{u=x(w)}
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where x:Q—U is a random U-valued function. Let <’ be a total
order of U (and therefore a partial order of U). Then the resulting
decision rule is the MAP decision rule with the preference relation
<'. Consequently, we have the following.

COROLLARY 4.5 The MAP decision rule of Section 2 satisfies the
agreement condition for rings.

Note that the fact that a decision rule is optimal with respect to
some cost does not guarantee that the decision functions d(F,)
converge or that they converge to # ——--\/,, #, when F,cF,,,.
This is the case for the MAP decision rule. In this paper we have
separated the common knowledge agreement. condition from the
continuity condition. The agreement condition is the essence of the
agreement problem, even in the simplest cases. However, the
continuity condition or something like it is necessary to deal with
cases involving infinite measurement o-algebras.

5. AGREEMENT AMONG DECISIONMAKERS WITH
RANDOM COMMUNICATIONS

5.1 Introduction

Up to this point we have considered communication of random
messages (i.e., decisions) among decisionmakers, but we have only
allowed predetermined patterns of communication between
decisionmakers. However, the results of [12] and [13] show that
asymptotic agreement is also possible with random communication
- patterns that are not predetermined but depend on the course of
events. The lattice dynamical system approach we have taken can
casily treat predetermined communication patterns, but it is not
obvious that it can also handle event-driven communication
patterns.

In this section we show how to model random communication
patterns in the lattice dynamical system framework introduced in
Section 2. We then extend the results of Section 4 to the case of
random communication patterns and thus obtain the results of [12]

and [13] using our approach.

5.2 Event-dependent information algebras and random
communication

Consider communications of the followine tvne: if an event F arcnrc
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a message is received and the receiver knows this; if E does not
occur, no message is received and the receiver knows this also. If #
is a o-algebra representing the message information, then the E-
dependent message information g-algebra can be described as
follows. Define #/E to be the collection of all sets of the form EnF
or (ENF)UE® where Fe# and E° is the complement of E with
respect to the sample space Q. Then F/E is a o-algebra which
represents the information in an E-dependent message when the
receiver knows whether a message has arrived or not.

Note that #/Q=%. That is, the message information is
completely received if the message is transmitted with certainty.
Similarly, #/={J,Q}. That is, there is no information if the
message is never transmitted. Suppose E, are events and
(Unz1 E,2E. Then

F|E,SFIEVE. (5.1)

nz1

That is, if a message is transmitted repeatedly and at least one
transmission is received whenever E occurs, then the message
information is at least #/E. Even if ( J, E,=E, there may not be
equality in Eq. (5.1). Indeed, it is not hard to see that

\/ #/E,=F/E\/¥ (5.2)
nz1

where % is generated by the sets E,.
Suppose that the information #(t) is available for transmission at

time t, but the available information is only transmitted at random
times t”. Suppose that the nth transmission is received at a random
time ¢". Using the #/E notation, we can represent the information

received at time s by the expression

V V Z@)/{r"=t&o" =5}.

tz20nz1

Let us now formulate the lattice dynamical system equations for N
decisionmakers who communicate at random times and whose
messages are subject to random delays. Let 77, be the transmission
time of the nth communication (n=1) from decisionmaker j to
decisionmaker k. Let ¢}, be the reception time of the nth
communication (n=1) from decisionmaker j to decisionmaker k. We
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allow the possibility that Tjy =00 or o}, =co to indicate that no

transmission was sent or none was received. We assume that
thSth' ! always and that he=1" only if t=1%"'=0. The

information o-algebra received by k at time ¢ is

)=\ \ o(d(F(s)/{th=s&a7 =t}. (5.3)

J#ks20nz1
The lattice dynamical system is given by Eq. (5.3) and
Fit+1)=F () v R (). (5.4

In the next subsection we investigate when the decisions d(% (t)) all
converge to the same decision for each k as t— oo.

5.3 Asymptotic agreement with random transmission
times and random delays

To prove the following result about asymptotic agreement it is
necessary to make certain: technical assumptions. The argument we
use follows the general outline of the proof of Propositions 3.1 and
4.2. There are two parts of the proof. The first part shows
od(F)<=F; for certain pairs k,j of decisionmakers and requires
certain technical assumptions to handle convergence of decision
functions. The second part deduces from the agreement condition for
rings that the limiting decision functions all agree.

Recall from Section 3 that we assume that the underlying
- probability space is complete and that all g-algebras we deal with
contain the O-probability events. Thus, we assume that the initial o-
algebras %, are complete with respect to the probability measure.
Let us redefine o(d) and F#/E to be the completion of these algebras
as we originally defined them. Let us also say that J communicates
infinitely often to k if T} <oo as. for each n and if P({c}, < for
infinitely many n})=1. This means that j transmits infinitely often to
k and an infinite number of transmissions are actually received. With
these technical assumptions and definitions we have the following

proposition.

ProrosiTioN 5.1  Suppose that the decision rule d satisfies the
agreement condition for rings and the continuity condition. Let A, be
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the subset of decisionmakers who communicate infinitely often to k.
Define j—k, je+k, and [k] with respect to A, just as in subsection 4.2.
Then conclusions of Proposition 4.2 are true. That is, if {F(t)},z0
1= k=N, satisfy Egs. (5.3) and (5.4) with initial conditions # ,(0)=%¥,,
and if F,=\/,50 F (1), then

lim d(F (t))=d(F,) (5.5
and

A(F,) =d(j Q] 9"’,). ‘ (5.6)
for each k.

Proof Note that Eq. (5.5) follows from the continuity condition
we assume that d satisfies. We will show that gd(# ;)= #, whenever
je A,. The agreement condition for rings then implies Eq. (5.6) with
the same argument as that of Section 4. Thus, we need only to prove
ocd(F ;)= F, for j€ A,.

Note that Z,(t)=F  (t+1) for each t and hence, Z,(t)cF, for
each t. Thus, we have \/,,,#(t) < F,. In particular, we see from
Eq. (5.3) that for each j#k

V V V o d(F (s)/{t) =s&a%, =t} < F,. (5.7)

t20s3520n21

Note that the order of the join operations \/ in Eq. (5.7) is arbitrary,
and Eq. (5.7) is equivalent to

V V V aod(F ()T =5&0% =t} = F,. (5.8)

n21s20t20
From the fact that

U {t)e = &0, =t} = {1], = &7, # o0}

t20

W

and from Eq. (5.1) we can deduce from Eq. (5.8) that
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o(d(F (s)))/{t}y = 580" # 00} = F,. (5.9)

nz1320

Define the decision function dji as d(F (s)) if o7, =s. Since T <00

as., dj, is well-defined almost surely. The assumptions we made

about completeness mean that the value of dj, on sets of O-
probability does not matter. In particular, it does not affect a(djy).

Note that
o(d)/{Tjx = s&ofy £ 00} = o{d(F (9)/{¥}y = s&”y £ 0} (5.10)
for each n, j, k, and s. From Eqgs. (5.9) and (5.1), and the fact that

{Tix =&y # 00} = {0, + 00} (5.11)

520
we find that

o(d)/{o" #+ 0} = F,. (5.12)

nz0
The following two lemmas will complete the proof of the
proposition.

LEmMMAa |

lim dfy, = d(F).

n—*x0

LeMMA 2 Iflim,_,  f,=f and fP((Vaz1 UmsznEn)=1, then

a(f) \V o(f,)/E,.

nz21

Completion of Proof of Proposition 5.1:
Note that if E,={¢7, # o0}, then

{07x # oo for infinitely many n} = N U En.

nzZlmzn

Thus, P([), 5, Umzn En)=1 if and only if je A;. Consequently, je 4,
implies (by Lemmas 1 and 2) that o(d(F N<F,, and the

proposition is complete.
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Proof of Lemma | Let us assume that the decision functions take
values in a metric space with metric p. Egorov’s theorem [21] asserts
that there are measurable sets F,, such that F,<F,, .,, P(U,F,)=1,

and

p(d(F (1)), d(F ))) S en(1)

for weF,,, where ¢,(t) is a real number independent of w and e,(¢)
decreases to 0 as t— 0. It follows that

pldjy, d(F ;) S emlt)

for we F,,n {1} 2t} and n= N. Thus,

lim sup p(djy, d(F )) S en(?) (5.13)

n—+aa

for we F,,n{t},=t} for all N. By assumption, G={Jy{t} =t} has
probability 1. We see that Eq. (5.13) is true for we F,, N G. Therefore,

lim sup p(d};, d(F;)) =0

n—aw

for we( ), Fn G and P({ ), F,nG)=1. This is the conclusion we
wanted to prove.

Proof of Lemma 2 For weQ define v(1) (depending on w) to be
~ the smallest integer n=1 such that weE, or v(1)=o00 if none exists.
Define v(2) to be the smallest integer n>v(1) such that weE, or
W(2)=oc0 if none exists. Define v(I) similarly for all /= 1. Note that

W) < oo for all I21 and limw()= o0 for we E=()g1 (Umen Em-
Define g,=f,, for weE. Since P(E)=1, g, is well defined.
Moreover, since v(I)«> o0, it is clear that g,— f as [—c0. Note that

o(G)/{(v(D=n}=a(f)/{v()=n}. (5.14)
Moreover,

lul {(W)=n}=E, (5.15)
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and

U (h=n}=H,. (5.16)

Let 4, be the g-algebra generated by the sets {(W)=n}, 121, and let
A, be the g-algebra generated by the sets {W()=n}, n=1. Note that
F =\/nz1%,=\/1 5,4, is the o-algebra generated by the sets E,,
nz 1. Note that in Eq. (5.16) the sets H, include E and hence P(H))
=1. Thus, #/H, =4 for any complete g-algebra 4.

Using Eq. (5.2) on Eq. (5.14) we see that

\/ olg) v F=\/ o(f)/E, v F.

121 n21

Since # <= \/ o(f,)/E,, we obtain

nzl

V olg)=\/ o(f,)/E,.

121 n1
Because g, — f, it follows that

O(fcz\/‘ﬂgﬂ
121
and the proof is complete.

6. CONCLUSIONS

In this paper we have studied the problem of asymptotic agreement
among communicating decisionmakers in terms of a lattice
dynamical system defined on the lattice of n-tuples of information o-
algebras. This approach has allowed us to achieve a fundamental
understanding of the problem of agreement among decisionmakers
who communicate decisions based on general decision rules. We
have shown that conditions necessary for agreement and continuity
conditions necessary for convergence of decisions are clearly
separate. We have also shown that the ring condition, necessary for
agreement using indirect communication, is equivalent to having a
decision rule which is optimal with respect to some preference
relation between decision functions. Although we have focused our
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study on the asymptotic agreement problem, the lattice dynamical
system formulation appears to be a useful approach to analyzing
other problems of information evolution in distributed
decisionmaking systems with specified communication and decision

rules.
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